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Preface

This volume collects the papers accepted for presentation at the 7th International
Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS 2005).
The ACIVS conference was established in 1999 in Baden-Baden (Germany) as
part of a large multiconference. ACIVS has maintained the tradition of its first
edition of having 25-minute oral talks in a single track event, even though the
number of participants has been steadily growing every year. The conference
currently attracts computer scientists from more than 20 countries, mostly from
Europe, Australia and Japan, but also from USA, Asia and the Middle East.

Though ACIVS is a conference on all areas in image processing, one of its
major domains is image and video compression. A third of the selected papers
dealt with compression, motion estimation, moving object detection and other
video applications. This year, topics related to clustering, pattern recognition
and biometrics constituted another third of the conference. The last third was
more related to the fundamentals of image processing, namely noise reduction,
filtering, restoration and image segmentation. We would like to thank the invited
speakers Fernando Pereira, Marc Op de Beeck and Rafael Molina for enhancing
the technical program with their presentations.

A conference like ACIVS would not be feasible without the concerted effort
of many people and the support of various institutions. The paper submission
and review procedure was carried out electronically and a minimum of 3 review-
ers were assigned to every paper. From 200 submissions, 44 were selected for
oral presentation and 46 as posters. A large and energetic Program Committee,
helped by additionnal referees – listed on the following pages – completed the
long and demanding reviewing process. We would like to thank all of them for
their timely and high-quality reviews. Also, we would like to thank our sponsors
Philips Research, Barco, Eurasip, the IEEE Benelux Signal Processing Chapter
and the Flemish FWO Research Community on Image Processing Systems for
their valuable support.

Last but not least, we would like to thank all the participants who trusted
us in organizing this event for the seventh time. We hope they attended a stim-
ulating scientific event and enjoyed the atmosphere of the ACIVS social events
in the historic city of Antwerp.

July 2005 J. Blanc-Talon, D. Popescu, W. Philips and P. Scheunders
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Mathias Kölsch (Naval Postgraduate School, Monterey, USA)
Olivier Laligant (Le2i Lab., Le Creusot, France)
Kenneth Lam (Hong Kong Polytechnic University, Hong Kong, China)
Ivan Laptev (INRIA, Rennes, France)
Alessandro Ledda (Ghent University, Belgium)
Alexander Leemans (University of Antwerp, Belgium)
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David Masip (Computer Vision Center, Bellaterra, Spain)
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Fabrice Meriaudeau (Université de Bourgogne, Le Creusot, France)



XII Organization

Maurice Milgram (Jussieu Université, Paris, France)
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Marc Op de Beeck (Philips Research, Eindhoven, The Netherlands)
Marcin Paprzycki (Oklahoma State University, Tulsa, USA)
Jussi Parkkinen (University of Joensuu, Finland)
Shmuel Peleg (Hebrew University of Jerusalem, Israel)
Fernando Pereira (Instituto Superior Técnico, Lisbon, Portugal)
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Dom. Univ. de Saint Jérôme, F-13013 Marseille cedex 20, France

william.ketchantang@fresnel.fr
2 ST Microelectronics, ZI Rousset BP 2, F-13106 Rousset, France

lionel.martin@st.com

Abstract. Currently, iris identification systems are not easy to use since
they need a strict cooperation of the user during the snapshot acquisition
process. Several acquisitions are generally needed to obtain a workable
image of the iris for recognition purpose. To make the system more flex-
ible and open to large public applications, we propose to work on the
entire sequence acquired by a camera during the enrolment. Hence the
recognition step can be applied on a selected number of the “best work-
able images” of the iris within the sequence. In this context, the aim of
the paper is to present a method for pupil tracking based on a dynamic
Gaussian Mixture Model (GMM) together with Kalman prediction of the
pupil position along the sequence. The method has been experimented
on a real video sequence captured by a near Infra-Red (IR) sensitive
camera and has shown its effectiveness in nearly real time computing.

1 Introduction

Person identification from its iris is known to be one of the most reliable biometric
technique, amongst face, fingerprint, hand shape, etc, based methods [1]. Iris
texture is a relatively stable physical characteristic over years (and quite hard
to falsify), that can be used even to guaranty high-level security access, by using
a number of different iris signature [2,3,4].

Iris coding and comparison technics are relatively mature and show nice
performances, in terms of both False Acceptance Rate (FAR) and False Rejection
Rate (FRR). However, one major drawback in such iris identification systems
comes from the eye acquisition procedure which needs a strict cooperation of
the user in order to get a good quality image. Several snapshots of the iris
are generally necessary to obtain a ready-to-process image. Examples in Fig. 1
show classical near IR iris acquisition problems obtained during enrolment, with
blurred, noisy or defocused images. These problems are emphasized when using
low-cost IR camera for large public applications. To increase the flexibility and
to make the system more friendly, we propose to work on the entire sequence of
images acquired by a camera during the enrolment, and to automatically select
the “best workable image(s)” of the iris within the sequence before applying

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 1–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the recognition procedure. The ”best workable images” are images showing a
clear iris (without degradations shown in 1) where partial occlusions provoked
by eyelids and eyelash are small.

For this purpose, it is necessary to track the pupil along the sequence, in order
to locate it efficiently and exactly, and to measure iris quality in the vicinity of the
pupil. This problem is different from the -more studied- eye following problem in
face sequence [5,6], typically encountered in driver attention level surveillance [7].
Such pupil sequences generally present images whose quality varies during time
of acquisition, depending on the user motion:

– jerky motion of the user head resulting in quick and large scale translations
of the pupil,

– translation of the user head along the optical axis resulting in both (i) scale
variations of the pupil size and (ii) alternative focus and out-of-focus series
of images.

Pupil tracking is a difficult problem also because of image degradations due
to light variations and specular reflections in iris area (see white spots in the
three images in Fig. 1). However, we can use some prior knowledge about the
pupil which is approximatively circular and dark. In this context, the aim of
the paper is to present a method for pupil tracking based on a GMM, which
is dynamically and automatically updated along the time of acquisition. This
method is combined with a Kalman filter to predict the pupil position in the
next frame. The method has been experimented on a real sequence captured
by an IR sensitive camera and has shown its effectiveness in nearly real time
computing.

(a) Blurred (b) Out-of-focus (c) Noisy

Fig. 1. Three kinds of degradations encountered in iris IR image acquisition

This paper is organized as follows. In section 2, we describe the principles
of the algorithm based on GMM and Kalman prediction of the pupil modeled
by a circle. Section 3 presents experimental results on an iris IR sequence and
section 4 draws conclusion and perspectives.
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2 Pupil Tracking Algorithm

This section is devoted to the description of the tracking method, whose principle
is presented in Fig. 2. The pupil is modeled by a circle, with center C(x, y) and
radius R which vary along the sequence.

First, the pupil is detected and localized in the first frame, thanks to the
Gradient Hough Transform (GHT) and the integro-differential operator detailed
in [3]. The gray-level mixture of pixels inside the pupil is then modeled by a
GMM whose parameters are learned by an EM algorithm (section 2.1). Pixels
from white spots inside the pupil are thresholded and did not take into account
in the mixture. In step 2, a Kalman filter is used to predict the box where the
pupil has to be searched in the current image (section 2.2). If the pupil is not
found in the predicted box, we simply copy both mixture and pupil parameters
of previous image to the next image. Conversely, if the pupil is found in the
box, we compute precisely the new pupil position Ct and size Rt (section 2.3),
and update GMM parameters according to the new localized pupil at time t.
This way the gaussian mixture of the pupil is updated dynamically along the
sequence.

2.1 Parameters Estimation of the GMM

The gray-level distribution of pixels inside the pupil is modeled by a mixture of
M Gaussian distributions:

P (x/pupil) =
M∑

m=1

αm Pm(x |μm, σm ) (1)

Fig. 2. Overview of the pupil tracking module
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Hence, mixture parameters are defined by the M means μm, the M vari-
ances σm of the Gaussians Nm (Pm(x/μm, σm)) and the M relative weights
αm of each Gaussian in the mixture; θm = {αm, μm, σm} and

∑M
m=1 αm = 1.

These parameters are estimated thanks to the well-known iterative Expectation
- Maximisation (EM) method [8,9], whose update equations are given by:

θold
m = θnew

m

P (m |xn, θm ) =
αold

m Pm (xn |μm, σm )
M∑

m=1

αold
m Pm(xn |μm, σm )

αnew
m =

1
N

N∑
n=1

P (m |xn, θm )

μnew
m =

N∑
n=1

xn P (m |xn, θm )

N∑
n=1

P (m |xn, θm )

σnew
m =

∑N
n=1 (xn − μnew

m ) (xn − μnew
m ) P (m |xn, θm )∑N

n=1 P (m |xn, θm )
, (2)

where N is the number of pixels inside the pupil. This kind of model has been
used successfully to track face or hand human skin in video sequences [10,11,7].

Thus, we get parameter values that maximise the pupil data likelihood. Due
to local convergence of the EM procedure, good initial parameter estimates are
important. For the first frame of the sequence, we implemented a K-means algo-
rithm whereas, for other frames, we used parameter values estimated at previous
frame, guarantying a convergence of EM in a few number of iterations since the
pupil distribution is supposed to vary slowly between two consecutive images.
Since the pupil area is dark and almost homogeneous, we take only two Gaus-
sians. The number of EM and K-means iterations were respectively set to 10
and 5.

2.2 Kalman Prediction of Pupil Position

Kalman filter [12] is used to predict the position of the pupil center Ct+1 in
next frame from its positions in previous frames. In general, the Kalman filter
describes a system with a system state Xt and a measurement model Ct as
follows

Xt+1 = AXt +Wt

Ct = H Xt + Vt (3)

where Wt and Vt denote respectively the model and measurement noises. They
are supposed to be independent and their variance-covariance matrices are re-
spectively Q and R. A and H are respectively the transition and measurement
matrices.
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Kalman filter is one of the most popular estimation techniques in motion
prediction because it provides an optimal estimation method for linear dynamic
systems with Gaussian noise.

Filtering equations are given by

Kt = Pt/t−1 H
T
t (R +Ht Pt/t−1 H

T
t )−1,

Pt/t = (I −Kt Ht) Pt/t−1,

Xt/t = Xt/t−1 +Kt

(
Ct −Ht Xt/t−1

)
, (4)

where Kt and Pt/t are respectively the Kalman gain and error covariance ma-
trices at time t. Finally, prediction equations are given by

Pt+1/t = A Pt/t A
T +Q,

Xt+1/t = AXt/t. (5)

As pupil moves slowly, we can assume that the first derivatives of position
(xt, yt) is constant. Then, A and H are defined through

A =

⎛⎜⎜⎝
1 0 ΔT 0
0 1 0 ΔT
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , H =
(

1 0 0 0
0 1 0 0

)
, (6)

where ΔT is the time of frame acquisition (ΔT = 1/25s) with as state vector
Xt(xt, yt, ẋt, ẏt) and measurement vector Ct(x̂t, ŷt).

These equations allow us to predict the position of the pupil in next frame.

2.3 Pupil Parameters

We now search for the real position of the pupil center Ct in a square box centered
on the predicted position (predicted box : PB), with a side equal to 2Rt−1. We
should use the method employed to determine the position of the pupil in the
first frame.

We prefer to use the gray level distribution of pupil pixels modeled by a
GMM to compute the center of mass of pixels xn (Ct(x̂t, ŷt)) with P (xn |θ )
lower than a given threshold.

P (j |θ ) =
M∑

m=1

αmPm(j/θm) (7)

x̂t =

∑
j∈PB

xj P (j |θ )∑
j∈PB

P (j |θ )

ŷt =

∑
j∈PB

yj P (j |θ )∑
j∈PB

P (j |θ )
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If all pixels verify P (xn/θ) < threshold then the pupil is considered lost in
this frame, and tracking is delayed to the next frame.

As the pupil size also varies with time (due to translation of the head along
the optical axis and to natural size variations), we also compute the pupil radius
Rt to have a tracking robust to scale changes. The radius Rt is computed as
follows

Rt = Argmax
R

∣∣∣∣ ∂∂c
∮

c

I(x, y)ds
∣∣∣∣ (8)

where c is the edge of the circle which gets as radius R, and I(x, y) is the gray
level of pixels belonging to c. R varies between Rmin and Rmax.

3 Pupil Tracking Results

The algorithm has been coded in C++, on a Pentium IV (2.6 GHz) PC platform
and performs tracking at approximately f � 16Hz. Experimental results in Fig. 3
show the pupil tracking algorithm in action along an IR video sequence. Globally,

(a) frame 0 (b) frame 48 (c) frame 80

(d) frame 179 (e) frame 225 (f) frame 384

(g) frame 466 (h) frame 475 (i) frame 510

Fig. 3. Pupil tracking results
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the method seems to be efficient and relatively robust to the image degradations
mentioned in introduction. Indeed, our algorithm localizes correctly the pupil for
not too fast eye motion, despite specular reflections (white spots). Even with out-
of-focus images, the tracking algorithm manages to localize the pupil, provided
that eye motion is slow (frame 475).

On the other hand, when pupil motion is quick and jerky, the algorithm
does not localize it correctly (frames 48, 225 and 510) since the pupil position
is not well predicted by Kalman filtering. This can be explained by the con-
stant velocity hypothesis which is too strick and can not be assumed for all
images in the sequence. When we take into account the velocity variations by
integrating acceleration (ẍ, ÿ) in state vector, we verified experimentally that
the performances and stability of the tracker decrease, because slow eye motion
are not well predicted. In addition, our algorithm can loose the pupil when il-
lumination variations are strong (frame 179). Indeed, an intensive illumination
variation modifies considerably the pupil gray-level distribution, and the GMM
is not able to update the model instantaneously.

An important point to note is that the algorithm is able to recover (frame
384) the pupil even if it was lost before (frame 225), as soon as the assumption
on slow eye motion is verified.

4 Conclusion and Perspectives

In this paper, we have presented a method for tracking a pupil in an IR iris
sequence of images. The pupil geometry is modeled by a circle and the pupil
distribution by a mixture of two Gaussians. The pupil position is predicted
according to a Kalman filter. The GMM allows a computation of the pupil
center which is robust to illumination change, and the Kalman filter is used
to predict the area where to search the pupil in the next frame. The results
we obtained are really encouraging. Nevertheless, we can think of making the
tracking more robust by taking into account brief jump of velocity in the state
evolution equation. Thus, the constant velocity assumption of the Kalman filter
will be applied in slow pupil motion, and modified in fast eye motion parts of
the sequence. By selecting the best workable image(s) of the pupil along the
sequence, we can expect to improve the recognition rates and identification.
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Abstract. This paper presents a real time estimation method of the
three dimensional trajectory of a fingertip. Pointing with the finger is
indeed a natural gesture for Human Computer Interaction. Our approach
is based on stereoscopic vision, with two standard webcams. The hand
is segmented with skin color detection, and the fingertip is detected by
the analysis of the curvature of finger boundary. The fingertip tracking
is carried out by a three dimensional Kalman filter, in order to improve
the detection with a local research, centered on the prediction of the 3-D
position, and to filter the trajectory to reduce the estimation error.

1 Introduction

Hand gestures are a natural and instinctive mean for humans to interact with
their environment. They can be used to emphasize speech, to point or to manip-
ulate objects in augmented environment, or to communicate with sign language.
Over the past few years, there has been a growing interest in hand gestures
recognition, thanks to the use of computer vision techniques [1].

Finger pointing is a simple gesture, well-fitted to replace the mouse. The
finger is indeed a natural and very practical pointing device for Human Computer
Interaction. Various assumptions have been used to ease fingertip detection and
different configuration have been studied. Hence it is possible to determine the
3-D finger trajectory with a geometric model of the body, using a single camera
and the detection of head and shoulders [2] or with a stereovision system and
eye-to-fingertip pointing mode [3].

Other systems recognize 2-D trajectory with a single camera above the work
plane. In the Digital Desk system from Crowley et al. [4] tracking is carried out
on a single view by correlation with a fingertip template, but it is not robust to
orientation and scaling changes. The resulting plane trajectory have been used
for handwriting recognition with HMM [5]. In the EnhancedDesk system [6],
several fingers are tracked in one view, with a two-dimensional Kalman filter
for each finger. The detection of the fingertips is carried out thanks to an infra-
red camera and a normalized correlation. Finally two-dimensional trajectories
(square, circle, triangle) are recognized using HMM.

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 9–16, 2005.
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Segen and Kumar [7] use two cameras to determine the 3-D direction pointed
by the finger. Strong curvature points are detected on the boundary of the hand
region and used to classify three hand gestures. They apply this system to a
computer game interface and a navigation software. The use of the disparity ob-
tained from a stereoscopic pair has also been studied by [8], but the computation
of a disparity map is computationally expensive.

In this paper, we focus on fingertip tracking for pointing gestures. Two cal-
ibrated cameras are used to compute 3-D fingertip trajectory, but errors in the
fingertip localization and the absence of synchronization result in unprecise tra-
jectory estimation. The originality of our approach is the use of a three di-
mensional Kalman filter to predict 3-D position and to smooth the fingertip
trajectory. The predicted 3-D position is projected in the two images, and a
local search is performed for the fingertip detection.

2 Finger Detection

2.1 Hand Segmentation

Hand segmentation is the first important step. Fast and robust segmentation is
needed, without assumptions on the background color. In previous experiments,
the classical background subtraction method has proved to be too much sensitive
to shadows and illumination variations, even in a controlled environment.

Skin color detection is now commonly used in both hand and face segmenta-
tion. Many approaches have proved their efficiency, with different color spaces or
learning techniques [9]. We have chosen to detect skin color pixels in the YCbCr
color space, with the fast and simple approach presented in [10]. Figure 1.(b)
shows that the result is convincing, even if some skin pixels are not detected
on the right part of the hand. In order to reduce the noise from the binary sil-
houette, a median filter is applied, then a morphological filtering, and finally a
connected components labeling to remove the non-hand regions and to fill holes
in the hand blob.

(a) (b) (c)

Fig. 1. Hand segmentation: (a) original image, (b) silhouette obtained from CbCr
thresholding and (c) final silhouette after filtering and connected components labeling
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2.2 Fingertip Detection

When the finger enters in the cameras field of view, it is necessary to detect
accurately the fingertip position in order to initialize the tracking. As we consider
the case of pointing gesture, we assume that only one finger is pointing and so
the fingertip is the point located at the extremity of the hand region.

With the hand silhouettes obtained from the previous stage, we describe the
boundary of the hand region by a succession of points P (i) = (x(i), y(i)). The
fingertip is the point of the boundary that maximizes the distance from the
center of gravity of the hand region. The center of gravity is obtained with the
computation of the geometrical moments.

However this measure is not very precise, depending on the hand orientation.
Hence we refine the fingertip detection with the curvature of the boundary with
the method presented in [7]. The k-curvature is given by the angle between the
vectors [P (i − k)P (i)] and [P (i)P (i + K)]. The fingertip is the point with the
stronger curvature.

3 Three Dimensional Tracking

With the position of the fingertip in each of the two images, one can compute
its 3-D position. However the 3-D positions are not precise for several reasons:
unprecise detection of the fingertip due to a bad segmentation, discretization of
the images (one pixel error on the fingertip localization can represent several
millimeters in 3-D), temporal shift between the acquisition of the two images
(the two cameras are not synchronized).

Furthermore it is not necessary to treat the whole image whereas we know
the finger position. Thus the research of the fingertip can be reduced to a small
window, thanks to the tracking of the finger and the prediction of its position
with the preceding pair of images. The goal of the temporal tracking is thus to
facilitate the localization of the finger and to smooth the trajectories.

3.1 Kalman Filter

Our approach is based on a Kalman filter [11] in three dimensions, with the
fingertip’s location and velocity. We assume that the movement is uniform and
the velocity is constant, the frame interval ΔT being short. The state vector xt

is defined as:
xk = (x(k), y(k), z(k), vx(k), vy(k), vz(k))T

where (x(k), y(k), z(k)) is the position and (vx(k), vy(k), vz(k)) the velocity of
the fingertip in frame k. The state vector xk and the observation vector zk are
related by the following equations:

xk+1 = A xk + wk

zk = H xk + vk (1)
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with wk and vk the process and measurement noises, assumed to be indepen-
dent white gaussian noises, A the state transition matrix and H the observation
matrix:

A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 ΔT 0 0
0 1 0 0 ΔT 0
0 0 1 0 0 ΔT
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

H =

⎛⎝1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎠
Writing xk and x−

k the a posteriori and a priori state estimates, Pk and P−
k

the a posteriori and a priori estimate error covariances, Q the process noise
covariance, R the measurement noise covariance, and Kk the Kalman gain, one
obtains the following equations:

Prediction equations:

x−
k = Axk−1

P−
k = APk−1A

T +Q (2)

Update equations:

Kk = P−
k HT (HP−

k HT +R)−1

xk = xk
− + Kk(zk −Hx−

k ) (3)
Pk = (I6 −KkH)P−

k

Parameters Setting. The three components are supposed to be independent,
thus the covariance matrices are diagonal. As we assume constant velocity in our
model, which may not be always true, the process noise covariance is supposed
to be important on the velocity component whereas it is weak in the position
one.

The measurement noise covariance is calculated with a sequence of images
where the finger remains fixed. We obtain V ar(X,Y, Z) = (0.31, 2.39, 15.06),
which shows that the measurement error is more significant on component Z
than on X and Y.

3.2 Developed Algorithm

Figure 2 summarizes the different stages of the treatment: starting from the
computation of the 3-D position with a pair of images, one can predict the
3-D position corresponding to the following pair of images. The predicted 3-D
position is projected in the two images to obtain a 2-D prediction of the fingertip
position. Then the research of the fingertip in each image can be reduced to a
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Fig. 2. Diagram summarizing the different stages

neighborhood of the predicted fingertip position. The size used for the research
window is 80 × 80 pixels.

The detection of the finger is then carried out with the method described in
Sec. 2. Finally, the epipolar constraint is checked to ensure the good detection
of the fingertip in the two images. However, because of the non-synchronisation,
a little error is admitted in the epipolar constraint checking.

4 Results

We use two common webcams, with 352 × 288 image resolution. Images are
transmitted by USB connection, with a MJPEG compression which introduces
noise on the images. Moreover, the two cameras are not synchronized, which
can induce a small difference in position between two images, and can result
in an oscillation in the finger trajectory: during the time interval between the
two frame grabbings, the finger can have moved, depending on the velocity
of movement. Consequently, the triangulation is skewed, mainly on the depth
dimension (corresponding to the optical axis of the cameras).

4.1 Example: Case of a Circle

In order to be able to measure computation errors of the 3-D position, it is
necessary to know the ground truth, which is often difficult in stereovision. In
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our configuration the reconstruction error is found mainly on the component Z,
corresponding to the depth (direction of the optical axes). Thus we are interested
in a plane trajectory, a circle realized on the desk, which corresponds to the plane
z = 0 (Fig. 3). As the trajectory is plane, standard deviation of component Z
can easily be computed to compare the reconstruction errors.

We can see on Fig. 4.(a) the estimated 3-D trajectory of the circle, as well
as measurements in dotted lines. The reconstruction error is more important
on the Z component, corresponding to the depth. Figure 4.(b) reveals that the
Kalman filter smoothes the component Z, in this case the standard deviation on
the depth is reduced from 9.77 to 5.46.

4.2 Velocity Influence

The velocity of the movement influences the reconstruction error. Indeed, the
faster is the movement, the more the finger can have moved between the ac-
quisition of the two images, which results in a more significant error. Table
1 illustrates this with the study of two plane trajectories (circle and square),
treated in real time (30 Hz).

Fig. 3. Left and right images with a circle trajectory and detected fingertip positions

(a) (b)

Fig. 4. (a) 3-D trajectory with a circle gesture and (b) component Z, corresponding to
the depth dimension (measures in dotted lines, estimations in full lines)
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These trajectories have been realized at three different velocities, thus a faster
trajectory is made up of a lower number of points. The standard deviation on
component Z is then computed to compare the reconstruction errors.

In both cases we see that the standard deviation increases with speed, and
the standard deviation is weaker for the trajectory estimated by the filter of
Kalman than for measurements. We also see that the reconstruction error is
smaller for the square, the linear movement being better adapted to the model
than the circular one.

Table 1. Evolution of the standard deviation on the depth according to the speed of
realization of the movement

Number Std dev Std dev
Trajectory Velocity of points Mesures Estimation

slow 306 9.7673 5.4587
Circle medium 189 11.3158 8.3916

fast 108 14.7552 10.8265

slow 290 10.4771 4.8718
Square medium 185 11.1463 4.4337

fast 106 12.2786 6.0401

5 Conclusion

We presented a three dimensional finger tracking system based on a Kalman
filter, which performs robust detection thanks to the reduction of the fingertip
research to a small window and the reduction of the estimation error with the
smoothing of the 3-D trajectories. The system runs in real time on real data, on
a 2.6 GHz PC. With adapted detection method, other applications are possible,
like people or vehicles tracking. To improve the system, the computation of the
research window width could be adapted to the movement velocity. We also plan
to extend the tracking to multiple fingers and to deal with occlusion problems.
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Abstract. In this paper, we propose a cascaded face-identification
framework for enhanced recognition performance. During each stage, the
classification is dynamically optimized to discriminate a set of promis-
ing candidates selected from the previous stage, thereby incrementally
increasing the overall discriminating performance. To ensure improved
performance, the base classifier at each stage should satisfy two key prop-
erties: (1) adaptivity to specific populations, and (2) high training and
identification efficiency such that dynamic training can be performed for
each test case. To this end, we adopt a base classifier with (1) dynamic
person-specific feature selection, and (2) voting of an ensemble of sim-
ple classifiers based on selected features. Our experiments show that the
cascaded framework effectively improves the face recognition rate by up
to 5% compared to a single stage algorithm, and it is 2-3% better than
established well-known face recognition algorithms.

1 Introduction

In recent years, automatic face recognition has aroused great interest in both
industry and academia. However, face identification in unconstrained real-life
situations still remains a difficult problem, which is caused by

1. Complex face distributions: Due to the large variations in illumination, ex-
pression and poses, faces images from one person form a highly complex
cluster in the image space, which may even be mingled with clusters from
other persons, thereby causing great difficulties in discrimination.

2. Small sample size problem: In many real-life scenarios, we have too few
training images to characterize high-dimensional feature spaces. This causes
instability of many popular classification algorithms, which require a good
approximation of the sample distribution w.r.t. the true-class distribution.

For face identification, we need to find the most ‘similar’ person from a face
gallery given a probe face. We use a classification function A to predict the face
identity k, given a certain face representation (denoted as feature vector x),

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 17–25, 2005.
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thereby giving A(x) = k. A considerable part of existing work on face recog-
nition uses a fixed classification function A for all persons (e.g. PCA, LDA,
Bayesian or Neural network) with a fixed feature representation x (e.g. image-
based or Gabor-wavelet based) [8]. However, using a fixed classification function
and feature representation is not optimal for completely discriminating all per-
sons, especially for large face databases. We propose a multistage face recogni-
tion technique that is suited for large databases and provides higher recognition
accuracy. At each stage, we select a cluster of candidates with highest similar-
ity rankings and adapt A and/or x to this specific population. Basically, two
schemes can be used for this purpose:

1. Faces in the gallery can be pre-clustered during the training stage, and clas-
sification can be optimized within each cluster. In [3], this is exploited for
a two-stage SVM-based face classification. However, this is a static method
with no adaptation to the test data, and can be problematic with cases
located near the cluster boundary.

2. The adaptation can be performed dynamically for each probe face during
the identification. This requires iterative online training and can be compu-
tationally prohibitive for some algorithms.

In this paper, we propose a cascaded identification framework with efficient
dynamic classification. During each stage in the cascade, we select a subset of
person-specific discriminative features w.r.t. the specific population. Based on
the selected features, a pool of simple classifiers are used to locate the most
similar face in the gallery. The adaptation procedure is extremely efficient and
can be readily applied in a cascaded framework.

The remainder of the paper is organized as follows. Section 2 provides a
detailed illustration of the proposed cascaded recognition framework. Section 3
introduces an efficient based classifier to be used in the cascaded framework.
Section 4 presents the experimental results and Section 5 gives the conclusions.

2 Cascaded Face Recognition Framework

In a cascaded face-recognition framework, a series of classifiers are used to grad-
ually reject unlikely candidates in the database until the best-match is found.
Within one stage, a classifier is customized for a selected set of candidates, which
leads to improved discriminating capability for this stage.

At each processing stage, according to the outputs of each classifier, a similar-
ity ranking of the face candidates is derived and promising candidates with high
rankings are passed to subsequent classifiers for refined classification. Within
each stage, the feature representation x and classification function A are dynam-
ically optimized for the remaining candidates. By this incremental classification
optimization w.r.t. the probe face, the best candidate is expected to float up to
the highest ranking position. The ranking and selection mechanism is visualized
in Fig. 1. In order to achieve effective and efficient cascaded recognition, the
classification scheme at each stage should satisfy the following conditions.
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Fig. 1. Two stages in the cascaded face recognition

1. Adaptivity. The classification at each stage in the cascade should be able
to adapt to the selected population G. In other words, the classification func-
tion A and/or the feature representation x is dependent on G. Classification
schemes such as the ‘nearest neighbor’ rule based on fixed-distance metrics,
are not adaptive, thereby not leading to effective cascaded identification.

2. High training and identification efficiency. Since the candidate selec-
tion and classifier adaptation have to be performed during the process of the
identification, the training and identification should be as efficient as possi-
ble. Classification schemes involving space transformations (e.g. PCA, LDA
or intra-space Bayesian) or complex optimization procedures (e.g. SVM,
Neural networks) require high computation cost and would severely degrade
the efficiency of the system, if applied in a cascaded manner.

In the following, we propose a classification scheme with adaptive feature selec-
tion and classification. The adaptivity is ensured by the following two aspects: (1)
adaptive representation x by person-specific feature selection, and (2) statistical
dependence of the corresponding classification function A(x) on the current pop-
ulation. Furthermore, the training and identification procedures are extremely
efficient and do not introduce significant overhead.

3 Efficient Classification Using Person-Specific Classifiers

3.1 Person-Specific Feature Selection by Maximum
Marginal Diversity

It has been advocated in literature that not all feature components xi (1 ≤ i ≤
D) of feature vector x are equally important in a discriminant point of view.
It has been shown in [9] and [10] that by applying a careful feature selection,
similar or better recognition accuracy can be achieved with a much smaller num-
ber of features. Furthermore, using dynamic feature selection provides feature
adaptivity in a cascaded recognition framework. However, the computation cost
of popular feature selection techniques (e.g. Adaboost and SFFS) is too high to
be used for dynamic online training.

Motivated by [6], we propose a fast feature selection scheme favoring those
features with Maximum Marginal Diversity (MMD). Different from [6], where
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Fig. 2. Left: Marginal diversity of feature xi for person k. Right: Feature selection
using equi-probability histograms.

the features are selected based on maximum discrimination between all classes,
we aim to select a subset of features Fk (Fk ⊂ F), such that Fk provides optimal
discrimination especially for class (person) k. Our experimental evidence shows
that this one-versus-all selection offers a significantly better performance than
using the approach from [6]. Following the same principle of MMD, we give the
guideline for selecting the best feature set for class k.

Principle 1. The best feature set characterizing class k should contain those
features with large marginal diversities. The marginal diversity MDk(xi) of fea-
ture xi in class k is defined as the Kullback-Leibler (KL) divergence between the
class-k conditional probability density of xi (p(xi|k)) and the probability density
of xi (p(xi)) for all classes, thus

MDk(xi) =
∫

p(xi|k) log
p(xi|k)
p(xi)

dxi. (1)

According to Principle 1, the best features for class k should have a class-
conditional density that is distant (by KL criterion) from the total distribution
of all classes. These are the most discriminating and informative features that
distinguish person k from other people in the population examined.

Similar to [6], we select Pk features with the largest marginal diversities to
form a customized feature set for person k. This can be easily implemented
by estimating p(xi|k) and p(xi) by histograms. Generally, p(xi) can be fairly
reliably estimated, while the estimation of the class-conditional density p(xi|k)
often suffers from the small sample size problem. This problem is solved by the
following proposal.

Estimation Property. Suppose we use an unequally spaced N -bin histogram
hi to represent p(xi), where each bin is equally probable (see Fig. 2). Further
suppose that the samples of person k span K of these bins (K ≤ N). It is
assumed that the samples from k have an equal probability to fall into one of the
K bins. This is justified due to the lack of sufficient samples to reliably estimate
p(xi|k). Histogram hki is used to characterize distribution p(xi|k). In this case,
Principle 1 favors those xi with smaller K. This can be easily seen, because by
applying the above assumptions to Eq. (1), it follows that



Multistage Face Recognition Using Adaptive Feature Selection 21

MDk(xi) =
∑

j

hki(j) log
hki(j)
hi(j)

= log
N

K
. (2)

In [7], a closely related approach called reliable component scheme is used to se-
lect a set of reliable features for biometric authentication. It can be regarded as a
special case of the feature selection based on the previously presented estimation
property, where N = 2 and features are selected1 with K = 1.

In our experiments with only 2-3 training images per person, we found that
a finer quantization (larger N) does not necessarily lead to better recognition
performance. Our experiments on the FERET face database show that the best
average performance is achieved when N = 2 or 3, while using N = 3 leads to a
slightly better performance than using N = 2.

It can be easily seen that the person-specific feature selection based on the
maximum marginal diversity (MMD) conforms to adaptivity, since the total dis-
tribution p(xi) is dependent on specific populations. Furthermore, our specific
feature selection process also improves the identification efficiency, because nor-
mally only 30-50% of all available features are selected and used.

3.2 Classification Based on a Pool of Simple Classifiers

Assume that we have selected a ‘good’ feature subset for each person at a certain
stage, denoted as Fk for person k, let us now discuss the design of an effective
yet efficient classifier based on these features.

Histogram ranges

Span of hki

yi

Cki(yi) = 1 Cki(yi) = −1

Cki(yi) = 0 Cki(yi) = 0

Cki(yi) = −1

Fig. 3. A simple classifier for class-specific identification

Given the total histogram distribution hi, person-k distribution hki and an
arbitrary probe sample feature vector y, and suppose that yi falls into the u-th
bin of the total histogram hi, then we define a simple classifier Cki based on the
feature with index i (i ∈ Fk) as:

Cki(yi) =

⎧⎪⎨⎪⎩
1, if u is covered by hki,

0, if yi is of p percentile distance to hki,

−1, otherwise.
(3)

Cki can be seen as a voting expert, which bases its output on the proximity
between yi and hik. The region close to the classification boundary is usually
1 In [7], the class mean is used as a reference for selecting reliable features, while the

class median is used in our case according to our estimation property.
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(a) (b)

Fig. 4. (a) Face image with automatically extracted fiducial feature points. (b) Gabor
convolution kernels with various frequencies and orientations.

ambiguous, therefore, we define a ‘marginal region’ where the classifier outputs
zero to indicate uncertainty (see Fig. 3).

For all selected features xi for person k, we derive a pool of simple classifiers
Cki(xi). The ‘similarity’ between an arbitrary sample feature vector y and person
k is based on the outputs from all these simple classifiers, so that

Ck(y) =

∑
i∈Fk

Cki(yi)
|Fk|

, (4)

To find the best-match of y within a gallery of M persons, we need only to find
person km, such that Ckm(y) = max{Ck(y)|1 ≤ k ≤M}.

3.3 The Cascaded Recognition Algorithm

In the following, we present the multi-stage face recognition algorithm us-
ing MMD-based feature selection (Section 3.1) and pooled classification (Sec-
tion 3.2).

Table 1. Cascaded face recognition algorithm

Algorithm
Input: A gallery set containing M0 persons (with identity set G0). Probe face p.
Output: The identity of p.
1. let M = M0 and G = G0.
2. for s = 1 to STAGES
3. for k = 1 to M
4. select a set of features F(s)

k for person k with maximal marginal
diversity based on statistics on G.

5. compute similarity measure Ck(p) based on F(s)
k and classifi-

cation rule as defined in Eq. (3).
6. select M ′ candidates with highest similarity with p.
7. let M = M ′, and let G contain only the selected M ′ identities.
8. return the best-match selected from the last stage.
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4 Experiments

Data Preparation. We used a subset of the FERET face database [11] for
our experiments. The subset contained 1167 face images of 237 persons. We
automatically extracted 51 fiducial points for each face [5]. For each fiducial
point p = (x, y)T , we derived a corresponding Gabor jet by convolving a small
image patch around the fiducial point with a set of Gabor kernels of various
frequencies and orientations. The adopted Gabor kernels [2] are defined as:

φm(p) =
k2

m

σ2
exp

(
−k2

mp
2

2σ2

)[
exp(j(km · p)) − exp

(
−σ2

2

)]
, where

km =
(
kv cosϕμ

kv sinϕμ

)
, kv = 2−

v+2
2 π, ϕμ = μ

π

8
,m = 8v + μ. (5)

We used 5 frequencies and 8 orientations (thereby 40 kernels), and v = 0, 1, ..., 4,
μ = 0, 1, ..., 7. Therefore, for one face image, we obtained a Gabor-wavelet based
feature vector x with 2040 feature components (see Fig. 4).

For each test, we randomly selected two sample pictures per person as train-
ing images, and the rest were used as probe samples. The training images were
selected such that they were captured on a different date from the test images.
This simulates a typical real-life face recognition scenario, where we need to pre-
dict face identities given only training images captured in a different situation.
Note that this is a more difficult scenario than commonly adopted partitioning
strategies from literature used for the FERET dataset, such as fafb. To evaluate
each algorithm, we performed 12 random tests, each of which adopted a different
partition of the training and testing images.

Performance of the Cascaded Face Recognition. To measure the per-
formance gain by using the cascaded framework, we compared the single-stage
(S-PSC, STAGES=1 in Table 3.3) and cascaded (C-PSC, STAGES = 3 in Ta-
ble 3.3) classification schemes. The rank-N performance statistics is depicted in
Fig. 5(a). It can be seen that using the cascaded scheme improves the recognition
rate by 4-5% in our experiments.

We also implemented a number of well-known face recognition algorithms in
literature and compared our approach with them. The results are portrayed by
Fig. 5(b), and all algorithms use the same Gabor representation. A brief sum-
mary of these algorithms is given as follows.

(1) Cosine distance: This is originally used by Wiskott et al. [2] as the simi-
larity measure between two Gabor feature vectors.
(2) Gabor-based PCA: A Principle Component Analysis is performed on Ga-
bor features. Here we use a reduced feature dimension of 400.
(3) Regularized LDA: We apply an R-LDA (Regularized LDA) as proposed
by Lu et al. [4] to cope with the small sample problem. Here the regularization
factor η is set to 0.9.
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Fig. 5. (a) Performance of S-PSC and C-PSC (Points: average recognition rate. Error-
bars: variance with one std. dev.) (b) Comparison with other recognition algorithms.

(4) Bayesian (ML): By directly modeling the intra-class distribution, we can
derive a probabilistic similarity measure between Gabor feature vectors. This is
similar to the Maximum Likelihood approach used by Moghaddam et al. [1].

From Fig. 5(b), we can see that in this experimental scenario, using the simple
cosine distance already gives good performance. The Bayesian approach slightly
outperforms cosine distance, with 0.6% improvement for rank-1 recognition rate.
The rank-1 performance of the Bayesian approach is 1% better than the S-PSC.
Note that using the C-PSC outperforms all other approaches. Furthermore, due
to the simplicity of the training and matching procedure of PSC, the C-PSC
scheme is very efficient and its computation cost increases linearly with the size
of the face gallery. In our implementation of C-PSC, it takes 300ms for one match
given the gallery size as specified above.

5 Conclusions

In this paper, we proposed a cascaded face recognition framework using a series
of adaptive classifiers. During each stage, a refined classification is performed on
a selective set of promising candidates, achieving an optimized discrimination for
this specific group of people. We adopt a base classification scheme employing (1)
dynamic feature selection, and (2) voting by an ensemble of simple classifiers.
The scheme has inherent adaptivity and can be efficiently implemented. The
experiments show that our proposed approach outperforms a number of well-
known face recognition algorithms in a performance-critical test scenario.
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Abstract. We propose a (near) real-time face detector using a cascade
of neural network (NN) ensembles for enhanced detection accuracy and
efficiency. First, we form a coordinated NN ensemble by sequentially
training a set of neural networks with the same topology. The training
implicitly partitions the face space into a number of disjoint regions, and
each NN is specialized in a specific sub-region. Second, to reduce the
total computation cost for the face detection, a series of NN ensembles
are cascaded by increasing complexity of base networks. Simpler NN
ensembles are used at earlier stages in the cascade, which are able to
reject a majority of non-face patterns in the backgrounds. Our proposed
approach achieves up to 94% detection rate on the CMU+MIT test set,
a 98% detection rate on a set of video sequences and 3-4 frames/sec.
detection speed on a normal PC (P-IV, 3.0GHz).

1 Introduction

Face detection from images (videos) is a crucial preprocessing step for a num-
ber of applications, such as object-based coding, biometric authentication and
advanced human computer interaction. Furthermore, research results in face de-
tection can broadly facilitate general object detection in visual scenes. Although
tremendous effort has been spent on designing face detection techniques in the
past decade, a performance trade-off still exists between the detection accuracy
(robustness) and the operation efficiency. The direct use of low-level image fea-
tures (e.g.color, shape) gives fast performance, but they are usually vulnerable
to environment changes (e.g. illumination or imaging devices). Besides this, more
advanced learning-based techniques, such as Support Vector Machines (SVM)
[1] and Neural-Networks (NN) [2], provide superior performance with regard to
varying face appearances. However, these algorithms often involve high process-
ing complexity, which can be too costly for certain applications.

Among the robust face detectors mentioned above, the NN-based face de-
tection technique proposed by Rowley et al. [2] is presently one of the best-
performing techniques on face detection. In this work, a retinally connected
neural-network examines small windows of an image, and decides whether each

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 26–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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window contains a face. The system achieves good detection performance even
with a difficult test-set composed of low-quality scanned images. However, the
primary drawback of the technique is the computation complexity (a reported
example states 383 seconds for a 320×240 pixel image). Earlier, we examined
in [4] a cascaded face detector, utilizing a color-based detector and a geometry-
based detector as preprocessors to an NN-based detector, which effectively re-
duces the total computation cost. In this paper, we propose a homogeneous
approach for face detection using a cascade of neural network ensembles, which
yields improved robustness with similar computation cost to [4]. Furthermore,
the proposed technique is highly efficient at the training stage. The design of
the proposed detector is based on (1) construction of a coordinated ensemble of
NNs for improved detection accuracy, and (2) construction of a cascade of NN
ensembles for improved efficiency.

2 Architecture Component: A Neural Network Ensemble

For complex real-world classification problems such as face detection, the use of
a single classifier may not be sufficient to capture the complex decision boundary
between different image patterns. We propose a novel technique that trains an
ensemble of neural networks in a specific order to boost the detection perfor-
mance.

As shown in Fig. 1, our proposed classifier ensemble consists of two distinct
layers: a set of sequentially trained component neural classifiers H = {hk|1 ≤
k ≤ M}, and a decision network g. Each hk is a multi-layer back-propagation
neural network with fixed topology, and g is an independent neural network,
which is trained to produce a nonlinear output composed from all component
classifiers.

The training of each component classifier hk depends on the behavior of
its previous classifiers. Given training face set F , hk is only trained using a
subset Fk (Fk ⊂ F), where Fk contains only face samples misclassified by its
previous component classifiers. In this way, F is implicitly partitioned into several
disjoint subsets, and each component classifier is trained specifically over a sub-
region of the face space. Therefore, the learning difficulties are reduced for each
component classifier. During the training of each hk, we adopt the bootstrapping
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Fig. 1. The architecture of a neural network ensemble
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Fig. 2. Left: ROC curves of NN ensembles w.r.t. different M. Right: ROC curves of
NN ensembles using different training strategies (all tested on Vf and Vn).

technique from [2], which iteratively adds new false positives to the current non-
face training set.

To verify the detection performance of an ensemble of NN classifiers, we
train an NN ensemble with relatively simple base network topology. The trained
ensemble will be used as the first-layer pruner in the final detection cascade (see
Fig. 3). The training face set F consists of 6,304 highly variable face images, all
cropped to the size of 24× 24 pixels. We further build up a non-face repository
with an initial set of 4,548 non-faces and 2,000 additional non-face scenery images
for use in the bootstrapping procedure. For validation purposes, we use a separate
test face set Vf consisting of 488 faces and a test non-face set Vn consisting of
23,573 non-faces. Each sample image is preprocessed to zero mean and unity
standard deviation to reduce the interference of global illumination.

The base component network (denoted as FNET-A) is a three-layer network
with locally connected neurons. It accepts a down-sampled 8 × 8 grid as its
input, where each input element is an averaged value of a neighboring 3 × 3
block in the original 24× 24 image. Each hidden unit in FNET-A is connected
to a neighboring 4 × 4 block from the input layer. At the left of Fig. 2, we
depict the ROC (Receiver Operating Characteristics) curves of ensembles with
a different number of components. We can see that the detection performance
of FNET-A ensembles consistently improves by up to three components, while
adding more components does not yield significant improvements. Since using
more classifiers inevitably increases the total computation cost, we can select
M for a given network topology with the best trade-off between the detection
performance and the computation efficiency.

We also compare our proposed classifier ensemble with two other popular
ensemble techniques, bagging and boosting [5], and the results are shown at the
right of Fig. 2. Bagging uses a random resampling strategy where no correlation
exists between the training sets used for different component classifiers. Our pro-
posed approach shares a common feature with boosting in that both approaches
sequentially train a set of interdependent classifiers. However, we implicitly per-
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Fig. 3. A pruning cascade of neural ensembles

form a ‘hard’ partitioning of the feature space, which gives faster convergence
during the training and results in fewer component classifiers. It can be seen
from Fig. 2 that our proposed approach produces the best results.

3 Multi-net Cascade for Fast Face Detection

3.1 Formulation of a Pruning Cascade

In this section, we apply the cascading scheme to the neural classifier ensemble
to optimize the detection efficiency. A pruning face detection cascade is basically
a degenerated decision tree, with classifiers arranged by increasing complexity
(see Fig. 3). Simpler ensemble classifiers are used at earlier stages in the cascade,
which are able to reject a majority of non-face patterns, therefore boosting the
overall detection efficiency. In the sequel, we introduce a formal notation frame-
work in order to come to definitions of the detection accuracy and the operation
efficiency. Afterwards, we propose an algorithm to jointly optimize the cascaded
face detector for both accuracy and efficiency.

Let us now suppose L classifier ensembles (G = {gi|1 ≤ i ≤ L}) with increas-
ing component complexity. The behavior of each classifier gi can be characterized
by face detection rate fi(αi) and non-face acceptance rate di(αi), where αi is
the output threshold for the decision network. We need to choose a set of values
for αi, such that the performance of the cascaded classifier is optimized.

Suppose we have a detection task with a total of T = F + N observations,
where F denotes the true number of faces and N is the true number of non-faces.
Initially, all observations are assumed to be faces. From Fig. 3, we can see that
F0 = T and Fi−1 = Fi+Ni (for 1 < i ≤ L). At the i-th stage of the cascade, Fi−1

observations need to be classified, among which Fi observations are classified as
faces and Ni observations are rejected as non-faces. Furthermore, it is easy to
see that

Fi = fi(α1, α2, ..., αi)F + di(α1, α2, ..., αi)N, (1)

where fi(α1, α2, ..., αi) and di(α1, α2, ..., αi) represent the detection rate and false
acceptance rate, respectively, of the sub-cascade formed jointly by the 1-st to
i-th ensembles. An optimal cascade should achieve both high detection accuracy
and operation efficiency (a more accurate specification comes later).
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Table 1. A summary of the network topology employed in the detection cascade

Network Structure
FNET-A see Section 2.
FNET-B 3 layers, 225 connections, with extended hidden neurons (6 × 1 and

2 × 3) compared with FNET-A, each of which looks at a 2 × 1 (or
4 × 3) block from its lower layer.

FNET-C 4 layers, 447 connections, with 24 × 24 pixels as inputs, two hidden
layers (2 × 2 and 8 × 8 neurons), each unit locally connected to a
sub-block from its adjacent lower layer.

FNET-D 4 layers, 2039 connections, enhanced version of FNET-B and FNET-
C, with additional hidden neurons arranged in horizontal and vertical
stripes.

FNET-E 4 layers, 3459 connections, enhanced version of FNET-D allowing over-
lapping of locally connected blocks.

Detection Accuracy. To ensure good detection accuracy for an L-layer cascade
(i = L), the following cost function should be maximized

Cp(α1, ..., αL) = max{fL(α1, ..., αL) | dL(α1, ..., αL) < Td}, (2)

where Td is a threshold for the final false acceptance rate.

Operation Efficiency. Suppose the classification of one observation by ensem-
ble classifier gi takes ti time. To classify T = F +N observations by cascade G,
we need a total amount of time

Ce(α1, ..., αL) =
L∑

i=1

Fiti =
L∑

i=1

(fi(α1, ..., αi)F + di(α1, ..., αi)N)ti, (3)

where f0 = 1 and d0 = 1.
A possible combined optimization goal based on both Eq. (2) and Eq. (3)

can be formulated as a weighted summation, hence

C(α1, ..., αL) = Cp(α1, ..., αL) − w · Ce(α1, ..., αL). (4)

We use a subtraction for the efficiency (time) component to trade-off against
accuracy. By adjusting w, the relative importance of desired accuracy and ef-
ficiency can be controlled. The direct optimization of Eq. (4) using exhaustive
search is computationally prohibitive, especially when L is large. In the following
subsection, we will give a heuristic sub-optimal search for the trade-off between
detection accuracy and operation efficiency.

3.2 Implementation of a Cascaded Face Detector

We build a five-layer cascade of classifiers with increasing order of topology com-
plexity, which are summarized in Table 1. The first networks have fewer layers
and use only low-resolution image representations, while they are computation-
ally efficient. The subsequent networks have more layers and exploit finer details
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Table 2. Backward parameter selection for the face detection cascade

Algorithm Parameter selection for the detector cascade
Input: F test face patterns and N test non-face patterns. A cascade G of L neural

ensemble classifiers. Maximally allowed false acceptance rate d̂.
Output: A set of selected parameters (α∗

1, α
∗
2 , ..., α∗

L).
1. Select α∗

L = argmaxαL
fL(αL), subject to dL(αL) ≤ d̂.

2. for k = L − 1 to 1
3. Select α∗

k = argmaxαk
C(αk, αk+1, ..., αL).
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Fig. 4. Left: ROC curves of individual NN ensembles. Right: Comparison between the
L-th ensemble classifier and the cascaded classifier (all tested on Vf and Vn).

of the image. At the left of Fig. 4, we depict the ROC curves for individual neural
ensemble classifiers for face detection.

Now we select the best set of parameters (α∗
1, α

∗
2, ..., α

∗
L) for both high de-

tection accuracy and computation efficiency. Since the cascaded face detection
rate fL(α1, ..., αL) is upper-bounded by fL(αL), we adopt an efficient sequen-
tial backward selection as shown in the algorithm of Table 2, which yields a
sub-optimal solution to the parameter selection. The ROC curve of the resulting
cascade is depicted at the right of Fig. 4, and the performance of the L-th en-
semble classifier (individual performance) is also plotted for comparison. We can
see that for a false acceptance rate below 5×10−4, which is normally required for
real-life applications, the cascaded detector keeps almost the same face detection
rate as the most complex L-th stage classifier. However, the computation time
drastically drops to less than 5%, as compared to the L-th stage classifier alone.

4 Application to Real-World Face Detection

In this section, we apply the obtained cascaded face detector in real-world appli-
cations with arbitrary images (videos) as input. For a given image, the detector
needs to search for possible faces at every location and scale. This is similar to
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Table 3. Comparison of different face detectors on CMU+MIT data set

Detector Detection rate Num. of false positives
1. Single neural network [2] 90.9% 738
2. Multiple neural networks [2] 84.4% 79
3. Bayes statistics [6] 94.4% 65
4. SNoW [7] 94.8% 78
5. AdaBoost [3] 88.4% 31
6. SVM [1] 89.9% 75
7. Our approach 94.4% 61

Fig. 5. Example detection results

the image pyramid structure in [2], with a scaling factor of 1.2. Furthermore, to
facilitate fast illumination correction, we use a pair of auxiliary integral images
as in [3] for fast processing of mean and variance of an image window.
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To evaluate the detection accuracy, we first applied our detector on the well-
known CMU+MIT test sets and compared our results1 with reported results in
Table 3. It can be seen that our approach is among one of the best performing
techniques in terms of detection accuracy. We also applied our detector to a test
set composed of various web images downloaded from Internet, and we achieved
up to 93% detection rate. Some detection results are shown in Fig. 5. In addition,
we built a video test set containing 20 sequences, including a number of standard
MPEG test sequences and our self-made sequences capturing various indoor and
outdoor scenes. A total of 98% detection rate is achieved.

We also evaluate the efficiency gain when using a cascade of neural clas-
sifier ensembles. For the CMU+MIT test sets, the five ensembles ordered for
i = 1, 2, ..., 5 in the cascade reject 77.2%, 15.5%, 6.2%, 1.1% and 0.09% of all the
background windows, respectively. For an image of size 320 × 240, using a cas-
cade can significantly reduce the total computation of the final neural classifier
ensemble by 99.4% (from several minutes to sub-second level). We also applied
our face detector as a preprocessor in a live-video based surveillance system.
With 320× 240 frame resolution, we achieve 3-4 frames/sec. detection speed on
a Pentium-IV PC. It is also worth noticing that our approach also offers the
advantage of training efficiency. Normally less than 1 hour is required to train a
complete detector cascade, including the parameter selection (for some advanced
training [3], around 15 days are required for a complete detector cascade).

5 Conclusions

In this paper, we have presented a (near) real-time face detector using a cas-
cade of neural network ensembles, with the following two advantages. First, we
used a parallel ensemble technique within one component for improved detection
accuracy. Experiments show that the proposed NN ensemble significantly out-
performs a single network in accuracy (e.g. by up to 12%). Second, to reduce the
total computation cost, a series of NN ensembles are cascaded into a chain by
increasing complexity of base networks. Fast ensemble detectors are used first to
quickly prune large background areas, while the subsequent ensemble detectors
are only invoked for difficult cases that failed to be rejected by the previous
layers. A special backward parameter selection algorithm is applied to generate
a (sub)-optimal tuning of the cascade, so that both high detection accuracy and
operation efficiency are obtained simultaneously. We have applied the proposed
approach to real-world applications. Both high detection accuracy (94% detec-
tion rate on CMU+MIT sets) and efficiency (3-4 frames/sec. on video seqs.) are
achieved.

1 Techniques 3, 4, and 6 use a subset of the test sets excluding hand-drawn faces and
cartoon faces (483 faces). We reported our results on 479 faces, excluding further 4
faces using face masks or having poor resolution.
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Abstract. A novel image-registration method is presented which is applicable 
to multi-camera systems viewing human subjects in motion. The method is 
suitable for use with indoor or outdoor surveillance scenes. The paper summa-
rizes an efficient walk-detection and biometric method for extraction of image 
characteristics which enables the walk properties of the viewed subjects to be 
used to establish corresponding image-points for the purpose of image-
registration between cameras. The leading leg of the walking subject is a good 
feature to match, and the presented method can identify this from two succes-
sive walk-steps (one walk cycle). Using this approach, the described method 
can detect a sufficient number of corresponding points for the estimation of  
correspondence between views from two cameras. An evaluation study has 
demonstrated the method’s feasibility in the context of an actual indoor real-
time surveillance system. 

1   Introduction 

Registration between partially overlapping views of the same scene is a fundamental 
task in a number of applications involving multi-camera systems, such as stereovi-
sion, three-dimensional reconstruction, or object tracking/observation in surveillance 
systems. In the literature on computer vision, many examples in which the registration 
of different views has been achieved have been described, together with the associ-
ated problems. The existing methods can be divided into two groups: those which are 
still-image based, and motion-based ones. Still-image based algorithms, e.g. those 
used in [1][2][3][4], attempt to match static features in images, such as edges, corners, 
contours, color, shape etc. They are often used for image pairs with small differences, 
when the difference between features is negligible. However, they may fail at occlu-
sion boundaries, within featureless regions, and if the chosen primitives or features 
cannot be reliably detected. The other group, the motion-based methods such as 
[5][6], try to find matchings between different views by analyzing the dynamics of the 
scene as recorded by the different cameras. In [5], the tracks of moving objects are the 
                                                           
* This work was supported by the NoE MUSCLE project of the EU. 
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basic features for the matching of the different views. In [6], a method is reported 
which finds co-motion point-pairs in the videos as recorded from the same scene by 
the different cameras. Both these methods assume that the objects of interest are mov-
ing on the ground-plane; and also that the cameras are far distant from the scene, so 
that the height of the moving objects is small enough for them to appear in the re-
corded videos as “moving blobs on the ground”. 

In practice, the existing algorithms can be used only in restricted situations. The 
reported methods focus on the solution of the view-registration problem in respect of 
outdoor scenes, and neglect the additional difficulties which tend to arise for indoor 
scenes. In case of indoor cameras, the still-image based methods may fail due to the 
variability of conditions: occlusions, changing illumination etc. Due to the larger size 
of the moving objects, the cited motion-based methods will also fail; the observed 
motions are not necessarily on the ground-plane – while for outdoor scenes, such an 
assumption can safely be made. 

The aim of this paper is to present an algorithm which can resolve the above prob-
lems. Our method is based on the pedestrian-detection algorithm which we have  
described previously [12]; this algorithm extracts symmetry-patterns generated by 
walking humans, and can be used for the detection of motion direction, and of the 
leading leg of the walking subject. In our method the leading leg is the basic feature 
for the estimation of correspondences between the different views.  

The remainder of the paper describes the algorithm in detail, and reports its per-
formance using real image-data. 

2   Walk Pattern Extraction 

The methods proposed here are based on the detection of human motion-activity 
(namely, walking) in the scene. This task is a binary classification problem: the  
periodicity of human walking, together with the characteristic human shape of the 
target, provide key differences which enable us to distinguish pedestrians from the 
motion-patterns of other objects. For the detection of human walking patterns we have 
previously introduced a simplified symmetry-extraction algorithm [8], and have also 
described an effective method for the tracking and detection of human motion 
[10][11]. This approach uses the motion information contained in video sequences, so 
that the extracted symmetry-patterns consist of information about the spatio-temporal 
changes of a moving object. The main steps of the algorithm are: 

• Background subtraction, change-detection 
• Edge-map detection and symmetry computation (first level) 
• Extension of symmetry computation up to level three (L3S) 
• Temporal tracking using reconstructed masks 
• Preprocessing for classification: re-sampling, reduction of dimensionality 
• Non-linear classification: “walk” vs. “non-walk” 

Sample results of the image-processing steps are shown in Figure 1, which illustrates 
the results of the algorithm steps up to the stage of symmetry-pattern extraction from 
the reconstructed masks. The details of the processing steps are described below. 
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2.1   Background Subtraction 

An elementary method to reduce the computation cost of methods using motion in-
formation derived from static-position cameras is that of background subtraction (or 
change-detection). In our method, the filtered image does sometimes still contain 
some parts of background objects (Figure 1b); this is because we use a relatively 
simple method. The development of a general method for background subtraction is a 
challenging task [5][9]. 

 

         
                       a)                            b)                             c) 

         
         d)                           e)                             f) 

           
       g)                          h)                       i) 

Fig. 1. Overview of pattern-extraction: a) Image from input sequence.  b) Result of change-
detection. c) Filtered Canny edge-map.  d) First level symmetries.  e) Second level symmetries.  
f) Third-level symmetries (L3S). g) Reconstructed masks from symmetries.  h) Tracking, show-
ing coherent masks in the sequence.  i) Symmetry pattern. 

We have therefore implemented a middle-way solution; the change-detection algo-
rithm can be selected from two methods: either a simple running-average [11] in case 
of indoor scene (as used in Figure 1b); or a Gaussian-mixture model [10][9] in case of 
outdoor scene. Both methods have disadvantages, but the computation time for the 
background-estimation can be reduced to 1-5 milliseconds with the reduction of input 
image size. In our experimental trials most of the problems were caused by shadows 
and reflections, because the methods were evaluated using images from a camera 
system set up in an indoor space where the background “wall” is in fact a large ex-
panse of window. 

2.2   Simplified Symmetry Extraction 

Our symmetry-detection method [8] is based on the use of morphological operators to 
simulate spreading waves from the edges. In our pedestrian-detection approach 
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[10][11], we simplify the algorithm by using only horizontal morphological operators 
– since in practice we essentially need to extract only vertical symmetries. 

The symmetry operator normally uses the edge map, obtained by the Canny algo-
rithm, of the original image masked with the estimated foreground (see Figure 1c). As 
illustrated in Figure 1, the symmetry concept can be extended by iterative operations. 
The symmetry of the Level 1 symmetry map (Figure 1d) is the Level 2 symmetry 
(Figure 1e); and the symmetry of the Level 2 map is the Level 3 symmetry (L3S), as 
shown in Figure 1f. There are two major advantages of this feature-extraction ap-
proach: the extracted symmetry-map reflects the structural properties of the object; 
and secondly, its computation is extremely fast, and hence it can be readily used in 
real-time applications. 

2.3   Temporal Tracking 

In general, a number of symmetry-fragments may be present in the image, which may 
have arisen from errors in change-detection or from the complexity of the back-
ground; for examples, see Figure 1f. However, even the existence of perfect symme-
tries in a single static image does not necessarily provide usable information about the 
image-content; for this, we track the changes of the symmetry fragments by using 
temporal comparisons. We have implemented an effective tracking method which 
uses reconstructed masks around the symmetries. Briefly, the algorithm generates a 
mask around the L3S fragments from their radii; such masks can be seen in Figure 1g. 
During tracking, the algorithm calculates the overlapping areas between symmetry 
masks in successive frames, and then constructs the symmetry-patterns of the largest 
overlapping symmetries frame by frame. An overlapping mask sequence can be seen 
in Figure 1h, and the symmetry pattern in Figure 1i. A detailed description of the 
tracking method can be found in our previous paper [11].  

In our experiments, we found that the most critical factor is the image refresh rate: 
we found that a rate of at least 10 frames/second is required. However this require-
ment can be easily met, since the method described can run at 20-40 FPS on a simple 
desktop PC (the achievable rate depends on the number of tracked objects). Further 
information about the performance is presented in Section 5 below. 

3   Detection and Biometric Extraction 

The above-described symmetry patterns are represented by the upper and lower end-
points of the two sides (left and right) of the symmetry mask. In a real-life system it is 
important to be able to detect the relevant information even in cases where we do not 
assume an ideal scene (only one person in the image, static background, exact silhou-
ette, separable figure and background). Our work focuses on human activities, so we 
decided to make use of the extracted symmetry patterns for human walk detection and 
biometrics determination (begin and end of walk pattern, leading leg in the walk cycle). 

3.1   Classification With SVM in EigenWalks Space 

The extended version of our detection method [11] operates in the eigenwalks space 
and utilizes the Support Vector Machine method (SVM) for pattern classification 
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[12]. In a preprocessing stage we re-sample the extracted symmetry patterns; this is 
because patterns depend both on the frame rate and the walking speed, so a pattern 
usually contains data from 6-15 frames. We perform this task using Bezier spline 
interpolation. Next the interpolated 3D points are rearranged into a row-vector with 
dimension 800 (this is because we compute 100 points for the coordinates (x,y) of 
every point). For dimension reduction, which is important in order to achieve a lower 
computational cost during classification, we utilize the Principal Component Analysis 
method (PCA). We consider the space spanned only by the 3 most significant  
eigenvectors that account for 93% of the variation in the training dataset: this is the 
Eigenwalk space. The human patterns lie on a non-linearly shaped manifold in the 
eigenspace. The classification process is carried out using a non-linear classification 
method, namely SVM with radial basis kernel function. In our tests, the correct-
classification rate was found to be 92%. 

3.2   Leading Leg Identification 

The 2D motion vector on the image-plane, and the walker’s gait-period, can be ex-
tracted directly from the detected patterns: we estimate the motion vector by fitting a 
regression line to the last half-trajectory of the lower two points of the pattern. 

         
                      a)              b)            c)            d)       e) 

Fig. 2. a) An image showing the location of the derived symmetry-pattern (marked with white 
border; “x” marks a feature-point, see Section 4). b), c) Illustrations of our definition of “lead-
ing leg”; the “standing” or leading leg is the right leg in b), and the left leg in c) (legs high-
lighted manually). d), e) The detected patterns for the same steps as shown in b) and c); the 2D 
direction is bottom-left to upper-right (case 2 in Table 1). 

In this section we present a method to determine, from one detected walk cycle, 
whether the leading leg is the right or the left leg. According to our terminology, the 
leading leg is the “standing” leg which at that instant carries the person’s weight (see 
Figures 2b and 2c). Depending on the 3D walk-direction, and on which is currently 
the leading leg, one leg or the other practically obscures the visible area between the 
legs (Figure 2a). During a walk-cycle the ratio of the areas, together with the 2D di-
rection on the image-plane, can be used to identify which is the leading leg. During 
one cycle, the left leg and right leg in turn are in the leading position. The above-
described method can detect one step. To connect two successive steps as one walk-
cycle, we calculate the 2D displacement vector of a detected step, and then search for 
another step in the estimated 2D position and at a time-point after a forecast walk-
period. Table 1 summarizes the relationship between the leading leg and the ratio of 
surfaces from two successive patterns defined by:  
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A limitation of the described method is that it cannot identify the leading leg when the 
motion is parallel to the camera plane, since in such cases the areas are nearly equal 
(cases 3, 4 and 9, 10 in Table 1). 

Table 1. Surface-area dependencies on the 2D walk-direction (6 of 8 possible cases) and the 
leading leg (Right, Left) 

Case 2D Dir. Leading leg Ratio Case 2D Dir. Leading leg Ratio 
1 Right >1 7 Right <1 
2 

 
Left <1 8

 
Left >1 

3 Right 1 9 Right 1 
4  Left 1 10

 
Left 1 

5 Right <<1 11 Right >>1 
6 

 
Left >>1 12

 
Left <<1 

4   Registering Two Views 

An automatic registration method needs a feature selection and matching algorithm to 
select corresponding points between the views obtained from two cameras. In 3D 
motion-based camera calibration a major problem is to estimate the height of the 
motion above the defined ground-plane. In our case however, since we can detect the 
legs in motion, their lower point can conveniently be used for registering common 
points on the ground-plane. 

The problem can be summarized as follows: given a set of points xi and a corre-
sponding set of points x’i, we need to compute the projective transformation (2D 
homography) that takes each element xi to x’i. The problem is to compute a 3x3 ma-
trix, H, such that: 

ii Hxx ='  (2) 

This computation can be accomplished in several ways; details can be found in [7]. 
To solve the problem, we need at least four point-correspondences. 

To detect such corresponding points, we use our walk-detection and leading-leg 
identification methods. Both methods provide information which is useful in match-
ing points between the two views: detected walk patterns must be concurrent in both 
views; and, likewise, the leading leg must be the same. In both views the central 
lower points of the detected walk-patterns are the feature points (e.g. the one marked 
with a black “x” in Figure 2a). The extraction of a feature point from one of the views 
is followed by searching for its pair in the other view. The algorithm searches for 
concurrent points by examining the timestamps of points, and for points which were 
detected during walk cycles with the same leading leg. Nevertheless, neither of these 
features is unique for person identification (in cases where more than one person is 
visible). This fact results in some outliers in the detected points. However, because 
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the leading leg is a stronger feature for identification, there are fewer outliers than if 
we were to use only the concurrent condition. For the estimation of the transformation 
H that maps points of one camera scene onto the other, and for rejection of outliers 
from the set of candidate point-pairs, we have implemented both the simple DLT 
method, and its extension using the RANSAC algorithm [7]. 

5   Experimental Results 

We evaluated the registration algorithm by using surveillance cameras placed in a 
public area located in the university building. The angle between the view-axes of the 
two cameras employed was nearly 90° (hence, to detect corresponding points using 
standard optical methods would be difficult). In our series of tests, the successfully 
detected and classified walk-patterns were 241 for the first camera, and 220 for the 
second camera. In our system the cameras are in principle synchronized, but there is a 
small temporal drift between the walk patterns generated by each camera; hence we 
define a permitted time-window for events which are classed as “concurrent”. This 
time-window for concurrent checking was 5 frames. After such checking, there re-
mained 46 concurrent corresponding points (S1 dataset) and 8 with the leading leg 
verified (S2 dataset). We found 15 invalid points in the S1 dataset. Table 2 summa-
rizes the results of the simple DLT and the RANSAC+DLT methods applied to sev-
eral combinations of the S1 and S2 datasets (cases 1 to 5). We assessed the accuracy 
of the computed transformations (rightmost column) using manually-selected control 
points. 

Table 2. Experimental results on data from “Aula” cameras (RANSAC distance threshold is 
t=0.01) 

Case Method Input Points Correct  
points 

Detected 
outliers 

Average error  
(pixel) 

1 DLT S2 8 8 - 6.4 
2 DLT S1+S2 54 39 - 250.2 
3 RANSAC+DLT S2 8 8 4 12.5 
4 RANSAC+DLT S1+S2 54 39 25 7.8 
5 RANSAC+DLT S1 46 31 28 6.2 

Because of the near-orthogonal orientation of the two cameras used for the tests, 
the algorithm can rarely detect two successive walks for leading-leg identification, 
and therefore there are few points in the S2 dataset. Nevertheless, in case 1, all the 
points in S2 are correct points; and the simple DLT method can compute a good trans-
formation. The DLT method fails when there are outliers (as for the S1+S2 dataset), 
and in this case (case 2) the position error is extremely high. In cases 4 and 5, the 
RANSAC algorithm has managed to reject the outliers from S1, and the DLT method 
then computes a good transformation. In case 3, RANSAC+DLT fails to give good 
accuracy because there are too few points in the S2 dataset [7]. 
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Fig. 3. Transformation from the first-camera view (left) to the second (right): Detected corre-
sponding points, and a synthetic line-trajectory 

To summarize the test-results: the DLT method is fast enough to run in real-time, 
but it needs an input containing only “good” points (like our S2 dataset). On the other 
hand the RANSAC algorithm can successfully reject outlier points (such as contained 
in our S1 dataset) but it does require much more computing time (5-20 seconds).  

6   Conclusions 

A camera registration method has been presented which uses walk-parameters as 
features to identify corresponding points. The features we used  (concurrent  
walk-steps, and leading-leg identity) seem potentially to provide good data for the 
estimation of homography between two different camera views of the same scene. 
The registration method has been verified on an actual indoor camera surveillance 
system, and was able to provide real-time feature (walk) detection. The described 
method is an extension of our previous work [6], which investigated an automatic 
registration method used in an outdoor environment. 
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Abstract. We propose a real time algorithm to track moving persons without 
any a priori knowledge neither on the model of person, nor on their size or their 
number, which can evolve with time. It manages several problems such as oc-
clusion and under or over-segmentations. The first step consisting in motion de-
tection, leads to regions that have to be assigned to trajectories. This tracking 
step is achieved using a new concept: elementary tracks. They allow on the one 
hand to manage the tracking and on the other hand, to detect the output of oc-
clusion by introducing coherent sets of regions. Those sets enable to define 
temporal kinematical model, shape model or colour model. Significant results 
have been obtained on several sequences with ground truth as shown in results. 

1   Introduction 

Real time objects tracking is a difficult task which is present in a great number of ap-
plications on image processing, like human-machine interaction, civil and military 
monitoring, virtual reality, analysis of human movement or images compression. This 
difficulty is accentuated in environments without constraints where the system must 
be able to deal with significant variability of objects, variations of luminosity, occlu-
sions and also with the segmentation problems. 

There are many tracking algorithms yet proposed by several authors. Different 
strategies can be used for the tracking step, among them we can mention heuristic 
methods simple to implement [6], the JPDAF algorithm (Joint Probabilistic Data As-
sociation Filter) [2] which calculates the association probabilities of each measure-
ment to a known and fixed number of targets or the Multiple Hypothesis Tracker 
(MHT) algorithm [12] that explores each way to match any region with any track. 
This probabilistic data association algorithm needs any initialisation and deals with an 
unknown and non-constant number of objects. Particle filters [8] have recently been 
introduced. They represent the state density by a set of particles, allowing working 
with multi-modal function. This technique has been initially developed for the track-
ing of one object but has been extended to several [7]. We can also mention the recent 
works of Comaniciu et al [3] which introduces the Mean-Shift.  

For all these algorithms, different features can be used to model objects as kine-
matics [1], shape (silhouettes [4], 2d and 3d articulated models [14][9]) or appearance 
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models such as [13][11]. Naturally, the robustness of the tracking is increased using 
simultaneously different sources of information.  

The real time tracking algorithm proposed in this article is not supervised, it re-
quires any initialisation neither on the tracks models, nor on their number, which can 
evolve with time. It is achieved using simultaneously kinematics, shape and an ap-
pearance model of objects based on colour. The originality of this method consists in 
the introduction of a new concept: elementary tracks. Those will play a significant 
role in the tracking by tackling the problem of grouping regions to true trajectories 
(specially in bad segmentation conditions), and also, by managing the different inter-
actions between the tracks (occlusions). The first step of the algorithm consists in a 
motion detection achieved by thresholding the difference between a reference image 
(background image) and the current image. This step, presented in section 2 is very 
sensitive to noise and then, is following by a Markovian relaxation.  The so-obtained 
regions produce elementary tracks (section 3), which will be assigned to trajectories 
as describe in section 4. Results presented in section 5 show on real sequences with 
ground truth (benchmark data’s suggested in the PETS2004 conference) that segmen-
tation problems and occlusions are correctly managed. 

2   Motion Detection  

The motion detection is performed by subtracting to each image a reference one (cre-
ated and updated automatically), called the background image. To reduce the noise on 
these difference images a Markovian relaxation is performed with the ICM algorithm 
(Iterated Conditional Modes) [5]. A labelling step ends the detection by producing re-
gions that will be assigned to tracks. Before describing the assignment process, let us 
define these tracks and their model. 

3   Definition of the Tracks  

3.1   The Elementary Tracks 

Let Ri
k and Rj

k+1 two moving regions belonging to images Ik and Ik+1. These regions 
are neighbouring and connected (in a graph theoretical meaning) if the area of their 
overlapping part (when projected in the same image) is not zero. We say that Ri

k and 
connected by a strong edge (in a graph theoretical sense) if Ri

k has a single neighbour 
(at time k+1) that is Rj

k+1 and if conversely Rj
k+1 has a single neighbour at time k, the 

region Ri
k.  We so define an undirected graph G where nodes are regions Ri

k and edges 
are pairs (Ri

k , Rj
k+1) of connected regions (strong edge or not).  

An elementary track is then a path in the graph G composed by strongly con-
nected regions Ri

k. It follows first that there is no branching node in an elementary 
track and second that an elementary track may have no more than one region in 
the same image. The association of regions to elementary tracks is considered as sure 
and will not be studied again. As example, regions shown on the figure 1 lead to five 
elementary tracks. 
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Fig. 1. Elementary tracks for a sequence of regions 

This notion of elementary track is very important, as it constitutes the basic block to 
build true trajectories. Generally, a large number of elementary tracks is generated for 
an image sequence due to segmentation errors or occlusions. Actually, as any a priori 
knowledge is employed on the height of the persons, any threshold has been used on 
the size of regions. This leads to a great number of small regions which generate sev-
eral elementary tracks. We prefer keeping them at this low level stage and waiting for 
higher-level information to perform an efficient reduction of tracks. Elementary tracks 
allow introducing coherent sets of regions, which could be modeled more globally 
than a single region (by temporal features as velocity for example). Also, they will 
make it useful to distinguish interactions between trajectories (occlusions) from seg-
mentation problems. These elementary tracks have now to be merged in principal 
tracks representing the different trajectories. 

3.2   The Principal Tracks 

Let ET1 and ET2 be two elementary tracks. ET1 and ET2 are connected if there is a 
way constituted by not-strong edges (see Fig. 1) for going from ET1 to ET2. A princi-
pal track is then defined as a set of connected elementary tracks. Ideally, each 
principal track represents the trajectory of a person in the sequence. Note that several 
regions of the same image Ik can now belong to the same principal track. In order to 
compare the tracks each other, we introduce below a model of track. 

3.3   Model of Tracks  

Each track Ti (elementary or principal) is modeled at each time k by its kinematical 
parameters, shape parameters and also by an appearance model. 
     a) Kinematical parameters are composed by: the center of gravity (gxk, gyk) of 
regions in the track, the velocity (dx, dy) of the track and a weight w which represents 
the probability of the track and is function of its temporal duration.  

The velocity is computed using gravity centers of regions as follow: let us consider 
a track Ti present across times k0..kn and its gravity centers  (gx0…gxn, gy0…gyn). We 
note (Vxk,Vyk)=(gxk

 - gxk-1, gyk
 - gyk-1) the velocities at each time k. This computational 

process is very fast but unfortunately, the speeds so obtained are very sensitive to 
segmentation problems. For example, we can see on figure 2 that 2V  is wrong due to 
the bad segmentation. For short tracks, this produces a high error rate on the average 
speed (dx,dy).  
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Fig. 2. The update process of velocity 

To deal with this problem, velocity updating is performed by weighting each speed 
with a pertinence factor mk which is function of the area difference between two con-
secutive times (equation 1). When segmentation problems appear, areas present a big 
variation and mk will be small to penalise the corresponding velocity vector. 
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(1) 

Ak is the area of the track at time k. α is a parameter used in the "softmax" to adjust 
the decrease of the exponential (we set it to 50). The average speed (dx,dy) so com-
puted is assigned to all regions of the track (performing a speed smoothing).    
     b) The shape is characterized by an ellipse of axes 2σx and 2σy where σx and σy 
are the horizontal and vertical standard deviations of pixels belonging to the track. 
    c) The appearance is described by a color model and a vector of appearance prob-
ability AP. The color model is similar to this presented in [10]. The principle consists 
in projecting on the vertical axis, the color average of pixels belonging to the track. 
This 1D model describes a person with less precision than 2Dmodels [13] but is still 
representative of the general color of the person. It presents two main advantages 
compared to the 2D model: it is more robust against changes in the shape of the mov-
ing people (due to the projections) and its adjustment to the region is simplified (1D 
correlation) and more robust. Moreover, it makes it possible to reduce significantly 
the computational time. 
The vector of appearance probability AP represents the likelihood of the object being 
observed at each line of the color model. It will be used as a weighting during the 
computation of the distance between models of appearance. We have introduced all 
the notions used by the tracking algorithm which will be now described. 

4   The Tracking Method 

The tracking algorithm will consist on gathering connected elementary tracks in prin-
cipal tracks, each one representing ideally the trajectory of a person. 

Let PTi
k-1 i=(1..N) the principal tracks present at the time k-1 and ETl

k (l=1..M), the 
elementary tracks present at the time k. Each elementary track ETl

k has to be associ-
ated to a principal track PTi

k-1 (or to a new principal track).  
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Let Si
k the set of elementary tracks connected to the principal track PTi

k-1 (and thus 
probably belonging to PTi

k-1). Several cases can occur: 

a) If Si
k is empty then the track PTi

k-1 is stopped. 
b) If Si

k contains one elementary track which is not connected to another princi-
pal track then parameters of the track PTi

k-1 are updated at the time k  
c) If Si

k contains one or more elementary tracks connected to another track 
1k

jPT − , we have to choose between the presence of an occlusion or a segmentation er-

ror.  For that, we study the orientation of velocity vectors of the concerned principal 
tracks PTi

k-1 and PTj
k-1 by computing the error: 

( ) 1
where  is the

( , ) ( )
( ) exp cinematic orientationi j

F if

E i j F with
F else

A

θ θ ε
θ

θ θ θ ε
θ

= <
= − −

=
 

(2) 

In a heuristic way, A was set to 18. The function F(θ ) is used to clearly discriminate 
two tracks which have different orientations. 

If E(i,j) is higher than a threshold Sfo, an occlusion is detected between 1k
iPT −  and 

1k
jPT −  and a new track called an “occlusion track” is created (the tracks PTi

k-1 and 

PTj
k-1 are obviously not destroyed to manage the exit of occlusion). If E(i,j) is bellow 

the threshold, a segmentation error is detected and the track with the lower weight is 
destroyed while the other is updated. 

d) If Si
k contains several elementary tracks which are not connected to another 

principal track, we can have an over-segmented person or two persons previously de-
tected as one track and now separated (split of the track). The decision is still made 
by studying the velocity but here, we have to study the velocities in the future frames 
which are unknown. To solve this problem, we use elementary tracks and their veloci-
ties: using the k-means algorithm (k=2), we separate the elementary tracks in two 
classes with the kinematical direction as criterion.  Let c1 and c2 the centers of these 
classes. If 1 2( )c c foF Sθ θ− < , an over-segmentation is find and the track PTi

k-1 is up-

dated.  In the other case, a split is detected. Between the two sets of elementary tracks, 
the most similar to the principal track PTi

k-1 is assigned to this track. The second set 
will be assigned to a new track that corresponds to the second trajectory, after the 
splitting.  

If the case of splitting in an occlusion track, an appearance model is computed for 
each of the two classes defined above. Those models will be compared to those of the 
tracks PTi

k-1 and PTj
k-1 that have created the occlusion. If both models do not belong to 

the same track and if shapes (ellipses) are coherent, then PTi
k-1 and  PTj

k-1 are updated 
and the occlusion track is destroyed (end of the occlusion). Else, the occlusion is not 
broken. 

5   Results 

Our method was tested on a great number of sequences. We present here the results 
obtained on nine sequences from the pets2004 conference. Their scenarios are varied 
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Browse2 represents a person browsing and reading for a moment, Browse4 a person 
browsing a desk, Bww2 a person browsing and waiting, Rsf a person slumping on the 
floor, Rff a person falling down and staying immobile, Mwt1 two people meeting and 
walking together, Mws two people meeting, walking together and splitting, Mc 
crowding of four people meeting, walking and splitting, Fra1 two people meeting, 
fighting and runing away, Fomd two people meeting, fighting, one down, other runs 
away and Lbox a person putting a box on the floor. The main advantage of these se-
quences is their "ground truth" (number of people, localization of people... etc) that 
allows estimating numerically the quality of our results as follow: Let us consider an 
edge (strong or not) that connects two regions. Let E1vt and E2vt the labels (number 
of the tracks) of these regions given by the ground truth and E1r and E2r the labels 
resulting from our method.  The edge is called positive if:  (E1vt=E2vt and E1r=E2r) 
or (E1vt  E2vt and E1r E2r), else it is negative.  The table below summarizes the re-
sults obtained on all the sequences.  

Table 1. 

 Br
owse2 

Br
owse4 

Rs
f 

Lb
ox 

M
wt1 

M
ws 

M
c 

Fr
a1 

Fo
md 

NI 87
5 

11
38 

91
0 

86
2 

70
6 

62
2 

49
0 

55
0 

95
9 

N
R 

31
76 

36
54 

31
06 

35
15 

19
02 

20
05 

99
5 

38
23 

30
56 

N
Pvt 

2 3 3 4 5 9 4 7 9 

N
Pr 

2 3 4 5 5 12 4 10 10 

N
PvtI 

1.
10 

0.
77 

3.
17 

3.
4 

1.
8 

2.
7 

2.
3 

4.
9 

2.
76 

N
RI 

3.
62 

3.
21 

3.
38 

4.
07 

2.
69 

3.
23 

2.
02 

6.
9 

3.
18 

N
AP 

31
69 

36
62 

31
08 

35
21 

18
85 

19
95 

87
6 

38
15 

30
73 

N
AN 

26 20 25 15 56 37 13
5 

28 31 

In addition to edges evaluation (number of positive and negative edges "NAP" and 
"NAN"), we compare the number of people found on these sequences (NPr) with that 
of the ground truth (NPvt).  Some statistics of the sequences are also given in the ta-
ble (Ni:  number of images, NR:  number of regions, NPvtI:  average of the number 
of people by image, NRI: average of the number of regions by images).  These statis-
tics give, for each sequence, a global idea of the problems of over or under-
segmentations and occlusions. Thus, by comparing NPvtI with NRI, we can notice the 
significant number of over-segmentations (on the sequence Browse4, a person is on 
average represented by four regions). This latter could be reduce by introducing a 
threshold on the size of regions, but as we didn’t know a priori the height of the per-
sons, we cannot set a priori this threshold. Thus, we have to manage all these over-
segmentations and to correctly affect regions to tracks. 
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For all these sequences, no manual initialization was carried out and no threshold 
was changed (the algorithm has only one threshold used for the study of the kinemat-
ics of the tracks). In addition, no a priori information was introduced on the objects to 
track.  

The results above show that our algorithm is able to track several people (two se-
quences comprise 9 persons), and to detect and manage the interactions between this 
persons (occlusions, under- or over-segmentations). Actually, we can note small er-
rors on the evaluation of the number of persons on these difficult sequences, in spite 
of the lack of a priori knowledge and the number of over-segmentations. 

We can nevertheless note a higher error rate for some sequences (Mwt1 and Mc). 
These errors are generally produced by people who interact with nearly identical kin-
ematical parameters. This makes difficult the occlusions and splitting detection. 
Moreover, for the Mws sequence, two people who are crossing have identical colori-
metric characteristics. It explains the error of labeling after the separation of the per-
sons (exit of occlusion). Generally, on these difficult sequences, the algorithm works 
correctly with a small number of negative edges (NAN) in front of the positive ones.  

6   Conclusion  

We have presented a real time and robust method for the tracking of moving objects 
using simultaneously kinematics, shape and an appearance model. In order to cor-
rectly manage the problems of occlusions and over-segmentations, we have intro-
duced a new concept:  elementary tracks. Those gather in a sure way (strong edges) 
some regions of the sequence. This allow to access to temporal models (model of 
shape, kinematics and appearance) which could not be defined for isolated regions. 
These elementary tracks are very useful to detect the beginning or the end of occlu-
sion, or to manage over or under-segmentation.  Experimental results carried out on 
various sequences with a ground truth were presented with a numerical evaluation of 
the performances of our system. This latter produces good results on these particularly 
difficult sequences. As we do not know a priori the height of the persons, we impose 
no criterion on the size of regions and have to deal with a great number of small re-
gions (hands, feet, …) which have to be assigned on real trajectories. Our perspec-
tives consist in incorporating the tracking algorithm in a real application of person 
counting by introducing a priori knowledge on the tracked objects and the environ-
ment to increase the robustness of the system.  
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Abstract. To detect accurate human gaze position is vey difficult, but
important problem for many applications. For that, it is requisite to
detect the facial and eye movement accurately and fastly. So, we imple-
mented a real-time gaze tracking system based on facial and eye move-
ment. The performance of detecting facial features could be enhanced by
Support Vector Machine and the eye gaze position on a monitor could be
generalized by a multi-layered perceptron. And two gaze positions were
geometically summed and final gaze position was acquired. Experimental
results showed that the RMS error of gaze detection is about 2.4 degrees
(1.68 degrees on X axis and 1.71 degrees on Y axis at the Z distance of
50 cm).

Keyword: Gaze Detection, Facial and Eye Movement.

1 Introduction

Gaze detection technology is applicable to the interface of man-machine interac-
tion, such as the view control in three-dimensional simulation programs. Further-
more, it can help the handicapped to use computers and is also useful for those
whose hands are busy doing other things[15]. The gaze detection researches can
be classified into 4 categories. First one is that focused on 2D/3D head motion
estimation[2][11]. Second one is that for the facial gaze detection[3-9][12][13][15]
and the third one is the eye gaze detection[10][14]. And last one is that consid-
ering both head and eye movement has been researched. Ohmura and Ballard
et al.[5][6]’s methods and Rikert et al.[9]’s method has the constraints that the
user’s Z distance should be measured manually and take much time to compute
the gaze position. Gee et al.[7] and Heinzmann et al.[8]’s methods only compute
gaze direction vector and do not obtain the gaze position on a monitor. In the
methods of [12][13], a pair of glasses having marking points is required to de-
tect facial features. The researches of [3][4][16] show the facial gaze detection
methods and have the disadvantage that the gaze errors are increased in case
that the eye movements happen. To overcome such problems, the research of [17]
shows the facial and eye gaze detection, but uses only one wide view camera. In
such case, the eye image resolution is too low and the fine movements of user’s
eye cannot be exactly detected. Wang et al.[1]’s method provides the advanced

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 52–59, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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approaches that combines head pose and eye gaze estimation by a wide view
camera and a panning/tilting narrow camera. However, in order to compute the
gaze position, their method supposes that they know the 3D distance between
two eyes, that between both lip corners and the 3D diameter of eye ball. Also,
they suppose there is no individual variation for the 3D distances and diameter.
However, our preliminary experiments show that there are much individual vari-
ations for the 3D distances/3D diameter and such cases can increase much gaze
errors. To overcome above problems, we propose the new method for detecting
gaze position.

2 Localization of Facial Features in Wide View Image

In order to detect gaze position on a monitor, we first locate facial features
in wide view images. To detect facial features robustly, we implement a gaze
detection system as shown in Fig. 1. The IR-LED(1) is used to make the specular
reflections on eyes. Due to the IR pass filter(2) in front of camera lens, the
brightness of input image is only affected by the IR-LED(1) excluding external
illumination. The reason of using IR-LED(1) of 880nm is that it does not make
dazzling to user’s eye. When a user starts our gaze detection system, the micro-
controller(4) turns on the illuminator(1) synchronized with the even field of
CCD signal and turns it off synchronized with the next odd field of CCD signal,
successively[17]. From that, we can get a difference image between the even and
the odd image and the specular reflection points on both eyes can be easily
detected because their image gray levels are higher than other regions[17]. In
addition, we use the Red-Eye effect and the method of changing Frame Grabber
decoder value in order to detect more accurate eye position[17]. Around the
detected corneal specular reflection points, we determine the eye candidate region
of 30*30 pixels and locate the accurate eye (iris) center by the circular edge
detection method. After that, we detect the eye corner by using eye corner shape
template and SVM (Support Vector Machine)[17]. We get 2000 successive image
frames for SVM training and additional 1000 images are used for testing from
100 persons. Experimental results show the classification error for training data
is 0.11% and that for testing data is 0.2%. The classification time of SVM is 8 ms
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Fig. 1. The gaze detecting system
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in Pentium-III 866MHz. After locating eye centers and eye corners, the positions
of nostrils can be detected by anthropometric constraints in a face and SVM. In
order to reduce the effect by the facial expression change, we do not use the lip
corners. Experimental results show that RMS error between the detected feature
positions and the actual positions are 1 pixel (of both eye centers), 2 pixels (of
both eye corners) and 4 pixels (of both nostrils) in 640×480 pixels image. From
those, we use 5 feature points (left/right eye corners of left eye, left/right eye
corners of right eye, nostril center) in order to detect facial gaze position.

3 Computing Facial Gaze Position

Based on the detected 2D eye corner positions, we can pan/tilt the narrow view
camera in order to capture the eye image. Here, the pan and tilting mechanism is
hand-made by our research team with stepping motor. However, because the 2D
feature positions are observed in the wide view camera and the panning/tilting
should be performed in narrow view camera, the coordinate unification between
the wide and narrow view camera using the camera parameters and the Z dis-
tance (between the wide view camera and the 3D eye corner positions) should
be required in order to determine the accurate angle of panning/tilting as shown
in Fig. 2(a). However, the accurate Z distance is difficult to be obtained with
single wide view camera and we use the following method in order to determine
the angle of panning/tilting. That is, the coordinate unification is required due
to the coordinate discrepancy and we can preliminarily reduce the discrepancy
by positioning the narrow view camera close to (above) wide view camera as
shown in Fig. 2(a). In addition, conventional users tend to sit from 50 to 70 cm
in front of monitor and such condition can restrict the coordinate discrepancy
also as shown in Fig. 2(a). Of course, there can be individual variations for the
user’s sitting height, but there is also the limitation of sitting height considering
the working comfort in the desktop computer environment. Considering such
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Fig. 2. Computing facial gaze position using wide and narrow view camera (a)Initial
viewing angle of narrow view camera (b)Coordinate conversion among the narrow view
camera, the wide view camera and the monitor
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conditions, we determine the initial viewing angle of narrow view camera as 4.3
degree(from -2.15 to +2.15 degree, vertically) and we can obtain the magnified
eye image of narrow view camera like Frame 1, 2, 3 (the diameter of iris is below
135 pixels at the Z distance of 50 cm) as shown in Fig. 2(a). From the Frame
1, 2, 3, we can detect more accurate 2D eye corner positions by the method as
mentioned in section 2. Then, we compute the 3D eye corner positions using
the narrow and wide view stereo camera as following. Supposing that P point,
which is the left eye corner of right eye, is observed in both wide and narrow
view camera as shown in Fig. 2(b), then we can obtain Eq. (1) [18].

X1,2 =
x1,2 ∗ (f1,2 − Z1,2)

f1,2
, Y1,2 =

y1,2 ∗ (f1,2 − Z1,2)
f1,2

(1)

where (x1, y1) is the observed 2D position in the narrow view camera, (x2, y2) is
the observed 2D position in the wide view camera and f1, f2 are the focal lengths
of the narrow view and the wide view camera, respectively. In addition, (X1, Y1,
Z1) is the 3D position of P point in the narrow view camera coordinate (XN ,
YN , ZN) and (X2, Y2, Z2) is the 3D position of P point in the wide view camera
coordinate (XW , YW , ZW ). Considering the coordinate conversion between the
narrow and wide view camera [18] and Eq.(1), we can obtain the Z distance (Z2)
as Z2 = A/B.

Here, A = y2*f2 - y1*f1*f2
2+y1*f2

2*cosα*sinβ*x2 +y1*f2
2 *T0y*sinα-y1*f2

2*
T0z*cosα*cosβ +f1*f2

2 *sinα*sinβ*x2 -f1*f2
2 *T0y*cosα -f1*f2

2*T0z*sinα*
cosβ. B = y2+y1*f2*cosα*sinβ*x2 - y1*f2

2*cosα*cosβ +f1*f2*sinα*sinβ
*x2-f1*f2

2 *sinα*cosβ.
Substituting the Eq. of Z2 = A/B into Eq. (1), we can obtain the 3D

positions(X2, Y2, Z2) of feature point(P) in the wide view camera coordinate
(XW , YW , ZW ). For that, we should know the camera parameters like (T0y, T0z,
f1, f2) as shown in Eq. of Z2 = A/B, whose parameters are not changed after
initial camera setup. So, we perform the camera calibration procedures using
calibration panel and parameter estimation method (Davidon-Fletcher-Powell
method) [3][4][18][19].

From that, we can obtain the accurate camera parameters value (T0y =
55mm, T0z = 11mm, f1 = 42mm, f2 = 8mm). In addition, we should know
the parameters of panning/tilting angle of narrow view camera (α and β) in
order to obtain the the Z distance (Z2). Those parameters are changed accord-
ing to the panning/tilting operation of narrow view camera and we can know
them from camera micom as shown in Fig. 1. That is, the camera micom checks
the panning/tilting angle values periodically (30 Hz) and transmits them to the
gaze detection S/W in PC via RS-232C communication. From above procedures,
we can get the 3D positions(X2, Y2, Z2) of feature point(P) in the wide view
camera coordinate (XW , YW , ZW ). Then, we perform the additional coordinate
conversion between the wide view camera coordinate (XW , YW , ZW ) and mon-
itor coordinate (Xm, Ym, Zm) as shown in Fig. 2(b). For that, we should know
the camera parameters like (T1x, T1y, T1z, θ) and we can also obtain them by the
camera calibration procedures [3][4][18][19]. Same rules are applied to the other
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4 features points and we can obtain the 3D positions of 5 features (left/right eye
corners of left eye, left/right eye corners of right eye, nostril center) in monitor
coordinate (Xm, Ym, Zm). For that, additional panning/tilting of the narrow
view camera may be required in order to include the other feature points in
the narrow view image and it takes little time as below 5 ms. The experimental
results show that the RMS error of between the computed 3D positions of 5 fea-
tures and the actual ones (measured by 3D position tracking sensor (Polhemus
Fastrak [21]) is about 0.781 cm (0.41cm in X axis, 0.45cm in Y axis, 0.49cm in
Z axis) for 50 person data. Then, we can determine one facial plane from the
computed 3D positions of the 5 features and the normal vector (whose origin
exists in the middle of the forehead) of the plane shows a gaze vector by head
(facial) movements. The gaze position on a monitor is the intersection position
between a monitor and the gaze vector as shown in Fig. 2(b).

4 Auto Zooming and Focusing of Narrow View Camera

As mentioned in section 3 and Fig. 2(a), we get the eye image in narrow view
camera, but the eye image size inevitably becomes small (the diameter of iris is
below 135 pixels at the Z distance of 50 cm) in order to overcome the coordinate
discrepancy between the wide and narrow view camera. In order to compute
more accurate eye gaze position, we should get more magnified eye image. So,
we implement the zoom lens into our narrow view camera and perform auto
zooming operation in narrow view camera. In addition, conventional narrow view
camera has small DOF (Depth of Field) and there is the limitation of increasing
the DOF with the fixed focal camera. So, we also implement the focus lens into
our narrow view camera and perform auto focusing operation in narrow view
camera in order to capture clear eye image. For auto zooming and focusing, the
Z distance between the eye and the narrow view camera is required and we can
obtain the accurate Z distance (Z1) by the same method mentioned in section 3.

5 Localization of Eye Features in Narrow View Image

After we get the zoomed/focused eye image (the diameter of iris is about 200
pixels), we perform the localization of eye features again as shown in Fig. 3. J.
Wang et al.[1] uses the method that detects the iris outer boundary by elliptical
fitting. However, the upper and lower regions of iris outer boundary tend to be
covered by eyelid and inaccurate iris elliptical fitting happens due to the lack
of iris boundary pixels. In addition, their method computes eye gaze position
by checking the shape change of iris when a user gazes at monitor positions.
However, our experimental results show that the shape change amount of iris
is very small and it is difficult to detect the accurate eye gaze position with
that. So, we use the positional information of both pupil and iris. Also, we use
the information of shape change of pupil, which does not tend to be covered
by eyelid. In general, the IR-LED of short wavelength (700nm ∼ 800nm) makes
the high contrast between iris and sclera and that of long wavelength (800nm ∼
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900nm) makes the high contrast between pupil and iris. Based on that, we use
the IR-LED illuminator of multi-wavelength (760nm and 880nm) as shown in
Fig. 1(6). As shown in Fig. 3(a) and (b), the shapes of iris and pupil are almost
ellipse, when the user gazes at a side position of monitor and we use the canny
edge operator to extract edge components and a 2D edge-based elliptical Hough
transform. In order to detect the eye corner position, we detect the eyelid as
shown in Fig. 3 using the region-based eyelid template deformation and masking
method. Here, we use 2 deformable templates (parabolic shape) for upper and
lower eyelid detection, respectively. Experimental results show that RMS errors
between the detected eye feature positions and the actual ones are 2 pixels (of
iris center), 1 pixel (of pupil center), 4 pixels (of left eye corner) and 4 pixels (of
right eye corner). Based on the detected eye features, we select the 22 feature
values (f1 ∼ f11 are used in case that right eye image can be captured by narrow
view camera as shown in Fig. 3 and f12 ∼ f22 are used in case that left eye image
can be captured).
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Fig. 3. The features for eye gaze detection from right eye

6 Detecting the Gaze Position on a Monitor

In section 3, we explain the gaze detection method only considering head move-
ment. However, when a user gazes at a monitor position, both the head and eyes
tend to be moved simultaneously. So, we compute the additional eye gaze posi-
tion by the detected 22 feature values (as mentioned in section 5) and a neural
network (multi-layered perceptron). For output function of neural network, we
use a limited logarithm function, which shows better performance than that in
case of using other functions, like a linear, sigmoid etc. The continuous output
values of neural network represent eye gaze position on a monitor. After detect-
ing eye gaze position, we can determine a final gaze position based on the vector
summation of facial and eye gaze position.
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7 Performance Evaluations

The gaze detection error of our method is compared to that of our previous
methods[3][4][15][17]. The researches[3][4] compute facial gaze position not con-
sidering the eye movements. The research[15] calculates the gaze position by
mapping the 2D facial feature position into the monitor gaze position by lin-
ear interpolation or neural network without 3D computation and considering
eye movements. The method[17] computes the gaze positions considering both
head and eye movements, but uses only one wide view camera. The test data
are acquired when 95 users gaze at 23 gaze positions on a 19” monitor with
instruction. The test data are different from the training data above mentioned.
Here, the gaze error is the RMS error between the actual gaze positions and
the computed ones. At the 1st experiment, the gaze errors are calculated in two
cases as shown in Table 1. The case I and II show the gaze error about test data
including only head movements and including both head and eye movements,
respectively. In this case, we allow the range of head movement to be -21 to +21
degrees, horizontally and -16 to +16 degrees, vertically.

Table 1. Gaze error about test data (cm)

Method Linear Single Combined [3] [4] [17] Proposed
interpol.[15] neural net[15] neural nets[15] method method method method

case I 5.1 4.23 4.48 5.35 5.21 3.40 1.21
case II 11.8 11.32 8.87 7.45 6.29 4.8 2.11

Shown in Table 1, the gaze error of the proposed method is the smallest in any
case. At the 2nd experiment, the points of radius 5 pixels are spaced vertically
and horizontally at 1.5” intervals on a 19” monitor with monitor resolution of
1280×1024 pixels as such Rikert’s research[9]. The RMS error between the real
and calculated gaze position is 2.09 cm and it is superior to Rikert’s method
(almost 5.08 cm). Our gaze error is correspondent to the angular error of 1.68
degrees on X axis and 1.71 degrees on Y axis at the Z distance of 50 cm. In
addition, we tested the gaze errors according to user’s Z distance. The RMS
errors are 2.07cm at 50cm, 2.07cm at 60cm, 2.11cm at 70cm and the performance
of our method is not affected by the user’s Z position change. Last experiment
for processing time shows that our gaze detection process takes about 100ms in
Pentium-III 866MHz and it is much smaller than Rikert’s method (1 minute in
alphastation 333MHz).

8 Conclusions

This paper describes a new gaze detecting method. Experimental results show
that the RMS error of gaze detection is about 2.11 cm. In future works, we plan
to develop the method to increase the auto zooming/focusing speed to decrease
total processing time of gaze detection.
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Abstract. In this paper, we propose a novel two step shape classification ap-
proach consisting of a description and a discrimination phase. In the description
phase, curvature features are extracted from the shape and are utilized to build
a Hidden Markov Model (HMM). The HMM provides a robust Maximum Like-
lihood (ML) description of the shape. In the discrimination phase, a weighted
likelihood discriminant function is formulated, which weights the likelihoods of
curvature at individual points of shape to minimize the classification error. The
weighting scheme emulates feature selection procedure in which features impor-
tant for classification are selected. A Generalized Probabilistic Descent (GPD)
method based method for estimation of the weights is proposed. To demonstrate
the accuracy of the proposed method, we present classification results achieved
for fighter planes in terms of classification accuracy and discriminant functions.

1 Introduction

Object recognition is classic problem of computer vision. Among others, object recog-
nition based on shape is widely used. First step towards the design of a shape classifier
is feature extraction. Shapes can be represented by their contour or region [11]. Curva-
ture, chain codes, Fourier descriptors, etc. are contour based descriptors while medial
axis transform, Zernike moments, etc. are region based features. Contour based de-
scriptors are widely used as they preserve the local information which is important in
classification of complex shapes.

Feature extraction is followed by shape matching. In recent years, dynamic pro-
gramming (DP) based shape matching is being increasingly applied [8], [1]. DP ap-
proaches are able to match the shapes part by part rather than point by point, and are
robust to deformation and occlusion. HMMs are also being explored as one of the pos-
sible shape modeling and classification frameworks [2], [3], [5]. Apart from having
all the properties of DP based matching, HMM also provides a probabilistic frame-
work for training and classification. HMM based shape classification approaches in [2],
[3], [5] presented classification results for very dissimilar shapes. However, in practical
situations shapes to be classified are generally very similar. To handle such situation
modifications to existing approaches is mandatory.

The HMM approaches mentioned above apply maximum likelihood (ML) as their
classification criterion. Due to good generalization property of HMM, applying ML
criterion to similar shapes does not provide good classification. Also, ML criterion is
evaluated using information from only one class and does not take advantage of infor-
mation from the other classes. Generally shapes can be discriminated using only parts

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 60–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of the boundaries rather than comparing whole boundary. ML does not provide such
mechanism.

To overcome these shortcomings, we propose a weighted likelihood discriminant
for shape classification. The weighting scheme emulates comparison of parts of shape
rather than the whole shape. The weights are estimated by applying GPD method. Un-
like ML criterion, GPD uses information from all the classes to estimate the weights.
As GPD method is designed to minimize the classification error, the proposed classifier
gives good classification performance with similar shapes.

This paper is organized as follows: The shape description phase of the proposed
method is discussed in Section 2, while Section 3 formulates discriminative training
with GPD. Experimental results are presented in Section 4 and the paper ends with the
conclusions and suggestions for further research in Section 5.

2 Shape Description with HMM

Before we delve into details of the HMM topology used for shape description, we in-
troduce the terminology used.

1. S, set of states. S = {S1, S2, . . . , SN}, where N is number of states. State of
HMM at instance t is denoted by qt.

2. A, state transition probability distribution. A = {aij}, aij denotes the probability
of changing the state from Si to Sj .

aij = P [qt+1 = Sj|qt = Si], 1 ≤ i, j ≤ N. (1)

3. B, observation symbol probability distribution.B = {bj(o)}, bj(o) gives probabil-
ity of observing the symbol o in state Sj at instance t.

bj(o) = P [o at t|qt = Sj ], 1 ≤ j ≤ N. (2)

4. π, initial state distribution. π = {πi}, πi gives probability of HMM being in state
Si at instance t = 1.

πi = P [q1 = Si], 1 ≤ i ≤ N. (3)

If Cj is jth shape class where j = 1, 2, . . . ,M and M is total number of classes then
for convenience, HMM for Cj can be compactly denoted as,

λj = (A,B, π). (4)

An in depth description about HMM can be found in [9].
For the approach proposed in this paper, the description phase employs HMM topol-

ogy proposed in [2]. The curvature of the shape is used as the descriptor. The shape is
filtered with large variance Gaussian filter to reduce the effect of noise in curvature es-
timation. The filtered shape is normalized to a fixed length to simplify comparison and
its major eigen-axis is aligned horizontally to achieve an invariant starting point. Let
the aligned shape be indicated by D = {Dn} and Dn = (xn, yn) for 1 ≤ n ≤ T ,
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where T is the normalized length of the shape, and Dn indicates coordinates of nth

point of the shape. Finally, approximate curvature at each point is calculated as the turn
angle at that point. The turn angle θn is treated as observation On for HMM. Each
shape class is modeled by a N -state ergodic HMM and observation symbol probability
distribution, i.e., bj of each state is modeled as one-dimensional Gaussian distribution.
Gaussian Mixture Model (GMM) [10] for N clusters estimated from unrolled values of
curvature is used to initialize B. Baum-Welch algorithm is then applied to estimate the
parameters of the HMM λN

j = (A,B, π). Optimum N for the HMM is selected using
Bayesian Inference Criterion (BIC). In [2] BIC is applied to GMM to select optimal
N , but this gives optimal N for GMM and not for HMM. In proposed approach, BIC is
applied to HMM to ensure proper model selection. For HMM topology discussed, BIC
can be written as,

BIC(λN
j ) = logP (O|λN

j ) − N2 + 2N − 1
2

log(T ). (5)

N is selected to maximize BIC(λN
j ).

ML training approach described in this section utilizes information from only one
class to build the models. Though other approaches, like Maximum Mutual Informa-
tion (MMI), Generalized Probabilistic Descent (GPD), which use information of all the
classes, have been proposed for model training. However, classification performance of
properly designed and ML trained HMM cannot be improved significantly with MMI
or GPD training of HMM [7]. Therefore in our paper, we will stay with optimally de-
signed HMM and make our contributions in designing robust discriminant functions
with minimum error. Hence Section 3.

3 Discriminant Function Formulation and Training

In this section, we formulate a minimum error classifier with weighted likelihood dis-
criminant function. The weights introduced in the discriminant function are trained with
GPD method. A detailed review of GPD based methods is given in [6].

3.1 Discriminant Function Selection

Consider observation sequence to be classified, O = O1O2...OT . After modeling this
sequence with jth class HMM λj = (A,B, π) and solving optimal path problem, op-
timum path is given by Q∗ = q∗1q

∗
2 ...q

∗
T . The probability of observation sequence O

given the state sequence Q∗ and model λj is given by,

P (O|Q∗, λj) = bq∗
1
(O1) · bq∗

2
(O2) . . . bq∗

T
(OT ). (6)

Probability of state sequence Q∗ is given by,

P (Q∗|λj) = πq∗
1
· aq∗

1q∗
2
. . . aq∗

T−1q∗
T
. (7)

Then probability of the both occurring simultaneously is given by,

P (O,Q∗|λj) = P (O|Q∗, λj) · P (Q∗|λj)
= πq∗

1
bq∗

1
(O1) aq∗

1q∗
2
bq∗

2
(O2)...aq∗

T−1q∗
T
bq∗

T
(OT ). (8)
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Let Υ be defined as,

Υt,j =
{

log {πq∗
1
bq∗

1
(O1)}, t = 1;

log {aq∗
t−1qtbq∗

t
(Ot)}, 2 ≤ t ≤ T . (9)

Therefore, (8) can be expressed as,

log P (O,Q∗|λj) =
T∑

t=1

Υt,j . (10)

Equation (10) can be used as discriminant for classification of the observation sequence
O. This function gives equal importance to every point of the shape in shape classifi-
cations. Hence, we introduce a new discriminant function which weights the curvature
likelihood of shape points according to their importance in classification. The new dis-
criminant function, gj is given by,

gj =
T∑

t=1

wj(t).Υt,j , (11)

where wj is weighting function for class Cj . wj provides additional discrimination
among the classes. These weights will be tuned by applying GPD method to minimize
the classification error.

3.2 Weighting Functions

Weighting function at individual observation can be estimated by applying GPD to cur-
rent formulation. But due to the large number of parameters (equal to T ), the conver-
gence of GPD will be slower and will need large number of observation sequences for
training. As mentioned in Section 1, to discriminate between similar shapes, compari-
son between parts of their contour is sufficient. As a result, shape can be weighted seg-
ment by segment instead of being weighted pointwisely. Following this intuitive idea,
weighting functions are chosen to be windows which can adapt their position, spread
and height. Any smooth window function can be selected. Our approach uses weighting
function given in (12), which is sum of S Gaussian shaped windows.

wj(t) =
S∑

i=1

pi,j · e
− (t−μi,j )2

s2
i,j . (12)

Parameter pi,j governs the height, μi,j controls the position, while si,j determines
spread of ith window of jth class. In this case, we have only 3S parameters to esti-
mate. The discriminant function can now be written as,

gj =
T∑

t=1

S∑
i=1

pi,j · e
− (t−μi,j )2

s2
i,j · Υt,j . (13)

In the next subsection GPD method is applied to above formulation.
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3.3 GPD Algorithm

To complete the formulation of GPD, we introduce misclassification measure for ob-
servation sequence of jth class as,

dj = −gj +
1
η

log

⎛⎝ 1
M − 1

∑
k,k �=j

eη.gk

⎞⎠ (14)

and corresponding cost function as,

lj =
1

1 + e−ξ.dj
(15)

where η and ξ are positive constants which control the smoothness of the above func-
tion. The probabilistic descent re-estimation rule for parameters Λ is given as,

Λn+1 = Λn − εU∇lj. (16)

For the proposed method, U is chosen to be identity matrix and learning factor, ε is
chosen to be a small number compared to the dynamic range of the parameter. The re-
estimation rules in iteration n, for ith window parameters of kth class when Cj is the
correct class are given by,

pn+1
i,k = pn

i,k − εp ·
∂lj
∂pi,k

, (17)

μn+1
i,k = μn

i,k − εμ · ∂lj
∂μi,k

, (18)

sn+1
i,k = sn

i,k − εs ·
∂lj
∂si,k

, (19)

for 1 ≤ i ≤ S, 1 ≤ k ≤M.
Partial derivatives appearing in (17)-(19) can be calculated as,

∂lj
∂pi,k

=
∂lj
∂dj

· ∂dj

∂gk
·

T∑
t=1

e
− (t−μi,k)2

s2
i,k Υt,k, (20)

∂lj
∂μi,k

=
∂lj
∂dj

· ∂dj

∂gk
·

T∑
t=1

2pi,k(t− μi,k)e
− (t−μi,k)2

s2
i,k

s2i,k
Υt,k, (21)

∂lj
∂si,k

=
∂lj
∂dj

· ∂dj

∂gk
·

T∑
t=1

2pi,k(t− μi,k)2e
− (t−μi,k)2

s2
i,k

s3i,k
Υt,k, (22)

where,
∂lj
∂dj

=
ξe−ξ.dj

(1 + e−ξ.dj)2
, (23)
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∂dj

∂gk
=

{
−1, j = k;

eη.gj∑
k′ �=k eη.g

k′ , j �= k. (24)

Note that in above formulation Υt,k is treated as constant the HMM parameters are
not affected by the change in Λ. The classification results for the proposed scheme are
given in Section 4.

4 Experimental Results

The proposed classification scheme was verified with fighter aeroplane shapes. These
fighter aeroplanes include Mirage, Eurofighter, F-14, Harrier, F-22 and F-15. Since F-
14 has two possible shapes, one when its wings closed and another when its wings
opened, total number of shape classes are seven and each class includes 30 shape sam-
ples. Shape database was created by taking digital pictures of die-cast replica models of
these aeroplanes. Pictures were captured at 640×480 resolution, and were segmented
using Spedge and Medge [4] color image segmentation algorithm. Contours of the seg-
mented planes were used for training and testing of the classifier. Figure 1 shows the
extracted shapes for different classes.

Shapes were filtered with Gaussian filter (standard deviation = 10) and shape length
was normalized to 512 points. The normalized shapes were split randomly into training
and testing samples. For one of the training samples of each class, HMM was built as
explained in Section 2. Optimum number of HMM states were selected by applying
BIC to models with 3 to 10 states. Sum of 20 Gaussian windows was used for formula-
tion and training of the discriminant function. The window parameters were initialized
to spread the windows uniformly over the shape. The training vectors were used to
train the classifier with ξ = 1 and η = 10. Once the training was complete, testing
samples were used to determine the classification performance. For comparison, ML
classification was carried out with optimal HMM after application of BIC.

Table 1 gives classification results for ML classification (HMM-ML) and GPD
based weighted likelihood classification (HMM-WtL) which was trained using 15 sam-

(a) (b) (c) (d)
(e) (f) (g)

Fig. 1. Aeroplane shape classes: (a) Mirage, (b) Eurofighter, (c) F-14 wings closed, (d) F-14 wings
opened, (e) Harrier, (f) F-22, (g) F-15

Table 1. Classification accuracy in %

Class Mirage Eurofighter F-14 Closed F-14 Open Harrier F-22 F-15

HMM-ML 79.42 78.14 79.28 52.57 78.28 68.71 62.57
HMM-WtL 99.33 98.66 98.66 99.33 100.00 100.00 100.00
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Fig. 2. (a) ML discriminant functions, (b) Weighted likelihood discriminant functions

ples per class. These results were averaged over 20 runs of the classifier design, each
time with different combination of training samples.

Figure 2 shows the ML discriminant functions and weighted likelihood discriminant
functions for the test vectors. The test vectors are grouped in sets of 15. Labels just
above the x-axis indicate the correct class for the test vector and dotted lines separate the
correct classes. For correct classification, discriminant function of correct class should
be maximum. Difference between the discriminant function of correct class and the
other classes is not clear in ML for all the classes. As a result, the classification accuracy
is not satisfactory. For weighted likelihood discriminant, this difference is large and
clearly separable. This large difference results into very high accuracy for the proposed
classifier.
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5 Conclusion and Future Work

In this paper, we proposed a weighted likelihood discriminant function for shape clas-
sification by the combination of GPD theory and HMM. A training algorithm based
on GPD method to estimate the optimal weights with minimum classification error was
formulated. The performance of the proposed shape classification scheme was tested on
shapes of seven fighter planes. The classification accuracy is found to be 99.43% which
is much higher than 71.3% of ML discriminant.

Though the shapes used for training and testing of the classifier exhibit some de-
formation (due to varying view points) and noise (due to automatic segmentation), a
comprehensive analysis in presence of noise, occlusion and deformations needs to be
evaluated by designing appropriate experiments. Currently, the number of weighting
windows is selected manually and their parameters are initialized uniformly. A better
initialization strategy like initializing them at curvature extremes can be employed.

References

1. T. Adamek and N. E. O’Connor. A multiscale representation method for nonrigid shapes with
a single closed contour. IEEE Transactions on Circuits and Systems for Video Technology,
14(5):742–753, May 2004.

2. M. Bicego and V. Murino. Investigating hidden markov models’ capabilities in 2d shape
classification. IEEE Transactions on Pattern Recognition Machine Inteligence, 26(2):281–
286, Feb 2004.

3. J. Cai and Z.-Q. Liu. Hidden markov models with spectral features for 2d shape recognition.
IEEE Transactions on Pattern Analysis Machine Intelligence, 23(12):1454–1458, Dec. 2001.

4. J. Gao, A. Kosaka, and A. Kak. Interactive color image segmentation editor driven by active
contour model. Proceedings of International Conference on Image Processing, 3:245–249,
Oct. 1999.

5. Y. He and A. Kundu. 2-d shape classification using hidden markov model. IEEE Transactions
on Pattern Analysis Machine Intelligence, 13(11):1172–1184, Nov. 1991.

6. S. Katagiri, B.-H. Juang, and C.-H. Lee. Pattern recognition using a family of design al-
gorithms based upon the generalized probabilistic descent method. Proceedings of IEEE,
86(11):2345–2373, Nov. 1998.

7. E. McDermott. Handbook of Neural Networks for speech processing, chapter 5, pages 159–
216. Artech House, 2000.

8. E. G. M. Petrakis, A. Diplaros, and E. Milios. Matching and retrieval of distorted and oc-
cluded shapes using dynamic programming. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(11):1501–1516, Nov. 2002.

9. L. R. Rabiner. A tutorial on hidden markov models and selected application in speech recog-
nition. Proceedins of IEEE, 77(2):257–286, Feb. 1989.

10. D. A. Reynolds and R. C. Rose. Robust text-independant speaker identification using gaus-
sian mixture models. IEEE Transactions on Speech and Audio Processing, 3(1):72–83, Jan.
1995.

11. D. Zhang and G. Lu. Review of shape representation and description technique. Pattern
Recognition, 37(1):1–19, Jan. 2004.



A Fast Method to Detect and Recognize
Scaled and Skewed Road Signs�

Yi-Sheng Liou1, Der-Jyh Duh1, Shu-Yuan Chen1, and Jun-Wei Hsieh2

1 Department of Computer Science and Engineering
{s889404, s909408}@mail.yzu.edu.tw, cschen@saturn.yzu.edu.tw

2 Department of Electrical Engineering
shieh@saturn.yzu.edu.tw

Yuan Ze University, 135 Yuan-Tung Road, ChungLi, TaoYuan, Taiwan 320, R.O.C.

Abstract. A fast method to detect and recognize scaled and skewed
road signs is proposed in this paper. The input color image is first quan-
tized in HSV color model. Border tracing those regions with the same
colors as road signs is adopted to find the regions of interest (ROI).
Verification is then performed to find those ROIs satisfying specific con-
straints as road sign candidates. The candidate regions are extracted and
normalization is automatically calculated to handle scaled and skewed
road signs. Finally, matching based on distance maps is adopted to mea-
sure the similarity between the scene and model road signs to accom-
plish recognition. Experimental results show that the proposed method
is effective and efficient, even for scaled and skewed road signs in com-
plicated scenes. On the average, it takes 4–50 and 11 ms for detection
and recognition, respectively. Thus, the proposed method is adapted to
be implemented in real time.

1 Introduction

Road signs provide drivers useful information about roads. Proper usage of road
signs can improve driving safety. Unfortunately, the objective of using road signs
may not be accomplished if human drivers are careless or tired. To assist human
in driving, automatic detection and recognition of road signs is an essential issue
in driver support system.

The methods used for road sign detection can be divided into two groups
according to gray level [1,2] or color images [3–14] are used. Because RGB color
model is sensitive to lighting change. Other color models are used for color
transformation, such as HSI [3,4,5,6], HSV [10,13,14], Color Formation Equa-
tions (CFE) [7], YUV [8] or combination of HSV and YUV [12]. Hue value is
often used in pixel classifier to determine the color class of a pixel. The elemen-
tary shape features are extracted after color labeling has been executed. At this
moment, the color labels can be used to detect the road signs by corner detection

� This work was partially supported by the National Science Council of Taiwan,
R.O.C., under Grants NSC-92-2213-E-155-003.
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[3], Hough transform [8], genetic algorithm [4,5], neural network [6,9], or color
segmentation followed by geometrical analysis [7,10,11,13,14]. The region that
are likely to contain a road sign are marked as candidates of road signs. The can-
didates are extracted and usually normalized to the same size as model images in
the database before recognition. Normalized cross-correlation [5,8,2], template
matching [7,9], neural network [1,3,4,13,14] and Laplace kernel classifier [10] can
be used for road sign recognition.

The proposed method uses color and shapes for road sign detection and
recognition. Rather than most existing methods incorporating models of various
parameters into their database [1,3,7,10,2] to achieve rotation, scaling, and trans-
lation invariance, which causes computation burden of the system, our method
proposes a color quantization method to identify color of road signs and geo-
metric verification to detect road signs. Finally, skew normalization is adopted
to handle scaled and skewed road signs and matching based on distance maps
is performed for recognition. The proposed method is effective and efficient. In
particular, it is simple and fast, thus can be easily implemented in real time.

The proposed method consists of two stages: detection and recognition. The
outline of the proposed method is described briefly and shown in Fig. 1. Note
that Steps 1 and 2 belong to the detection stage and Steps 3–5 belong to the
recognition stage.

Fig. 1. Outline of proposed method for road sign detection and recognition

1. Color images captured by camera are used as input. HSV color model is
adopted to quantize each pixel in the input image to one of eight labels (Red,
Yellow, Green, Cyan, Blue, Magenta, Black, and White). The quantized
image was then used for road sign detection and recognition.

2. Border tracing and ROI verification are used to detect road signs. The region
inside the border that is found by border tracing is defined as a region
of interest (ROI). The ROI satisfying the simple constraints on boundary
rectangle and geometric constrains on road signs are designated as road sign
candidates.
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3. The bounding box enclosing the candidate region is extracted and its back-
ground is masked according to the border. The image is then normalized to
96× 96 pixels using bilinear interpolation.

4. The normalized image was partitioned into eight binary images according
to each quantized color. Distance map was then generated for each binary
image.

5. Matching based on distance maps is used for road sign recognition. The
scores are sorted and the road sign with highest score is classified as the
recognition result.

This paper is organized as follows. Road sign detection is presented in Sec-
tion 2. Road sign recognition is described in Section 3. Finally, the experimental
results and conclusions are given in Sections 4 and 5, respectively.

2 Road Sign Detection

Road signs are designed using specific colors and shapes. Thus, color is a signif-
icant feature for road sign detection. Input color images are first quantized into
eight colors in HSV color model as shown in Fig. 2.

Fig. 2. Partition of HSV color space for color quantization

Where vb, vw, and sc are thresholds used in the color quantization. The quan-
tization reduces the amount of image data. On the other hand, the quantization
can simplify the processes of road sign detection and recognition by treating
each of the eight color planes as a binary image.

Border tracing is used to find regions that have border color the same as road
sign. A closed region with red border is found when the tracing is done. Regions
smaller than 20 × 20 pixels are considered as noise and not processed further.
Because the boundary rectangle of a road sign has a specific aspect ratio, a ROI
that is not likely to be a road sign can be pruned by this simple constraint.

Further geometric constraints on road sign concerning that border pixels
must be fitted to geometric equations representing road sign shapes. The details
of geometric verification are described below.
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1. The road sign shape represented by the geometric equation is called template.
Template size is auto-adjusted by the boundary rectangle of ROI. Circular
and triangle templates used in our study are shown in Fig. 3.

2. The problems that the distance and view angle between camera and scene
road signs are varied can be solved by adjustable templates and rescale of
ROIs.

3. The border pixels were rescaled by the aspect ratio of ROI to fit to the
templates. The distance between the rescaled border pixels and the template
are calculated.

4. Compute the number of border pixels consistent with template for which
the distance is less than a threshold e. We set e = max(3, w/8, h/8), where
w and h are width and height of ROI, respectively. The higher the ratio of
fitted pixels is, the more possible the ROI is road sign candidate.

5. Color ratio in the center part of candidate are check to prune false alarm.

(a)

o x

yr

e

(b)

o x

yr

e

P1

P2

P3

Fig. 3. Templates for geometric verification. (a) Circular template. (b) Triangular tem-
plate.

In a summary, the geometric constraints are applied on the contour of border
pixels. If more than 80% of rescaled border pixels fall in the gray area of templates
in Fig. 3 and the color ratio of the ROI is sensible, the corresponding ROI is
regarded as a candidate of road sign.

3 Road Sign Recognition

Matching based on distance maps is used for road sign recognition. The ROI of
detected road sign found in the detection stage is pre-processed and normalized
to be of the same size as model images in the database. The matching scores
between the scene and model road signs are calculated and sorted. The model
road sign with the highest score is designated as recognition result.

Scene Image Pre-processing and Normalization. The detected region in the quan-
tized image contains the scene road sign and background. The background may
interference consequent matching, thus, they are masked out by assigning Ma-
genta to all the pixels outside the border (Fig. 4). In other words, Magenta means
do not care in our system.
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Since the distance and view angle between camera and scene road signs may
be varied, road signs appearing in the image may have various scales and skews.
To improve recognition accuracy, the boundary rectangle of the detected road
sign are normalized to handle the scaled and skewed problems.

(a) (b) (c) (d) (e)

Fig. 4. Preprocessing and normalization. (a) Detected road sign (56 × 127 pixels), (b)
detected road sign with background masked off, (c) extracted road signs, (d) normalized
road sign (96 × 96 pixels), and (e) scene image for recognition.

Matching Based on Distance Maps. Both scene and model images are first par-
titioned into eight binary images according to each quantized label (Fig. 5). Me-
dian filter is then adopted to eliminate isolated noises in the binary images.
Distance maps are then built for corresponding binary images. Similarity mea-
sure between the scene image and model images are calculated based on the
distance maps. The values of similarity are sorted in the descending order, and
the model with the maximum value of similarity is designated as the recognition
result.

(a)

(b)

(c)

(d)

(e)

Fig. 5. Color planes and distance maps. (a) Original scene image, rescaled scene image
and quantized scene image (b) original binary images, (c) inverse distance maps for
original binary images, (d) median filtered binary images, and (e) inverse distance maps
for median filtered binary images.

4 Experimental Results

The proposed method has been implemented on a PC equipped with AMD
AthlonXP 2200+ CPU, 512 MB of main memory, running Windows XP oper-
ating system. The program was developed using Visual C++ language. Input
color images were captured by Sony DSC-P1 digital camera on urban and coun-
try roads. The image is of JPEG file format with size 640× 480.
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To evaluate the performance of the proposed method, 134 images were taken
as test images, in which there are 154 road signs. In particular, some scaled and
skewed road signs were taken as shown in Fig. 6 to show that our method is
insensitive to the variation in scale and skew.

Fig. 6. Road sign in the variations of scale and skew. Detected road signs are marked
by rectangles.

Our method can detect road signs that are smaller that 20 × 20 pixels up
to full image size in 4–50 ms. 145 road signs (94%) are correctly detected, nine
road signs (6%) are missing and one false alarm. The 145 correctly detected road
signs are shown in Fig. 7.

The 145 detected road signs are used to evaluate the performance of the
proposed road sign recognition. The model database used for road sign recog-
nition is shown in Fig. 8. The recognition accuracy of our method is 73.1%. On

Fig. 7. 145 correctly detected road signs
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Fig. 8. Model database (88 images of size 96 × 96 pixels)

the average, our method can recognize a road sign in 11 ms, thus the proposed
method is fast.

Moreover, to show both the color information and the skew correction are es-
sential to the recognition accuracy. Three other versions of recognition methods
were implemented for comparison. The first one is applied to gray level image
and uses traditional cross-correlation [2] as matching function. This version is de-
noted as cross-correlation method. The other two are our method and the cross-
correlation method without performing the skew normalization as described in
Section 3. Examples of input images to our method and the cross-correlation
method with and without performing normalization are shown in Fig. 9. The
accuracy rates of our method and the other three versions are listed in Table 1.
Note that our method has higher rate (73.1%) than the cross-correlation method
does (68.3%). Thus, our method outperforms. On the other hand, no matters
for color or gray versions, those methods without performing normalization have
lower recognition rates. Thus, the skew normalization is necessary.

(a) (b) (c) (d)

Fig. 9. Four version of images used for road sign recognition. (a) Normalized color
image, (b) normalized gray image, (c) non-normalized color image, and (d) non-
normalized gray image.

Table 1. Comparison of different versions of road sign recognition methods

Method Correct recognition

Our method 106/145 (73.1%)
Cross-correlation 99/145 (68.3%)
Our method without normalization 82/145 (56.6%)
Cross-correlation without normalization 70/145 (48.3%)
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5 Conclusions

In this paper, we propose an effective and efficient method for road sign detection
and recognition even for skewed and scaled road signs in complicated scene. Color
quantization is first employed to simplify the process of road sign detection and
recognition. Verification on simple and geometric constraints and matching based
on distance maps are performed to detect and recognize road signs, respectively.
More important, normalization is adopted to handle scaled and skewed road
signs. From the experimental results, we can find that the proposed method has
high recognition accuracy and fast execution rate. For complicated scene, the
recognition accuracy is 73.1% and on the average it takes 4–50 and 11 ms for
detection and recognition, respectively.
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Abstract. A lane marking tracking method using Hough Transform and
Kalman Filtering is presented. Since the HT is a global feature extrac-
tion algorithm, it leads to a robust detection relative to noise or partial
occlusion. The Kalman filter is used to track the roadsides which are
detected in the image by this HT. The Kalman prediction step leads to
predict the road marking parameters in the next frame, so we can apply
the detection algorithm in smaller regions of interest, the computional
cost is being consequently reduced.

1 Introduction

Many lane detection systems were developed in the past. Those systems can
mainly be classified into two main domains. The first ones are using 2D image
models for modelling road edge [1,5,7]. The second approach takes into account
the vehicle motion on the road and use 3D road models, those approaches lead to
a search space reduction of features [2,3]. Our approach comes from the second
category. Most of the lane detection systems aims at improve security and/or
control at the vehicle. The application field of our method is the road engineering
and management: we want to localize the lane markings. Nowadays the road
width measurement is done by a human operator, it is quite a slow and dangerous
task. Our algorithm leads to automatic measurement of the width installed in
our road survey vehicule. Then we approach the lane detection problem from
another point of view. We see that task in a more metrological way, we want
to measure locally the width and the orientation of the lane with accuracy. To
reach this goal, a wide angle camera is used with an important tilt angle. In
such configuration, we assume that lane markings are straight lines. So we use
a simple rectilinear model for the lane marking. It makes the detection easier
because of the small number of degrees of freedom, the risk of divergence is then
more efficiently controlled. The paper is organized as follows: in the section 2, we
describe the models that are used and the relationship between 3D road model
and image model, secondly we describe the different steps in the whole process
in section 3. Finally we present some results.
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2 Models Description

Before describing in detail the algorithm, it is necessary to formalize the models
that are used. First we describe roadsides are modeled in reference frame link to
the vehicle in 2.1. Secondly we give the roadsides model in the image in 2.3 and
then we give the geometrical relationship between the road markings reference
frame and the image.

2.1 The Reference Frame

Some classical assumptions are used: the road is considered as flat, the optical
axis is colinear to the direction of movement.

Zv

Yv

Zc

Yc θc

H

Fig. 1. The Reference Frame and a resulting image

The roadside parameters, that we will estimate, are expressed in the reference
frame Rv linked to the vehicle and described in figures 1 and 2. The origin, the
xv and the yv axes are the vertical projection on the road of the optical center,
the optical axis yc and the xc axis of the camera reference system, the zv axis
is normal to the road. We can see in figure 1 a resulting image, the maximum
viewing distance is about 10 meters.

2.2 Road Markings Model

Roadsides are modeled by lines, they are parameterized by four parameters : dl

and dr the distances from respectively the left roadside and from the right one
to the center of the reference frame Rv, and ψl and ψr the angles made by the
roadsides and the yv axis (see figure 2). (dl, ψl, dr, ψr)T is the state vector X
that will be estimated.

2.3 Road Markings Image Model

The lines extraction is made by a Hough Transform [4] applied on binarized
gradient image, during that step the lines in the image are expressed in polar
coordinates:

ρ = u sin θ + v cos θ (1)

Where ρ is the perpendicular distance from the origin to the line and θ is the
angle between the line and the u axis (see figure 3).
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Ψl Ψr

rxxl

Xv

Yv

Fig. 2. The 3D Roadsides Model

2.4 Relationship Between Image and Road Markings Model

We have the following relationship, which is derived from the well-known pinhole
camera model [6]: {

x = (u−cu
f )(y cos θc +H sin θc)

y = H f cos θc−(v−cv) sin θc

(v−cv) cos θc+f sin θc

(2)

Where (x, y) represent the coordinates in the Rv reference system, (u, v)
are the pixel coordinates, H is the height of the camera, cu and cv the image
center coordinates, f the focal length in pixels, and θc the camera tilt angle (see
figure 1).

2p

p1

ρ

v

θ

u

dl
Xv

Yv

P1

P2

ψ

Fig. 3. Image to 3D reference frame transformation

When a line is detected in the image, relations (2) and (3) are used to compute
the roadsides model parameters d and ψ:{

d = x1 − x2−x1
y2−y1

x1

ψ = arctan x2−x1
y2−y1

(3)

Where p1, p2 are two points belonging to the detected line in the image and
P1 = (x1, y1, 0)T , P2 = (x2, y2, 0)T their projections in the roadsides reference
frame (see figure 3). So for each line in the image defined by ρ and θ, the
corresponding 3D parameters d and ψ can be computed.
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2.5 ROIs Creation

The roadsides extraction is made in two Regions Of Interest (ROI), one for
each side. That ROIs are computed from the predict state vector X(k + 1|k)
and his covariance matrix P (k + 1|k) provided by the Kalman filter prediction
step described in 3.2. We consider one roadside prediction for example (dl(k +
1|k)), ψl(k+ 1|k)) noted (dl, ψl) and the standard deviation σdl

and σψl
on that

two parameters extracted from the predicted covariance matrix P (k + 1|k). For
that roadside, we define a region in Rv, delimited (see figure 4) by two lines
parametrized by two couples (4), where α and β are used to tune the ROIs sizes:{

(dl + ασdl
, ψl + βσψl

)
(dl − ασdl

, ψl − βσψl
) (4)

Ψl

ld ldσl+dldσ

lΨ Ψlσ+lΨ Ψlσ−

Xv

Yv

dl−

Rv

Fig. 4. ROI definition

The back projection of this region, by using the inverse computation of section
2.4, corresponds to an area in the Hough Space. The whole couple (ρ, θ) in this
area corresponds to a ROI in the image. The roadside extraction process (see
section 3.1) is computed in this ROI.

3 A Combined Kalman Filter and Hough Transform

3.1 Road Markings Extraction in ROI

The lane marking extraction is computed in the two ROIs one for each lane
marking. We present the method for one ROIs, the process is the same for the
other one.

Edge Points Extraction. Due to the small distance of view, the road edges
are mainly vertical. So a horizontal gradient is sufficient for the extraction of
road marking edges. Then we convolve ROIs with a 3*3 horizontal sobel filter.
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Lines Detection Using Hough Transform. The Hough Transform (HT)
is a very powerful global pattern detection method. The standard HT detects
patterns that forms straight lines, but it can be generalized to a large number
of patterns ( curves , circles, ...). The idea is that the HT changes the feature
extraction problem to an easier peak detection problem.

Each line in an image can be parametrized in polar coordinate ( see relation
1 and figure 3 ). The whole couple of (ρ, θ) is named Hough Space or Parameters
Space. The HT algorithm can be seen as a voting process, each non null point in
the thresholded gradient image belonging to a line votes for all possible patterns
that pass through that point. Votes are collected in a [ρ, θ] accumulator array,
the maximum of this array corresponds to the most salient line. The interest
of the HT is due to the fact that it is a global feature extractor which is very
robust to noise or discontinuities. Then that operator appears to be ideal for
localizing road markings that are intermittent or partially occluded. A HT is
applied independently in each ROI, the way to compute this ROI is described in
2.5. Once the roadsides are detected in the image, we compute the 3D parameters
with the process described in section 2.4.

3.2 Parameters Estimation with an Extented Kalman Filter (EKF)

Using an EKF allows to estimate recursively the road parameters and the cor-
responding covariance matrix by taking into account the vehicle motion. The
whole algorithm is detailed in figure 6.

Road Parameters Evolution Model. The parameters for the next image
can be easily estimated by a Kalman filter using vehicle motion. The parameters
evolution is given by the following relation:

X(k + 1|k) = f(X(k|k), U(k)) (5)

⎧⎪⎪⎨⎪⎪⎩
dl(k + 1|k) = dl(k|k) + δs tanψl(k|k)
ψl(k + 1|k) = ψl(k|k)
dr(k + 1|k) = dr(k|k) + δs tanψr(k|k)
ψr(k + 1|k) = ψr(k|k)

(6)

where X(k + 1|k) is the state vector prediction for the k + 1 image, X(k|k) is
the current state and δs is the travelled distance. In fact this relation models a
simple translation of the vehicle along the yv axis (see figure 5).

The state prediction is associated to the covariance prediction corresponding
to this state:

P (k + 1|k) = JX(k)P (k/k)JT
X(k) +Q (7)

Where P (k + 1|k) is the predict covariance matrix, P (k|k) is the current
covariance matrix, Q is the process noise covariance matrix, and JX(k) is the
jacobian of f (see (5)).
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xl(k+1) xr(k+1)
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Fig. 5. Roadsides parameters evolution
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ROIs Updating. Thanks to the prediction of the state vector and his co-
variance matrix we have an apriori knowledge of the roadside location. So the
roadside extraction process describe in section 3.1 is done in two ROIs defined
by X(k+1|k) and P (k+1|k), the ROIs processing is described in section 2.5. So
the Kalman filter prediction step leads to reduction of the computational cost
of the roadside extraction in the images. Then road markings are extracted in
the ROIs and a road parameter measurement X̃ = (d̃l, ψ̃l, d̃r, ψ̃r)T is computed.
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Kalman Filter Updating. This measurement is used for updating the Kalman
filter. This phase consists in calculating a new vector X(k + 1|k+ 1) and a new
covariance matrix P (k + 1|k + 1) deduced from the measurement X̃ and the
previous state X(k + 1|k) and P (k + 1|k):{

X(k + 1|k + 1) = X(k + 1|k) +K(k + 1)(X̃ − CX(k + 1|k))
P (k + 1|k + 1) = (I4 −K(k + 1)C)P (k + 1|k) (8)

– K(k + 1) is the Kalman gain. It is defined as follows:

K(k + 1) = P (k + 1|k)CT [CP (k + 1|k)CT +Q]−1 (9)

– C is the measurement matrix:

X̃ = CX = I4X (10)

4 Results

We have applied our algorithm to a 1900 image sequence. Figure 7 shows typical
images with surimposed detected lines.

Fig. 7. Results
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Fig. 8. Estimated width on a 100 meters road with a constant width

We have also tested our algorithm on a 100 meters road with a nearly con-
stant width (3.6m)(see figure 8). The lane width was computed using results
of the algorithm. We obtain a coarse standard deviation on algorithm width
measurement σ = 0.2m (5% of the measure).

The main drawback is a wrong detection problem. The very simple low level
feature extraction (horizontal sobel filter) leads to the detection of:

– edges that don’t belong to a road marking,
– dash road marking instead of continuous marking when the centerline is

composed by a continous and a dash marking.
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5 Conclusion and Future Works

We described in this paper an algorithm which succeeds in locating roadsides
using an onboard camera. It has the ability to estimate the roadside location and
the orientation with respect to the camera. Those information are very useful
for road engineering applications. Future work will be mainly focused on:

– a more reliable low level feature extraction to get rid of wrong detections,
– using proprioceptive information (gyrometer) in the Kalman evolution

model,
– coupling algorithm with a GPS receiver to locate the road markings in a

global reference frame.
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Abstract. Conventional edge detectors are not very useful for generat-
ing an edge map to be used in the search of a concrete object with de-
formable models or genetic algorithms. In this work, a selective color edge
detector is presented, which is able to obtain the edges in the image and
determine whether or not those edges are originated in a concrete object.
The system is based on a multilayer perceptron neural network, which
classifies the edges previously detected by the multidimensional gradient
(color images), and is trained using some images of the searched object
whose edges are known. The method has been successfully applied to
bovine livestock images, obtaining edge maps to be used for a boundary
extraction with genetic algorithms technique.

1 Introduction

Edge detection in both grayscale and color images is a well-known operation in
digital image analysis. Edges define the limits of the objects, so they can be used
to interpret the scene. However, when outdoors-taken images are considered,
there are usually many secondary objects and textures in the background, thus
generating many edges in the image. This is an important drawback when you
are trying to detect a concrete object in the foreground of the image, considering
its boundary. Particularly, when you are using boundary extraction techniques
based on genetic algorithms search [1,2,3] and deformable models [4,5], the pro-
cess is driven by a potential image, obtained by an edge detection, and it is
very important for the performance of those boundary extractors that the edge
maps do not contain many more edges than those corresponding to the searched
object.

In this work, a selective color edge detector is defined, similar to that de-
scribed in [6] for grayscale images. This system is based on a multilayer per-
ceptron neural network, that determines whether or not an given edge of an
edge map obtained from the color image using a conventional method (in our
case the multidimensional gradient defined by Cumani [7]) is originated in the
searched object. Such a classification is carried out considering some parame-
ters that describe two rectangular windows at both sides of the edge pixel, in
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the direction of the gradient (see fig. 2). Particularly, simple statistical param-
eters (mean and variance) and PCA parameters has been used to describe the
windows, comparing the results obtained with both systems.

The method has been used as a part of a boundary detection system for cattle
images, in which genetic algorithms and deformable models search is applied [8].
The final aim of this boundary detection is to extract the contour of the animal
in the picture, to be used later as the base of a morphological assessment system.

In the following section the proposed selective edge detector is described.
Later, in sections 3 and 4, the input parameters for the classifier and the training
of the neural network are considered. Finally, in section 5, results from our
concrete application of the method are presented, while in section 6 there is a
brief discussion about the method and its possible improvements.

2 Selective Edge Detector

As described in the introduction, our selective edge detector for color images is
based on a multidimensional gradient calculation and a neural network classi-
fier. Although several previous papers can be found regarding the use of neural
networks techniques applied to edge detection (e.g. [9]), they in general focus
on the enhancement step, trying to obtain a good detector in a classical sense
(absence of false positives and false negatives, and precision in the location of
the edge pixels). However, it is not our interest to detect edges by means of the
neural network, but to select those that serve for the subsequent processing step,
once detected.

In fig. 1 an outline of the system is represented, whose operation can be
described in four steps:

Fig. 1. Outline of the selective edge detector proposed. The image and the directions
map of the multidimensional gradient appear as inputs to the NN classifier because
they are needed to define the windows and calculate the parameters.
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1. Calculation of the multidimensional gradient: In this step we include
the two first stages of a conventional edge detector: smoothing and enhance-
ment [10]. As we are dealing with color images, the multidimensional gradient
defined by Cumani [7] has been used, considering the CIELAB color space.
As a result we obtain the module of the gradient, that must be followed by
a nonmaximum suppressor, with which best–located one–pixel–width edges
are obtained. Besides, we obtain the directions (of the gradient) map, which
is used later.

2. Extraction of a maximum edge map: Since there could be, a priori, weak
and strong edges in the contour we wish to extract, we are interested in clas-
sifying all those pixels that are detected as edge, whatever their strength.
Thus, the pixels to be classified will be determined by thresholding the non-
maximum suppressor output image N(m,n), using for the threshold a low
value. This is called maximum edge map E(m,n). In our application, we
used a threshold low enough to permit at least 95% of the pixels of N(m,n)
without zero value to be considered as edges, rejecting the 5 % of weaker de-
tected ones, which likely correspond to noise introduced in the image capture
process. An example is shown in fig. 3(b).

3. NN processing: Once the edge pixels to be classified are determined, a
set of P parameters (see section 3) is calculated for each one, related to
its position and the color profile around it in the original image. Those
parameters are used as inputs for a multilayer perceptron, with one hidden
layer and two neurons at the output, which provides the membership to each
class: yc(m,n) for correct edges and ye(m,n) for erroneous ones. The grey-
level image N ′(m,n) has then a value proportional to yc(m,n)−ye(m,n) for
those pixels detected as edges, and 0 for the rest. Therefore, pixels with larger
values correspond with correct edges, and vice versa, so by the thresholding
process, the “more correct” edges will be obtained. To carry out the training
of the selector, K images Ik(m,n) with k ∈ {1, · · · ,K} (where Ik(m,n) ∈
[0, 1]) are used, for which their corresponding reference edge maps Rk(m,n)
are available. In those maps only the edges corresponding to the object can
be found (Rk(m,n) = 1 for edge pixels, and 0 otherwise)

4. Final thresholding: This stage, placed outside the selector (see fig. 1), is
responsible for pointing out as edges those pixels of N ′(m,n) with larger
intensity (correct edges). For the threshold, a value such that the number
of edge pixels in M(m,n) is similar to the average number of edges in the
reference images Rk(m,n) is proposed.

Regarding this process, two aspects of the neural network classifier require
further explanation: parameters used as input and the training process.

3 Input Parameters for the Classifier

In our previous paper [6] we applied a selector with a similar structure to grey-
scale images, differing in the first step (we did not need a multidimensional
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Fig. 2. In this figure, examples of edge pixels (white) and the windows of 7 × 7 size
in the direction orthogonal to the edge (black) are presented. Observe that one of the
windows is always located within the object and has a uniform color.

gradient) and in the parameters used to characterize the edges. The system
worked quite well, so we thought that including color information would improve
significantly the performance.

Imagine that the searched object has a uniform color. Then, a good method
to identify whether or not an edge belongs to the object consist of analyzing
the color profile in the direction orthogonal to the edge, where two regions with
different colors must be observed: on one side the area corresponding to the
object, and on the other, the area corresponding to background. For that reason,
we propose to define two rectangular windows in the direction orthogonal to the
edge, located on each side of it (fig. 2), and characterize those windows with a
set of parameters. In this work two sets of parameters has been considered:

1. Simple statistical parameters: mean and variance. As we are processing color
images, we calculate mean and variance for each color component, so we have
a total of 12 parameters (3 components × 2 windows × 2 parameters) to
describe an edge pixel. This parameters were used with relative success for
grayscale images in [6].

2. PCA calculated parameters. In order to obtain the most significative param-
eters which describe the windows in a concrete problem, we propose to use
a technique based on PCA. Considering a set of K images representative of
our problem (PCA training set, which can be the same set of images used
for the training of the selector), we can divide the process in several steps:
(a) First, we have to obtain a great number of windows, corresponding to

the pixels detected as edges in the maximum edge maps of the training
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images. There are many of those pixels in each image (see fig. 3(b)),
so the pixels to be considered must be selected. That selection can be
made randomly, but most of the edge pixels will be detected for the
background and not for the object we are trying to find. In order to
have a representative number of windows originated in edge pixels of the
object, we propose to guarantee that a given percentage of the windows
are obtained from those pixels.

(b) The calculated windows can be converted in vectors by placing consecu-
tively the rows for L, a and b components of the color space. With those
vectors, the PCA can be calculated.

(c) In the new generated basis, we retain only the Q most significative vec-
tors. Therefore, we keep the matrix with the first Q eigenvectors because
they are needed later to calculate the first components of a given vector
in the new basis.

(d) With that information, we can calculate the first Q components in that
basis for any window obtained from an edge pixel in any image (not
necessarily in the training set). Therefore, we are describing each edge
pixel with 2Q parameters (notice that we have 2 windows per edge pixel).

Furthermore, in those applications where the object of interest has a well–
defined shape and a position that varies within certain limits, it is advantageous
to use also as parameters the position of the pixel and the direction orthogonal
to the edge, since finding edges of the object around certain positions and with
a concrete direction should be expected.

4 Training of the NN

To train the neural network, prototypes for each of the two proposed clases
are needed. Considering that we are classifying those pixels detected as edges,
the prototypes extraction process for each training image will consist of three
steps. First, for the image Ik(m,n) a maximum edge map is obtained. Later, the
set PC,k is defined which contains the k-th image pixels detected as edges that
belong to the considered object (prototypes for the class of correct edges), and
the set PE,k which contains the pixels detected as edges that do not belong to
the object (prototypes for the class of erroneous edges). Finally, for each pixel
of both sets, the parameters are calculated, to be used in the training of the
network.

Once obtained the prototypes from all the K images, the whole set of pro-
totypes is split into three subsets: training, validation and test, and the process
starts training one perceptron with very few neurons in the hidden layer. The
training is carried out using the training subset and the RPROP algorithm de-
scribed in [11], and stops when the number of misclassifications obtained over
the validation set goes through a minimum. Later, we repeat this process by in-
creasing the network size and we choose the new configuration as optimal if the
number of misclassifications over the validation set is lower than the previous
one.
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5 Experiments and Results

The proposed selective edge detector was tested using outdoors-taken color im-
ages of bovine livestock in lateral position. All the animals were of the same
breed, which has a uniform white color, and our aim was to obtain only the
edges of the animal in the picture. From our whole database of images, K = 45
were selected and their references (positions of the edges of the animal) were
generated by hand. Those 45 images were used to obtain examples for the PCA
calculation, and also were used in the training process of the neural network,
with both sets of parameters: simple statistical and PCA generated.

In order to calculate the parameters, we decided to work with windows of
7×7 pixels size (in 640×480 images). To obtain the PCA, 10.000 edge pixels were
selected randomly from the maximum edge maps of the 45 images, guaranteeing
that at least a 20 % of them were generated in the animal boundary. Therefore,
we considered 20.000 vectors of 147 elements (7 × 7 = 49 values × 3 color
components). After the calculations, we retained the first Q = 10 eigenvectors
of the covariance matrix to represent the data, thus considering a total of 23
parameters as inputs to the neural network (including the three parameters
corresponding to the position of the pixel and the direction of the gradient). In
the case of the mean and the variance, the number of total parameters was 15.

Regarding the training of the network (for both types of parameters), the 45
images were divided into three subsets: the prototypes obtained from 27 were
used for training, those from 9 for validation and those from the other 9 for test.
From all the generated prototypes, the training of the network was carried out
using 60.000 from the training subset and 20.000 from the validation, uniformly
distributed between classes. Later, the performance of the trained network was
verified with 20.000 prototypes corresponding to the test subset, that were not
involved in the training process.

Using this sets, networks were trained with a number of neurons in the hidden
layer between 25 and 70, obtaining the best results with 50 neurons for the
simple statistical parameters, and 65 for the PCA-generated parameters. In each
configuration, more than 90 % of success rates where obtained for the class
correct edges, considering the test subset. Also, more than 80 % was obtained
for the class erroneous edges.

Once the NN was trained, the selective edge detector was applied to the 9
images of the test subset, with three different configurations: without edges se-
lector, with the selector using simple statistical parameters, and with the selector
using PCA parameters. In order to compare the effectiveness of those configu-
rations, the figure of merit proposed in [6] was used. The first remarkable result
is that, in all the cases (with edges selector), the percentage of improvement
regarding the edge detector without selector is larger than 100 %, quite better
improvements than those obtained with grayscale images [6]. Also, results for the
PCA parameters are slightly better than those for simple statistical parameters
(more than 10 % in some cases).

Regarding the computational cost, this method obviously demands more re-
sources than conventional edge detectors. However, considering that the NN are
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(a) (b)

(c) (d)

Fig. 3. In this figure, an example of bovine livestock image is presented, along with
the maximum edge map (b) and the results obtained using the edge detector: (c) with
selector (PCA parameters) and (d) without selector

not very large, and the parameters that describe the windows can be calculated
easily, the increase in processing time is not critical. For our experiments, the
process took always about 1 minute and a half.

Finally, in fig. 3(a) an example is presented, where the outputs of the detector,
along with the original image, are shown. As can be seen, while in the results
without selector many edges are observed due to the objects in the background,
they disappear almost completely when the selector is applied. More examples
of the application of the selective edge detector to images of bovine livestock,
including other positions, can be consulted in [12]

6 Conclusions

In this work, a selective color edge detector has been presented that can be used
to obtain, from a concrete image, only those edges that has learned in its training
process, discarding the rest. This kind of system is very useful to obtain edge
maps to be used later to drive a deformable models or genetic algorithms contour
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search. The results of applying the system to bovine livestock images have shown
that the method is quite effective, and performs better when considering color
images, and when the windows at both sides of the edge pixels are described
with many parameters.

The main drawback of this edge detector is the requirement of having refer-
ence images for a training set of images, needed to generate prototypes for the
supervised training of the neural classifier and for the generation of the PCA to
determine the parameters which describe the windows. Nevertheless, if we are
using parametric shape models for the subsequent boundary extraction, as PDM
[1,13], the labeling of the points (which could be obtained with semi-automatic
methods) can be used to define the reference images too, linking the points with
lines. That was the case in our concrete application.
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Abstract. How does the visual cortex extract perspective information
from textured surfaces? To answer this question, we propose a biologi-
cally plausible algorithm based on a simplified model of the visual pro-
cessing. First, new log-normal filters are presented in replacement of
the classical Gabor filters. Particularly, these filters are separable in fre-
quency and orientation and this characteristic is used to derive a robust
method to estimate the local mean frequency in the image. Based on
this new approach, a local decomposition of the image into patches, af-
ter a retinal pre-treatment, leads to the estimation of the local frequency
variation all over the surface. The analytical relation between the local
frequency and the geometrical parameters of the surface, under perspec-
tive projection, is derived and finally allows to solve the so-called problem
of recovering the shape from the texture. The accuracy of the method is
evaluated and discussed on different kind of textures, both regular and
irregular, and also on natural scenes.

1 Extraction of Perspective in Natural Scenes

How does the visual system extract a perspective information from natural scenes
images? Based on the actual knowledge on the processing of the visual system,
we present an algorithm which is dedicated to the extraction of the orientation
and the shape of a surface which supports a texture. A texture is a pattern
distributed more or less regularly on a surface and having different frequency
and orientation components (figure 1).

Fig. 1. Examples of studied textures: regular grid, texture from Super and al ([1]),
meshes of a sweater from Clerc and al ([2]), sunflowers field

Since the beginning of the 90’s, the use of the spectral information has con-
ducted to several efficient algorithms of extraction of the shape from the texture.
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Some methods [3], [4] are able to deal with regular textures, exhibiting at least
two discret orientation components; other methods [1], [2], [5] do not make any
assumption on the spectral components and manage to obtain results on irregu-
lar textures. This last kind of texture is difficult to analyse due to the presence
of important non-sationnarities in the image (for example in the sunflowers field,
the change in size of the flowers or the presence of a person create local non-
stationnarities).

t=45°   s=70° t=44.56°   s=74.11°

Fig. 2. Example of result obtained from our approach on one texture of the figure 1; on
the left, the true angles (t: tilt, s: slant) are indicated and on the image the estimated
normal to the plane is drawn; on the right the estimated angles are indicated and the
image represents the equivalent inclinated grid

Our aim is to develop a model based on the biological visual processing. The
main mechanisms of the primary visual system are now well identified [6]. The
retina performs a set of pre-treatments leading to the separation between the
shading and the texture information [7]. Each region of the space is analysed
through a large set of receptive fields, overlapping each other. The signal is then
transmitted to the primary visual area V1, where a set of simple and complex
cells is associated to each receptive field and perform a sampling of the signal
according to the frequencies and the orientations. These cells are organised into
macro-columns of local orientation and frequency components. The response of
the complex cells is classically modelised as a gabor-like bandpass filtering of the
energy spectrum associated to the region of the studied visual space.

The projection of an image from the real world on a surface induces affine de-
formations (gradients) of the texture covering the surface. Even in static monoc-
ular vision the system is able to recover the three-dimensionnal characteristics
of the image. In this paper a new technique allowing to recover the shape from
the texture gradients analysis, based on the presented simplified model of the
visual system, is described. It is based on the decomposition of an homogeneous
texture into a set of local patches (similarly to the V1 macro-columns organisa-
tion). Section 2 presents a new kind of log-normal filters, better adapted than
the Gabor filters to the simulation of the cortical cells. They are used to realise
the spectrum sampling. These filters allow to develop a technique to estimate
the local frequency which takes into account the whole set of frequency scales
available after the cortical filtering. Section 3 presents the model of perspec-
tive projection and the relation between the local frequency variation and the
geometrical parameters of the surface. Section 4 describes the final obtained al-
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gorithm and show different results on textures, both regular and irregular, and
on natural scenes.

2 Log-Normal Filters and Local Frequency Estimation

Gabor filters are usually used to modelise the cortical cells. Their main advantage
is to be localised both in space and frequency but they are not separable in
frequency and orientation. In addition they are not symetrical when expressed
on a log-polar scale and they have a non-null transmission at f = 0 which can
lead to spurious responses in low frequencies ([8]). We present here new log-
normal filters which are better suited to our problem and represent a better
approximation of the cortical cells response.

2.1 Log-Normal Filters

The expression of these new filters is based on the log-normal law:
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where Gi,j is the transfert function of the filter, fi, the central frequency, θj ,
the central orientation , σr, the frequency bandwidth, n controls the orien-
tation bandwidth. A is a normalisation factor such as ||Gi,j(f, θ)||2 = 1 and
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. Finally Gr and Gθ represent respectively the radial and the

angular component of the filter; these filters are then separable in frequency and
orientation.

First row of the figure 3 presents log-normal filters in cartesian and log-polar
coordinates. Contrary to the Gabor filters, log-normal filters are insensitive to
the continuous component whatever the chosen frequency bandwidth. These
filters are assymetrical in log-polar coordinates, similarly to the responses of
the cortical complex cells ([6]). Second row of figure 3 presents a log-normal
filters bank. It is possible to observe the good coverage and the regularity of the
sampling, specially in log-polar coordinates.

2.2 Estimation of Mean Local Frequency

In this section we present a method allowing to estimate the mean frequency at a
given position in the image. Let’s take the frequency component of a log-normal
filter at the central frequency fi:
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Similarly to Knutsson and al [9], the ratio between two adjacent filters tuned at
fi and fi+1 is expressed by:
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[(ln(f/fi+1)2 − (ln(f/fi))2]
)

=
(

f/
√

fifi+1

) ln(fi+1/fi)
σ2

r
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Fig. 3. First row: log-normal filters, left: 3D representation; middle and right: filter and
contours representing 50% and 90% of the maximum energy in cartesian coordinates
on the frequency plane and in log-polar coordinates. Second row: log-normal filters
bank, left: contours of the filters of the bank; middle and right: filters bank in cartesian
coordinates on the fequency plane and in log-polar coordinates.

Taking σ2
r = ln(fi+1/fi), we finally obtain:

G2
i+1(f) =

f√
fifi+1

G2
i (f) (2)

So as to extract an information on the scale independantly of the local orien-
tations, we consider frequency tuned band filters (FBF) which result from the
summation over all the orientations j of the responses of the filters tuned at the
same central frequency fi on the energy spectrum of the image S(f, θ):

Ci =
∫

f

G2
i (f)

∫
θ

S(f, θ)
∑

j

G2
j (θ)fdfdθ thus using (2)

Ci+1

Ci
=

1√
fifi+1

< f > (3)

The ratio between two adjacent FBF gives equation 3 and represents an es-
timation of the mean local frequency for the band centered at the ith central
frequency of the filters bank (narrow band estimation). Finally summing on the
whole set of estimations (wide band estimation) we get:

< f >=
∑

i

Ci∑
i Ci

< f >i (4)

It has to be noticed that this method takes into account the different estima-
tions over the whole set of available central frequencies which makes it robust
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to scale variation between the different studied textures. Moreover this method
is based on the separation between the frequency and the angular information
which allows to independantly use the frequency information without any as-
sumption nor perturbation due to the orientation information contained in the
analysed texture. This method is simple and efficient as it is only based on the
first order combination of different filters and can be well identified to a feedfor-
ward process in the early visual system which is not the case with other similar
methods such as [1] or [5].

3 Geometry and Estimation of the Orientation of Plane
Surfaces

3.1 Perspective Projection

We consider a perspective projection model for the transformation from the
three-dimensionnal world to the bi-dimensionnal plane of the image. Figure 4
presents the coordinates system of the projection model. (xw , yw, zw) represents
the world coordinates, (xs, ys), the surface coordinates and (xi, yi), the image
coordinates. d (resp. zw0) represents the image coordinate of the image (resp.
of the surface) on the zw axis. τ (tilt) represents the angle between xi and the
projection of the normal zs at the surface on the image plane. σ (slant) is the
angle between zw and the normal of the surface at zw0. Its value falls between
0 and π/2.

Ys

Xs

n

Xi

Yi

SurfaceImage

Zw0Zw

Xw

Yw

tilt slant

Fig. 4. Model of the perspective projection

The relation between the coordinates (xs,ys) of the surface and the coordi-
nates (xi,yi) of the image is expressed by (see also [1]):

[
xs

ys

]
=

[
(cos(σ) 0

0 1

] [
(cos(τ ) sin(τ )
−sin(τ ) cos(τ )

]
ai

[
xi

yi

]
=

A

ai

[
xi

yi

]
(5)

with ai =
−sin(σ)sin(τ )xi + cos(τ )sin(σ)yi + dcos(σ)

d + zw0
corresponding to a zoom

factor according to the spatial position (xi, yi), noted xi ( similarly we note
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fi the vector (fix, fiy)). Around the optical axis, the energy spectrum of the
image,Ii(fi) ,is associated to the surface one, Is(fs), by:

Ii(fi) =
∫
xi

is(xs)e(−j2πxt
ifi)dxi =

∫
fs

Is(fs)
∫
xi

e
j2πxt

i(
At

ai
fs−fi)

dxidfs

Supposing a constant illumination with the projection, we obtain ii(xi) = is(xs)

with xs =
A

ai
xi. Taking ai constant within a limited region centered around xi,

the change of variable fs → aiA
−tfi gives:

Ii(fi, xi) =
∫
fs

Is(fs)δ(
At

ai
fs − fi)dfs thus fi =

At

ai
fs (6)

Equation 6 gives the relation between the frequency fi of the image and the
frequency fs of the surface (first order approximation).

3.2 Estimation of the Orientation of Plane Surfaces

So as to link the frequency variation with the orientation of the surface covered
by an homogeneous texture, the presented method only requires a local station-
narity assumption (weak stationnarity). The frequency variation on the image is
then considered as to be uniquely due to the inclination in depth of the surface.
From equation 6, the local frequency variation of the image fi is expressed by:

dfi = −∇taidx

a2
i

Atfs = −∇taidx

ai
fi (7)

In polar coordinates, the image frequency can be expressed by
fi = vi[cos(ϕi) sin(ϕi)]t. Equation 7 gives:

dfi = dvi[cos(ϕi) sin(ϕi)]t + vi[−sin(ϕi) cos(ϕi)]tdϕi

= −∇taidx

ai
vi[cos(ϕi) sin(ϕi)]t (8)

If we consider the gradient dfi following the direction of ϕi, multiplying by
[cos(ϕi) sin(ϕi)]t Equation 8 becomes:

dvi

vi
= −∇taidx

ai
thus dln(vi) =

−sin(σ)
ai

[−sin(τ ) cos(τ )][dxidyi]t

We finally deduce that, for an homogeneous and locally stationnary texture,
the tilt angle corresponds to the direction of the frequency gradient and the
slant angle is proportionnal to the gradient norm of the log-frequencies with the
relation:

tan(σ) =
(

d

d + zw0
1

|dln(vi)|
− ([−sin(τ ) cos(τ )][xiyi]t/d)

)−1

(9)
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4 Final Algorithm and Results

The final algorithm can be devided into the following steps:

1. Retinal prefiltering of the image and decomposition into patches (for exam-
ple: patch size of 96X96 pixels with an overlapping step of 8 pixels).

2. Extraction of the log-normal filters coefficients (for example: using a 7X7
filters bank), normalisation by simaler orientation band and summation over
the whole set of orientations obtaining the FBF.

3. Combination of the responses using equation 3 and final combination with
equation 4 so as to obtain an estimation of the local mean frequency over
the whole image.

4. Computation of the local frequency gradients, extraction of tilt and slant
angles and final averaging.

Figure 5 presents the results obtained on different textures and on natural
scenes. We obtain a precision nearly to 3o for the tilt angle and to 5o for the
slant angle which is comparable to the precision obtained by other methods such
as [1] and [5]. The method gives also robust estimations on irregular textures.

t=91.6°   s=14.59° t=93.03°   s=20.13° t=92.31°   s=25.95°

t=91.62°   s=29.6° t=155.49°   s=30.31° t=85.53°   s=25.03°

t=87.08°   s=34.72° t=87.3°   s=28.06° t=−72.01°   s=41.33°

Fig. 5. Results obtained on regular and irregular textures and on natural scenes; the
presentation is the same as figure 2
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5 Conclusions

In this paper we have presented a new kind of log-normal filters which are sepa-
rable allowing to obtain a simple, efficient and robust method of the estimation
of the local mean frequency in an image. A complete algorithm performing the
analysis of the shape of a surface using the texture information has been pre-
sented and evaluated on different kind of textures, both regular and irregular,
and on natural scenes. The obtained precision is comparable to similar but more
complex methods and can be identified to an early processing in the visual sys-
tem. This precision can be improved using robust regularisation techniques.
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Abstract. A new method of normalization is used for the construc-
tion of the affine moment invariants. The affine transform is decomposed
into translation, scaling, stretching, two rotations and mirror reflection.
The object is successively normalized to these elementary transforms by
means of low order moments. After normalization, other moments of
normalized object can be used as affine invariant features of the origi-
nal object. We pay special attention to the normalization of symmetric
objects.

1 Introduction

Affine moment invariants as features for object recognition have been studied
for many years. They were introduced independently by Reiss [1] and Flusser
and Suk [2], who published its explicit forms and proved their applicability in
simple recognition tasks. In their work, they decomposed the affine transform
into translation, anisotropic scaling and two skews. The systems of invariants
were derived by direct solving Cayley-Aronhold differential equation [2], by ten-
sor method [3] or, equivalently, by graph method [4]). The invariants are in form
of polynomials of moments.

The normalization performs an alternative approach to deriving invariants.
First, the object is brought into certain ”normalized” or ”canonical” position,
which is independent of the actual position of the original object. In this way, the
influence of affine transformation is eliminated. Since the normalized position
is the same for all objects differing from each other just by affine transform,
the moments of normalized object are in fact affine invariants of the original
one. We emphasize that no actual spatial transformation of the original object
is necessary. Such a transformation would slow down the process and would
introduce resampling errors. Instead, the moments of normalized objects can be
calculated directly from the original one using the normalization constraints.
These constraints are often formulated by means of low-order moments.

The idea of normalization was successfully used in [5], but only normaliza-
tion to rotation was considered in that paper. Affine normalization was firstly
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described in [6], where two different affine decompositions were used (XSR de-
composition, i.e. skew, anisotropic scaling and rotation , and XYS decomposi-
tion, i.e. two skews and anisotropic scaling). However, this approach leads to
some ambiguities, which were studied in [7] in detail.

Pei and Lin [8] presented a method similar to ours. Their paper contains
detailed derivation of the normalization to the first rotation and to anisotropic
scaling, but they do not consider the problems with the symmetric objects and
with the mirror reflection. This is a serious weakness because in many applica-
tions we have to classify man-made or specific natural objects which are very
often symmetrical. Since many moments of symmetrical objects are zero, the
normalization constraints may be not well defined.

Shen and Ip [9] used so called generalized complex moments computed in
polar coordinates and analyzed their behavior in recognition of symmetrical
objects. Heikkila [10] used Cholesky factorization of the second order moment
matrix to define the normalization constraints.

We present a new, simpler way of normalization to the affine transformation,
which is based both on traditional geometric as well as complex moments. The
method is well defined also for objects having n-fold rotation symmetry, which
is its main advantage.

2 Normalization of the Image with Respect to the Affine
Transform

The affine transform
x′ = a0 + a1x + a2y,
y′ = b0 + b1x + b2y

(1)

can be decomposed into six simple one-parameter transforms and one non-
parameter

Horizontal and vertical translation : Scaling : First rotation :
u = x− x0 u = x u = ωx u = x cosα− y sinα
v = y v = y − y0 v = ωy v = x sinα + y cosα

Stretching : Second rotation : Mirror reflection :
u = δx u = x cos ρ− y sin ρ u = x
v = 1

δ y v = x sin ρ+ y cos ρ v = ±y.
(2)

Any function F of moments is invariant under these seven transformations
if and only if it is invariant under the general affine transformation (1). The
ordering of these one-parameter transforms can be changed, but the stretching
must be between two rotations.

Each of these transforms imposes one constraint on the invariants. Traditional
approach to the problem of affine invariants consists on expressing constraints
in form of equations. Affine invariants are then obtained as their solutions.
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Here we bring the object into normalized position. The parameters of the
”normalization transforms” can be calculated by means of some object mo-
ments. Below we show how to normalize the object with respect to all seven
one-parameter transforms.

2.1 Normalization to Translation and Scaling

We can easily normalize the image with respect to translation just by shifting it
such that its centroid

xc =
m10

m00
, yc =

m01

m00
. (3)

is zero. Practically, this is ensured by using central moments

μpq =

∞∫
−∞

∞∫
−∞

(x− xc)p(y − yc)qf(x, y)dxdy, (4)

instead of geometric moments

mpq =

∞∫
−∞

∞∫
−∞

xpyqf(x, y)dxdy. (5)

The normalization to the scaling is also simple. The scaling parameter ω can
be recovered from μ00

ω = 1/
√
μ00. (6)

The scale-normalized moments are then defined as

νpq = μpq/μ
p+q+2

2
00 . (7)

2.2 Normalization to the First Rotation and Stretching

Normalization to the rotation can advantageously be done by complex moments.
Complex moment is defined as

cpq =
∫ ∞

−∞

∫ ∞

−∞
(x + iy)p(x− iy)qf(x, y)dxdy , (8)

where i denotes imaginary unit. Each complex moment can be expressed in terms
of geometric moments mpq as

cpq =
p∑

k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)q−j · ip+q−k−j ·mk+j,p+q−k−j . (9)

We can use normalized complex moments computed from the normalized mo-
ments νpq to get translation and scaling invariance.
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When rotating the image, its complex moments preserve their magnitudes
while their phases are shifted. More precisely,

c′pq = ei(p−q)αcpq, (10)

where α is the rotation angle measured counterclockwise.
The simplest normalization constraint is to require c′pq to be real and positive.

This is always possible to achieve (provided that cpq �= 0) by rotating the image
by angle α

α = − 1
p− q

arctan
(
�(cpq)
�(cpq)

)
, (11)

where �(cpq) and �(cpq) denote real and imaginary parts of cpq, respectively.
Generally, any non-zero cpq can be used for this kind of normalization. Be-

cause of stability, we try to keep its order as low as possible. Since c10 was already
used for translation normalization, the lowest moment we can employ is c20. It
leads to well known ”principal axes normalization”, where the angle is given as

α = −1
2

arctan
(
�(c20)
�(c20)

)
= −1

2
arctan

(
2μ11

μ20 − μ02

)
. (12)

If the c20 is zero, we consider the object is already normalized and set α = 0.
Normalization to stretching can be done by imposing an additional constraint

on second order moments. We require that μ′
20 = μ′

02. The corresponding nor-
malizing coefficient δ is then given as

δ =

√
μ20 + μ02 −

√
(μ20 − μ02)2 + 4μ2

11

2
√
μ20μ02 − μ2

11

(13)

(this is well defined because μ20μ02 − μ2
11 is always non-zero for non-degenerate

2-D objects).
After this normalization the complex moment c′20 becomes zero and cannot

be further used for another normalization.
The moments of the normalized image to the first rotation and stretching

can be computed from the moments of the original by means of (9) and (10) as

μ′
pq = δp−q

p∑
k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)k sinp−k+j α cosq+k−j α νk+j,p+q−k−j . (14)

2.3 Normalization to the Second Rotation

Normalization to the second rotation is a critical step, namely for symmetric
objects. We propose a normalization by one complex moment, which must be
of course nonzero. However, many moments of symmetric objects equal zero.
The selection of the normalizing moment must be done very carefully, especially
in a discrete case where some moments which should be theoretically zero may
appear in certain positions of the object as nonzero because of quantization
effect.



104 T. Suk and J. Flusser

Let us consider an object having n–fold rotation symmetry. Then all its
complex moments with non-integer (p − q)/n equal zero. To prove this, let us
rotate the object around its origin by 2π/n. Due to its symmetry, the rotated
object must be the same as the original. In particular, it must hold crot

pq = cpq

for any p and q. On the other hand, it follows from eq. (10)) that

crot
pq = e−2πi(p−q)/n · cpq.

Since (p − q)/n is assumed not to be an integer, this equation can be fulfilled
only if cpq = 0. Particularly, if an object has circular symmetry (i.e. n = ∞),
the only nonzero moments can be cpp’s.

The moment we use for normalization is found as follows. Let us consider a
set of complex moments {cpq|p > q, p+q ≤ r} except those moments which were
used in previous normalization steps. We sort this set according to the moment
orders and, among the moments of the same order, according to p− q. We get a
sequence of complex moments c21, c30, c31, c40, c32, c41, c50, c42, c51, c60, etc. The
first nonzero moment in this sequence is selected for normalization. (In practice,
”nonzero moment” means that its magnitude exceeds some threshold.) If all the
moments in the sequence are zero, we consider the object circular symmetric
and no normalization is necessary.

Thanks to the proper ordering of moments, c21 is always selected for non-
symmetric objects. For symmetric objects the order of the selected moment is
kept as low as possible. This is a favorable property of the method because
low-order moments are more robust to noise than the higher-order ones.

Once the normalizing moment is determined, the normalizing angle ρ is cal-
culated similarly as (11)

ρ = − 1
p− q

arctan
(
�(cpq)
�(cpq)

)
. (15)

Finally, the moments of the object normalized to the second rotation are
calculated by means of a similar formula as in the case of the first rotation

τpq =
p∑

k=0

q∑
j=0

(
p

k

)(
q

j

)
(−1)k sinp−k+j ρ cosq+k−j ρ μ′

k+j,p+q−k−j , (16)

but here the moments normalized to the first rotation and stretching μ′
pq must

be used on the right-hand side.
The moments τpq are new affine moment invariants of the original object.

Note that some of them have ”prescribed” values due to normalization, regardless
of the object itself:

τ00 = 1, τ10 = 0, τ01 = 0, τ02 = τ20, τ11 = 0, τ03 = −τ21. (17)

All other moments (and also τ20 and τ21) can be used as features for invariant
object recognition.
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2.4 Normalization to Mirror Reflection

Although the general affine transform (1) may contain mirror reflection, nor-
malization to the mirror reflection should be done separately from the other
transformations in (2) for practical reasons. In most affine deformations occur-
ring in practice, any mirror reflection cannot be present in principle and we
want to classify mirrored images into different classes (in character recognition
we certainly want to distinguish capital S and a question mark for instance).
Normalization to mirror reflection is not desirable in those cases.

If we still want to normalize objects to mirror reflection, we can do that, after
all normalization mentioned above, as follows. We find the first non-zero moment
(normalized to scaling, stretching and both rotations) with an odd q-index. If it
is negative, then we change the signs of all moments with odd q-indices. If it is
positive or if all normalized moments up to the chosen order with odd q-indices
are zero, no action is required.

3 Numerical Experiments

To illustrate the performance of the method, we carried out an experiment with
simple patterns having different number of folds. In Fig. 1 (top row), one can see
six objects whose numbers of folds are 1, 2, 3, 4, 5, and ∞, respectively. In the
middle row you can see these patterns being deformed by an affine transformation
with parameters a0 = 0, a1 = −1, a2 = 1, b0 = 0, b1 = 0, and b2 = 1. For the
both sets of objects the values of the normalized moments were calculated as
described in Section 2. The moment values of the original patterns are shown in
Table 1. The last line of the table shows which complex moment was used for
the normalization to the second rotation. The moment values of the transformed
patterns were almost exactly the same – the maximum absolute error was 3 ·
10−11, which demonstrate an excellent performance of the proposed method even
if the test objects were symmetric.

In the bottom row of Fig. 1 the normalized positions of the test patterns are
shown. We recall that this is for illustration only; transforming the objects is
not required for calculation of the normalized moments.

The last line of Table 1 illustrates the influence of spatial quantization in the
discrete domain. Theoretically, in case of the three-point star we would need to
use c30, in case of the five-point star c50 should be used, and the circle would
not require any normalization. However, in the discrete domain the symmetry is
violated. That is why the algorithm selected other moments for normalization.

In the second experiment, we tested the behavior of the method in a difficult
situation. The cross (see Fig. 2 left) has four folds of symmetry, so one would
expect to choose c40 for the normalization to the second rotation. However,
we deliberately set up the proportions of the cross such that c40

.= 0. Since
in the discrete domain it is impossible to reach exactly c40 = 0, we repeated
this experiment three times with slightly different dimensions of the cross. The
cross deformed by an affine transform is shown in Fig. 2 right. In all three cases
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Table 1. The values of the normalized moments of the test patterns. (The values
were scaled to eliminate different dynamic range of moments of different orders.) The
complex moment used for the normalization to the second rotation is shown in the last
line.

moment Letter F Compass 3-point star Square 5-point star Circle
τ30 -0.5843 0 0.6247 0 -0.0011 0
τ21 0.2774 0 0.1394 0 0.0024 0
τ12 0.5293 0 -1.2528 0 -0.0038 0
τ40 1.3603 1.013 1.4748 1.2 1.265 1
τ31 -0.0766 0 -0.0002 0 -0.0068 0
τ22 0.9545 0.9371 1.4791 0.6 1.2664 0.9999
τ13 0.1270 0 -0.0001 0 0.0106 0
τ04 1.0592 0.8972 1.48 1.2 1.2641 1

c21 c31 c21 c40 c21 c40

Fig. 1. The test patterns: the originals
(top row), the distorted patterns (middle
row), the patterns in the normalized posi-
tions (bottom row)

Fig. 2. The cross: the original (left) and
distorted (right)

the method performed very well. A proper non-zero moment was selected for
normalization (c51 once and c40 twice) and the values of the normalized moments
of the original and deformed crosses were almost the same.

4 Conclusion

We presented a new way of image normalization with respect to unknown affine
transform. In addition to simplicity, the main advantage of the method is their
ability to handle symmetric as well as non-symmetric objects. Unlike the Shen
and Ip’s method [9], which was also developed for symmetric objects and has
been considered as the best one, our method does not require prior knowledge
of the number of folds. This is a significant improvement because its detection
(either by autocorrelation or by polar Fourier analysis) is always time-consuming
and sometimes very difficult.

The experiments in the paper show the performance of our method on artifi-
cial binary images to demonstrate the main features of the method. In practice,
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the method can be applied without any modifications also to graylevel images
regardless of their symmetry/non-symmetry. The only potential drawback of our
method is that in certain rare situations it might become unstable, which means
that a small change of the image results in a significant change of its normalized
position. This is, however, a common weakness of all geometric normalization
methods.

Once the image has been normalized, its moments can be used as affine invari-
ants for recognition. Comparing to traditional affine moment invariants [2], [3],
the presented method has a big theoretical advantage. The construction of the
invariants is straightforward and their structure is easy to understand. Thanks
to this, we can immediately resolve the problem of finding minimum complete
and independent set of invariants. For the invariants [2] and [3], this problem has
not been resolved yet. Here, each moment which was not used in normalization
constraints, generates just one affine invariant. Independence and completeness
of such invariants follow from the independence and completeness of the mo-
ments themselves. Using minimum complete and independent set of invariants
yields maximum possible recognition power at minimum computational cost.
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Abstract. Even if lots of object invariant descriptors have been pro-
posed in the literature, putting them into practice in order to obtain a
robust system face to several perturbations is still a studied problem.
Comparative studies between the most commonly used descriptors put
into obviousness the invariance of Zernike moments for simple geomet-
ric transformations and their ability to discriminate objects. Whatever,
these moments can reveal themselves insufficiently robust face to per-
turbations such as partial object occultation or presence of a complex
background. In order to improve the system performances, we propose
in this article to combine the use of Zernike descriptors with a local ap-
proach based on the detection of image points of interest. We present in
this paper the Zernike invariant moments, Harris keypoint detector and
the support vector machine. Experimental results present the contribu-
tion of the local approach face to the global one in the last part of this
article.

1 Introduction

A fundamental stage for scene interpretation is the development of tools being
able to consistently describe objects appearing at different scales or orientations
in the images. Foreseen processes, developed for pattern recognition applications
such as robots navigation, should allow to identify known objects in a scene
permitting to teleoperate robots with special orders such as ”move towards the
chair”.

Many works have been devoted to the definition of object invariant descrip-
tors for simple geometric transformations [1], [2]. However, this invariance is not
the only one desired property. A suited structure should indeed allow to recognize
objects that appear truncated in the image, with a different color or a different
luminance, on a complex background (with noise or texture). Amongst the avail-
able invariant descriptors, the Zernike moments [3], [4] have been developed to
overcome the major drawbacks of regular geometrical moments regarding noise
effects and presence of image quantization error. Based on a complete and or-
thonormal set of polynomials defined on the unit circle, these moments help in
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achieving a near zero value of redundancy measure. In [5], a comparative study
shows the relative efficiency of Zernike moments face to other invariant descrip-
tors such as Fourier-Mellin ones or Hu moments. Nevertheless, Zernike moments
can fail when objects appear partially hidden in the image or when a complex
background is present.

In order to improve the performances of the method, we propose to combine
the Zernike moments with the keypoints detector proposed by Harris [6]. The
Zernike moments will then be calculated in a neighborhood of each detected
keypoint. This computation is more robust face to partial object occultation or
if the object appears in a complex scene.

In the first part of this article, the Zernike moments and Harris keypoints de-
tector are briefly presented. The method we used for the training and recognition
steps, based on a support vector machine [7], is also described. Experimental re-
sults, computed on different objects of the COIL-100 basis [8], are then presented
permitting to compare the performances of the global and local approaches. Fi-
nally, some conclusions and perspectives are given.

2 Developed Method

2.1 Zernike Moments

Zernike moments [3], [4] belong to the algebraic class for which the features are
directly computed on the image. These moments use a set of Zernike polynomials
that is complete and orthonormal in the interior of the unit circle. The Zernike
moments formulation is given below:

Amn =
m + 1
π

∑
x

∑
y

I(x, y)[Vmn(x, y)] (1)

with x2 + y2 ≤ 1. The values of m and n define the moment order and I(x, y)
is a pixel gray-level of the image I over which the moment is computed. Zernike
polynomials Vmn(x, y) are expressed in the radial-polar form:

Vmn(r, θ) = Rmn(r)e−jnθ (2)

where Rmn(r) is the radial polynomial given by:

Rmn(r) =

m−|n|
2∑

s=0

(−1)s(m− s)! rm−2s

s!(m+|n|
2 − s)! (m−|n|

2 − s)!
(3)

These moments yield invariance with respect to translation, scale and rotation.
For this study, the Zernike moments from order 1 to 15 have been computed (it
represents 72 descriptors).
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2.2 Harris Keypoints Detector

Lots of keypoints detectors have been proposed in the literature [9]. They are
either based on a preliminary contour detection or directly computed on grey-
level images. The Harris detector [6] that is used in this article belongs to the
second class. It is consequently not dependant of a prior success of the contour
extraction step. This detector is based on statistics of the image and rests on
the detection of average changes of the auto-correlation function. Figure Fig.1
presents the interest points obtained for one object extracted from the COIL-100
basis and presented under geometric transformation. We can observe that not
all points are systematically detected. However, this example shows the good
repeatability of the obtained detector.

Fig. 1. Keypoints detection for the same object under different geometric transforma-
tions

The average number of detected keypoints is around 25 for the used images.
In the local approach, the Zernike moments are computed on a neighborhood of
each detected keypoint (see figure Fig.2).

Fig. 2. Detected keypoints and associated neighborhood
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2.3 Training and Recognition Method

Suppose we have a training set {xi,yi} where xi is the invariant descriptors
vector described previously (xi is composed of NKPi*NZM values, with NKPi

corresponding to the keypoint number of image i andNZM the number of Zernike
moments depending on the chosen order) and yi the object class. For two classes
problems, yi ∈ {−1, 1}, the Support Vector Machines implement the following
algorithm. First of all, the training points {xi} are projected in a space H (of
possibly infinite dimension) by means of a function Φ(·). Then, the goal is to
find, in this space, an optimal decision hyperplane, in the sense of a criterion
that we will define shortly. Note that for the same training set, different transfor-
mations Φ(·) lead to different decision functions. A transformation is achieved in
an implicit manner using a kernel K(·, ·) and consequently the decision function
can be defined as:

f(x) = 〈w,Φ(x)〉 + b =
	∑

i=1

α∗
i yiK(xi,x) + b (4)

with α∗
i ∈ R. The value w and b are the parameters defining the linear decision

hyperplane. We use in the proposed system a radial basis function as kernel
function. In SVMs, the optimality criterion to maximize is the margin, that is
the distance between the hyperplane and the nearest point Φ(xi) of the training
set. The α∗

i allowing to optimize this criterion are defined by solving the following
problem: ⎧⎪⎪⎨⎪⎪⎩

maxαi

∑	
i=1 αi − 1

2

∑	
i,j=1 αiαjyiK(xi,xjyj)

with constraints,
0 ≤ αi ≤ C ,∑	

i=1 αiyi = 0 .

(5)

where C is a penalization coefficient for data points located in or beyond the
margin and provides a compromise between their numbers and the width of the
margin (for this study C = 1). Originally, SVMs have essentially been devel-
oped for the two classes problems. However, several approaches can be used for
extending SVMs to multiclass problems. The method we use in this communi-
cation, is called one against one. Instead of learning N decision functions, each
class is discriminated here from another one. Thus, N(N−1)

2 decision functions
are learned and each of them makes a vote for the affectation of a new point x.
The class of this point x becomes then the majority class after the voting.

3 Experimental Results

The experimental results presented below correspond to a test database com-
posed of 100 objects extracted from the Columbia Object Image Library (COIL-
100) [8]. For each object of the gray-level images database, we have 72 views
(128*128 pixels) presenting orientation and scale changes (see figure Fig. 3).
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Fig. 3. Three objects in the COIL-100 database presented with different orientations
and scales

We first used different percentages of the image database in the learning set
(namely 25%, 50% and 75%). For each object, respectively 18, 36 and 54 views
have been randomly chosen to compose the learning set. The Zernike moments
from order 1 to 15 (that is to say 72 descriptors) have been computed on a 11*11
pixels neighborhood of each detected keypoint of these images. We present for
each experiment the recognition rate of the neighborhood of a keypoint. In this
experiment, we tuned the parameter of the Harris detector in order to have
about 25 keypoints for each object sample. In fact, this step has been repeated
10 times in order to make the results independent of the learning base draw.
Table 1 presents the results obtained for the global and local approaches. We
can note that, the largest the learning basis is, the highest the recognition rate
is. The best results are obtained with the local approach.

In order to measure the influence of the neighborhood size on the recognition
rate, we tested four windowing size (7*7 pixels, 11*11 pixels, 15*15 pixels, 19*19
pixels). For this experiment the learning basis was constituted by 50% of the

Table 1. Recognition rate for different database sizes

Size of training database 25% 50% 75%
Global approach 70.0% 84.6% 91.9%
Local approach 94.0% 94.1% 97.7%
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images database (36 views for each object). Table 2 presents the results obtained
in each case. Results show that we obtain the best recognition rate with a window
size equal to 15*15 pixels.

Table 2. Influence of the neighborhood size on the recognition rate

Neighborhood size 7*7 11*11 15*15 19*19
Recognition rate 91.2% 94.1% 98.6% 97.3%

In order to evaluate the robustness of the proposed approach, we created
75 images for each object corresponding to alterations (see figure Fig. 4): 10
with an uniform background, 10 with a noisy background, 10 with a textured
background, 10 with an occluding black box, 10 with an occluding grey-level box,
10 with a luminance modification and 15 with gaussian noise adding (standard
deviation: 5, 10 and 20).

Fig. 4. Alterations examples

We kept the same Harris parameters setting and used for the local approach
with a window size of 11 × 11 pixels. Figure Fig. 5 presents an example of de-
tected keypoints and associated neighborhood face to three alterations (textured
background, occluding box and noise adding).

Table 3 presents the results of robustness for the global and local approaches
with different sizes of neighborhood. We used the whole database for the learning
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Fig. 5. Detected keypoints and associated neighborhood for three alterations (textured
bakground, occluding box and noise adding)

Table 3. Robustness of the proposed approach face to alterations

Global Local 7x7 Local 11x11 Local 15x15 Local 19x19
uniform background 31.8 % 83.1 % 85.7 % 86.2% 86.1 %
noise background 34.9 % 62.5 % 63.0 % 63.5% 62.6 %

textured background 7.5 % 54.3 % 54.9 % 55.1 % 56.8 %
black occluding 74.7 % 78.0 % 78.5 % 79.1 % 80.2 %

gray-level occluding 71.2 % 79.4% 80.3 % 80.9 % 81.2 %
luminance 95.9 % 87.7 % 88.35 % 80.0 % 89.8 %

noise (σ = 5) 100 % 70.5 % 73.0 % 73.4 % 73.1 %
noise (σ = 10) 100 % 68.3 % 69.9 % 70.1 % 69.4 %
noise (σ = 20) 100 % 62.2 % 62.5 % 62.9 % 61.2 %

phase and we try to recognize altered objects. These results show the benefit of
the local approach except to noise adding and luminance modification. In this
case, a lot of keypoints are extracted due to the presence of noise. The local
approach is then penalized.

4 Conclusion and Perspectives

We present in this paper a study on object recognition by using Zernike moments
computed in the neighborhood of Harris keypoints. Experimental results show
the benefit of using the local approach face to the global one. We studied the
influence of the neighborhood size for object recognition. The neighborhood of
size 15 × 15 pixels is for us a good compromise between recognition rate and
robustness to alterations.

Perspectives of this study concern first of all the computation of the recogni-
tion rate. The percentage of well-labeled keypoints is actually taken into account.
In order to improve the method, the recognition of an object could be realized by
determining the majority vote of the image keypoints. We finally plan to apply
the proposed approach for the navigation of mobile robots.
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Abstract. This paper deals with knowledge extraction from visual data
for content-based image retrieval of natural scenes. Images are analysed
using a ridgelet transform that enhances information at different scales,
orientations and spatial localizations. The main contribution of this work
is to propose a method that reduces the size and the redundancy of this
ridgelet representation, by defining both global and local signatures that
are specifically designed for semantic classification and content-based
retrieval. An effective recognition system can be built when these de-
scriptors are used in conjunction with a support vector machine (SVM).
Classification and retrieval experiments are conducted on natural scenes,
to demonstrate the effectiveness of the approach.

1 Introduction and Related Works

For the last 15 years, several fields of research have converged in order to ad-
dress the management of multimedia databases, creating a new discipline usually
called Content-Based Image Retrieval (CBIR) [1]. One of the key-issues to be
addressed, termed the semantic gap, is the disparity between the information ex-
tracted from the raw visual data (pixel) and a user’s interpretation of that same
data in a given retrieval scenario [2]. Automatic image categorization can help to
address this issue by hierarchically classifying images into narrower categories,
thereby reducing search time. Some successes have been reported for particular
problems, using various image processing and machine learning techniques. In [3],
the dominant direction of texture, estimated via a multiscale steerable pyramid
allows identification of pictures of cities and suburbs. In [4], indoor/outdoor clas-
sification was achieved using color (histogram), texture (MSAR) and frequency
(DCT) information. In [5], the authors hierarchically discriminate indoor from
outdoor, city from landscape, and sunset from forest and mountain using color
histograms, color coherence vectors, DCT coefficients, edge histograms and edge
direction coherence vectors. However, none of these approach take into account
the particular statistical structure of a natural scene, although this has been
widely studied in the literature. One of the most noticeable properties states
that the average power spectrum of natural scenes decreases according to 1/fα,
where f is the spatial frequency and α is approximatively 2 [6]. As a first ap-
proximation, this was considered true regardless of direction in the spectrum.
Nonetheless, some studies have refined this assertion [7,8]. Natural scenes with
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small perceived depth, termed closed scenes, do have a spectrum of 1/f2 in all
directions, but when the depth of the scene increases, the presence of a strong
horizontal line corresponding to the horizon enhances vertical frequencies. The
latter type of images are termed open scenes. Moreover, images representing
human constructions, termed artificial, contain a lot of horizontal and vertical
lines and this reflected in the corresponding frequencies.

In [8], it was shown that some image categories can be defined, correspond-
ing to an approximate depth of the scene (congruent to semantic), according the
shape of their global and local spectrums. These properties were first used to ad-
dress the semantic gap in [7], by classifying landscapes and artificial scenes using
Gabor filters. In a similar vein, we exploit this statistical structure to address the
semantic gap for natural scenes, using the ridgelet transform that is optimally
designed to represent edges [9]. The main contribution of this work is to propose
a method that reduces the size and the redundancy of this ridgelet representa-
tion, by defining both global and local signatures that are specifically designed
for semantic classification and content-based retrieval. Section 2 presents the
ridgelet transform and the associated proposed global and local signatures. Ex-
perimental results for image classification and retrieval using these descriptors
are presented in section 3, with conclusions drawn in section 4.

2 Image Representation

2.1 Ridgelet Transform

Given an integrable bivariate function f(x), its continuous ridgelet transform
(CRT) is defined as [9]:

CRTf =
∫

R2
ψa,b,θ(x)f(x)dx (1)

where the bidimensional ridgelets ψa,b,θ(x) are defined from a unidimensional
wavelet ψ(x) as:

ψa,b,θ(x) = a−1/2ψ

(
x1cosθ + x2sinθ − b

a

)
(2)

where a is a scale parameter, b a shift parameter, and x = (x1, x2)T . Hence, a
ridgelet is constant along the line x1cosθ+ x2sinθ = const and has the shape of
the wavelet ψ(x) in the perpendicular direction.

Finding a discrete form of the ridgelet transform is a challenging issue. The
key point for this is to consider the CRT of an image as the 1-D wavelet transform
of the slices of its Radon transform. We used the method developed in [10], based
on the pseudopolar Fourier transform that evaluates the 2-D Fourier transform
on a non-Cartesian grid. This transform is used to compute the Radon transform,
and support several nice properties, such as invertibility, algebraic exactness,
geometric fidelity and rapid computation for images of size 2n × 2n. Code for
this is provided in the Beamlab package [11].
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The ridgelet transform of an image corresponds to the activity of a mother
ridgelet at different orientations, scales and spatial localizations. At a given ori-
entation, there are 2n localizations at the highest scale, 2n−1 at the next lowest
scale, and so on. For an image of size 2n × 2n, this results in a response of
size 2n+1 × 2n+1. The challenge is therefore to create a signature for the image
from these responses, that leads to a reduction of the size of the feature whilst
preserving relevant information useful for discrimination.

2.2 Global Ridgelet Signature

The global ridgelet signature (Rdglb) is extracted by averaging the ridgelet re-
sponses over all spatial locations. This is motivated by the reported possibility of
defining semantic categories of natural scenes according to their global statistics
[8]. Since ridgelets are computed on square images, we extract the largest square
part of the image and reduce it to an image of size 2n × 2n. Keeping one coeffi-
cient for each of the 2n+1 orientations and n− 1 scales results in a signature of
size (n− 1) ∗ 2n+1. Since the sign of the activity simply corresponds to contrast
direction, the average of the absolute value of the activity is computed.

2.3 Local Ridgelet Signature

For this descriptor, the image is divided into 4× 4 = 16 non-overlapping areas,
and the ridgelet transform of each area is computed. Because of the same con-
straints as for the global signature, each area has actually a size 2n × 2n pixels.
It has been shown that narrower categories can be defined by such local statis-
tics [8]. A local template is designed to compute the signature for each area. It
defines 10 regions on which a measure of activity is computed, as shown on figure
1. Other local templates were designed but can not be presented in this paper
due to space constraints. There are two regions at the lower frequencies and four
at the middle and higher frequencies centered around 0 ◦, 45 ◦, 90 ◦ and 135 ◦.
For each region, we compute the activity as the average absolute value of the
ridgelet response divided by the standard deviation over the region. This gives
10 coefficients for each local signature i.e. 160 coefficients for the local ridgelet
signature (Rdloc).

2.4 Support Vector Classifier (SVC)

Support vector classifiers (SVC) [12] are commonly used because of several at-
tractive features, such as simplicity of implementation, few free parameters re-
quired to be tuned, the ability to deal with high-dimensional input data and
good generalisation performance on many pattern recognition problems.

To apply a support vector machine (SVM) to classification in a linear sep-
arable case, we consider a set of training samples {(xi, yi), xi ∈ X , yi ∈ Y},
with X the input space, and Y � {−1,+1} the label space. In the linear case,
we assume the existence of a separating hyperplane between the two classes, i.e
a function h(x) = w	x + b parameterized by (w, b), such that the sign of this
function when applied to xi gives its label. By fixing mini |h(xi)| = 1, we chose
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Fig. 1. Template defining 10 regions for the local signature. Rows represents the scales
and columns are the orientations.

the normal vector w such that the distance from the closest point of the learning
set to the hyperplane is 1/‖w‖. When training data is not linearly separable, a
more complex function can be used to describe the boundary. This is done by
using a kernel to map non-linear data into a much higher dimensional feature
space, in which a simple classification is easier to find. In the following we use
the LibSVM implementation [13] with a polynomial kernel of degree 1 to 4.

3 Experimental Results

In this section the performance of our ridgelet signatures for image classification
and retrieval are compared to that of descriptors defined in the MPEG-7 visual
standard [14]: Edge histograms (EH), Homogeneous texture (HT) based on a
Gabor filter description, Color Layout (CL) and Scalable Color.

3.1 Scene Classification

Our test corpus consists of 1420 images of different sizes collected from both the
web and professional databases1 and are divided into four classes: cities, indoor,
open and closed scenes. As explained in section 1, open/closed scenes refer to
images of natural scenes with large/small perceived depth (i.e. with/without a
horizon). Image signatures were computed as explained in section 2.2 and three
sets of experiments were performed (Table 1). First, each class was classified
against the others (Exps. N◦1 . . . 4). Then, artificial (consisting of both cities,
indoor) versus natural (consisting of both open, closed) discrimination was in-
vestigated (Exp. N◦5) as well as the intra-class classification within these classes
(Exps. N◦6, N◦7). The final set of experiments investigated cities versus natural
classification and the associated intra-class classification (Exps. N◦8 . . . 10). All
experiments were repeated 10 times with randomly chosen learning and testing

1 www.corel.com - www.goodshoot.com
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databases without overlap (cross-validation). The size of the learning database
was fixed to 40 images, but larger sizes gave similar results.

Experimental results are presented in Table 1. To discriminate one class
from the others, Rdloc performs best for cities and open, while EH is better for
indoor and closed. Color descriptors (CL and SC) have the worst performance,
except for indoor for which all results are quite close, confirming the results
of [4] that illustrated the importance of color descriptors for indoor/outdoor
discrimination. In the artificial versus natural experiment, EH perform best,
though Rdloc has significantly better results than any other descriptor in the
intra-class experiments (N◦6, 7). EH and Rdloc have similar results for natural
versus cities classification (N◦8). EH is slightly better in experiment N◦9 but
Rdloc outperforms all others in discriminating open scenes from cities (N◦10).

3.2 Scene Retrieval

In order to estimate the retrieval performance of our signatures, the test corpus
was extended to 1952 images using images from five smaller categories. Each
of these new categories are characterized by the presence of an object: door,
firework, flower, car, sailing. Objects are presented in a scene context that is
congruent with their semantic: fireworks are in the sky, sailing activities on the
sea, door on a building, cars on a road and flowers in a closed natural scene.

In practice, images are sorted according to their distance from the hyper-
plane calculated by the SVC. Retrieval performances are usually estimated by
the probability of detecting an image given that is relevant (recall) and the
probability that an image is relevant given that it is detected by the algorithm
(precision). However, precision generally decreases according to the number of
images detected while recall increases. Thus, precision is a function of recall
(p(r)) and a trade-off must be chosen. The average value of p(r) over [0 . . . 1]
defines the average precision and measures retrieval performance taking into
account both recall and precision.

Retrieval experiments were repeated ten times with different learning data-
bases, and the average performance (measured by average precision) are shown
in Table 2. For scenes with global characteristics (first four rows), the ridgelet sig-
nature performs well for open and cities but less so for closed and indoor. In this
latter case, results for Rdloc are similar to that of the color descriptors. Retrieval
experiments for scenes containing a specific object (last five rows) demonstrate
that Rdloc is among the best results for three categories (car, firework, sailing)
but has poor results for flowers and doors. In this latter case, Rdglb has quite
good performance though still significantly poorer than that of EH.

4 Concluding Remarks

In this paper, we proposed a new representation of natural images, based on a
ridgelet description. Two image signatures were designed, allowing both global
and local analysis. When used in conjunction with a support vector machine,
these descriptors can be used to classify natural scene categories. The proposed
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descriptors also exhibit good performance in retrieval of scenes containing spe-
cific categories of objects. Future work will focus on defining other local signa-
tures to address the shortcomings of this approach for specific categories, and
combination between global and local approach.
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Abstract. Real-life applications of neural networks require a high degree of 
success, usability and reliability. Image processing has an importance for both 
data preparation and human vision to increase the success and reliability of pat-
tern recognition applications. The combination of both image processing and 
neural networks can provide sufficient and robust solutions to problems where 
intelligent recognition is required. This paper presents an implementation of 
neural networks for the recognition of various banknotes. One combined neural 
network will be trained to recognize all the banknotes of the Turkish Lira and 
the Cyprus Pound; as they are the main currencies used in Cyprus. The flexibil-
ity, usability and reliability of this Intelligent Banknote Identification System 
(IBIS) will be shown through the results and a comparison will be drawn be-
tween using separate neural networks or a combined neural network for each 
currency. 

Keywords: Neural Networks, Pattern Recognition, Image Processing, Multi-
Banknote Identification. 

1   Introduction 

We, humans, excel at recognizing patterns and consequently identifying objects. Our 
ability to recognize objects is related to the intelligent processor within our brains, in 
addition to the process of learning overtime. This natural intelligence has been a tar-
get for researchers in Artificial Intelligence lately [1]. The idea is to develop machines 
with intelligence similar to that of our own. Even better, is to develop artificially in-
telligent machines that recognize pattern in a similar way as we do [2]. An example of 
our ability to recognize patterns is our recognition of banknotes without the need to 
“read” the number written on a banknote. This happens after we use banknotes for 
sometime (training time for our natural neural networks!). Once our brains learn the 
values of the banknotes, all we need would be to have a quick look and recognize the 
value.  

IBIS (Intelligent Banknote Identification System) was designed to simulate the 
above using neural networks and pattern recognition [3]. Separate neural networks 
were developed to recognize different international banknotes [4]. 
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The work presented within this paper aims at developing a single neural network 
with a combined output for two different international currencies; namely the Cyprus 
Pound and the Turkish Lira. The back propagation learning algorithm is implemented 
using an input layer with 100 neurons, one hidden layer with 30 neurons and one 
combined output layer with nine neurons. 

A comparison will be drawn between using separate neural networks for each cur-
rency [5] and using a single neural network with a combined output for all currencies. 
Training and generalizing run times will be considered for the purpose of comparison. 

2   The Banknotes 

There are four banknotes of the Cyprus Pound (1CYP, 5CYP, 10CYP and 20CYP) 
and five banknotes of the Turkish Lira (500,000TL, 1,000,000TL, 5,000,000TL, 
10,000,000TL and 20,000,000TL). The images of these banknotes are of size 
(550x256) pixels that are acquired using a scanner. Each banknote has different char-
acteristics and patterns on its both sides (front and back). 

These banknotes are organized into two sets: a training set and a generalizing (test-
ing) set. The training set will include four Cypriot banknotes and five Turkish bank-
notes; each with front and back images resulting in a total of 18 images of the differ-
ent banknotes (Fig.1 shows examples of front and back images of Turkish Lira and 
Cyprus Pound). The generalizing set will comprise nine old and soiled (noisy) bank-
notes of the same values; similarly resulting in 18 images for testing. The complete 
set of images used for training is shown in Fig. 2 and Fig. 3. 

 
  

 

Fig. 1. Example of images of front and back of the Banknotes 
 
 

(a) 1,000,000 TL Front (b) 1,000,000 TL Back 

(d) 1 CYP Back (c) 1 CYP Front 
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Fig. 2. Cyprus Pound Banknotes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Turkish Lira Banknotes 

3   Image Processing and Data Preparation 

In the data preparation phase, image processing is applied to the banknotes prior to 
training the neural network. The “average pixel per node” approach is used to reduce 
the number of inputs to the network thus improving its training and generalization 
time. This is achieved via image segmentation and averaging using the following 
equations: 

 

   (a) 500,000TL Front 

(b)  500,000 TL Back (d)  1,000,000 TL Back (f)  5,000,000 TL Back 

(c) 1,000,000 TL Front (e)  5,000,000 TL Front 

(g)  10,000,000 TL Front (i)  20,000,000 TL Front 

(h)  10,000,000 TL Back (j)  20,000,000 TL Back 
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[ ]( ) DyxPSegi /,=  (1) 

where Seg denotes the segment number, P denotes the pixel value and D is the total 
number of pixels in each segment; 

( ) STPTPD yx /.=  (2) 

where TP denotes the x and y pixel size of image and S is the total segment number. 
Prior to training the neural network, scanned banknote images are converted to 

grayscale. A window of size (256x256) pixels is centered upon the image and the pat-
terns within the window are cropped. This square segment of the banknote image is 
then compressed to (128x128) pixels. In order to reduce the training and generaliza-
tion time of IBIS, a square window of size (100x100) pixels is extracted and the aver-
age pixel per node approach is applied using segments of 10x10 pixels. This results in 
100 values that uniquely represent each banknote.  The next phase will be training a 
single neural network to recognize the various banknote images. 

4   Training the Neural Network 

A 3-layer neural network using the back propagation learning algorithm is used for 
learning. The input layer has 100 neurons, the hidden layer has 30 hidden neurons and 
the output layer has 9 neurons. The neural network’s topology can be seen in Fig. 4. 

During this learning phase, initial random weights of values between –0.3 and 0.3 
were used. The learning rate and the momentum rate; were adjusted during various 
experiments in order to achieve the required minimum error value and meaningful 
learning. An error value of 0.005 was considered as sufficient for this application. Ta-
ble 1 shows the final parameters of the trained neural network. 

 

 

Fig. 4. Neural Network Topology 
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Table 1. Trained neural network final parameters 

Input Layer Nodes 100 
Hidden Layer Nodes 30 
Output Layer Nodes 9 

Learning Rate 0.0099 
Momentum Rate 0.50 
Minimum Error 0.005 

Iterations 4241 
Training Time 91 seconds 

5   Results 

The Intelligent Banknote Identification System (IBIS) is implemented using the C-
programming language. The first phase of data preparation using image processing is 
implemented prior to training or eventually generalizing the neural network in the 
second phase.  Once the neural network learns the various patterns (banknotes), IBIS 
can be run with one neural network forward pass to recognize the banknote. A general 
block diagram of IBIS can be seen in Fig. 5. 

IBIS was trained using 18 images of clean new banknotes. The results of generaliz-
ing the neural network using these clean banknotes was 100% as would be expected. 
However, to generalize the single neural network, 18 old used (noisy) banknotes were 
 

 

Fig. 5. General Block Diagram of IBIS 
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used. The difference between the banknotes used for training and for generalization 
would be the difference in the pixel values of the scanned images of the banknotes. 
It’s thought that using real-life samples of banknotes would be more realistic while 
providing a robust way of testing the efficiency of the neural network in identifying 
noisy patterns. IBIS ability to recognize “noisy” patterns (i.e. old used banknotes) was 
also tested and returned 90% recognition rate for both currencies. 
 

Table 2.  Efficiency and Time Cost for Single versus Separate neural networks 

 Separate Neural Networks Single Neural Network 

Pattern Set Training Generalizing Training Generalizing 

Training Time 
(seconds) 

130.4 - 91 - 

Generalizing 
Time (seconds) 

- 0.05 - 0.05 

Recognition  
Ratio 100 % 95 % 100 % 90 % 

Total  
Efficiency 

97.5 % 95 % 

Table 2 shows a comparison between the system presented within this paper (using 
a single neural network with combined output for both currencies) and the previously 
developed system [5] using two separate neural networks for each currency. An over-
all recognition ratio of 95% for the single network is considered sufficient considering 
the reduction in time cost. Training time reduction from 130.4 seconds to 91 seconds 
justifies the slight reduction (2.5%) in total efficiency when comparing the combined 
out network with separate output network. Generalizing (run) time based on a single 
forward pass of the neural network resulted in similar time cost of 0.05 seconds. 

6   Conclusion 

In this paper, an intelligent system for recognizing multi-banknotes of different cur-
rencies was presented. The system (IBIS) recognizes banknotes using patterns within 
the banknotes. Based on “average pixel per node” approach, IBIS provides training / 
generalization input data for the neural network. The currencies used for the imple-
mentation of IBIS were the Turkish Lira and the Cyprus Pound which are; commonly 
used currencies in Cyprus. The developed system may also be successfully used with 
any banknote of different currencies once the neural network is trained on these cur-
rencies. 

The developed system uses a single neural network with a combined output for the 
recognition of the different banknotes in the different currencies. A training time of 
91 seconds with generalization (run) time of 0.05 seconds shows a fast efficient intel-
ligent system for recognizing multi-banknotes.  
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A comparison between using a single neural network and separate neural networks 
for different currencies has shown that a single network with combined output returns 
marginal reduction in time cost with a minimal reduction in recognition ratio. 

Future work would include the implementation of IBIS using a single neural net-
work for the recognition of more currencies such as the Euro, US Dollar and the new 
Turkish Lira (YTL) which will be used alongside the current TL during the year 2005. 
Finally, intelligent machine recognition of Euro banknotes and classification of which 
European Union country they originate from depending on the different patterns on 
the banknotes will also be considered. 
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Abstract. This article deals with a monocular vision system for grasp-
ing gesture acquisition. This system could be used for medical diagnostic,
robot or game control. We describe a new algorithm, the Chinese Trans-
form, for the segmentation and localization of the fingers. This approach
is inspired in the Hough Transform utilizing the position and the orien-
tation of the gradient from the image edge’s pixels. Kalman filters are
used for gesture tracking. We presents some results obtained from images
sequence recording a grasping gesture. These results are in accordance
with medical experiments.

1 Introduction

In gesture taxonomy [1], manipulative gestures are defined as ones that act on
objects inside an environment. They are the subject of many studies in the
cognitive and medical communities. The works of Jeannerod [2,3] are the ref-
erences in this domain. These studies are frequently carried out to determine
the influences of psychomotor diseases (Parkinson [4], cerebral lesions [5], etc.)
on the coordination of grasping gestures. A typical experiment involves numer-
ous objects, generally cylindrical, of varying size and position placed on a table.
Subjects grasp the objects following a defined protocol. Active infrared makers
are placed on the thumb, the index finger and over the palm. Vision systems,
such as Optotrack, track the markers to record the trajectory performed during
the test, in order to measure the subject responses to the stimulus.

In this paper, we propose a low-cost and less restrictive vision system, requir-
ing only one camera and a computer. Many applications could be envisioned with
this device, for example medical assistance [4,5], as natural human-computer in-
terface (see [6] for more information on natural HCI) to control arm robots for
grasping tasks [7], or virtual games.

We follow the experimental protocol described in [2,3,5,4]. The system is
composed of a layout according to the specification of the Evolution Platform
(EP), made of eight colored circles placed in a known geometry (see fig. 1).
The hand in a grasping configuration (the index opposite to the thumb) moves
in a horizontal plane with constant height (Z-axis). The camera is static and
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placed sufficiently far away in order to capture a complete view of the EP; with
this configuration, we can consider the differences in Z-axis between hand points
negligible. The 3D position of the finger are calculated with these assumptions
and an iterative estimation of the camera pose [8] (see fig. 2).

Fig. 1. Camera view of the Evolution
Platform

Fig. 2. Systems of reference for the cam-
era and platform

In the next section, we describe the procedures to extract the finger positions
in the image. Once a subregion of the image has been determined with a back-
ground subtraction algorithm, a skin color distance image is calculated for the
extraction of the oriented edges of the hand. These edges were used in an original
algorithm, the Chinese Transform (CT), for the segmentation and localization of
the fingers. This approach is inspired from the Hough Transform. This algorithm
allows the extraction of finger segments. Section 3 concerns the gesture tracking.
We use a Kalman filter adapted to segment tracking. A simplified hand model
makes it possible to determine the hand parameters generally used to analyze
the grasping gesture. Section 4 presents some results obtained with our system.
We conclude this article with some perspectives.

2 Detection of Hand and Fingers

2.1 Image Preprocessing

During the initial phase of the image preprocessing we used background subtrac-
tion to localize a sub-region in the image where the hand could be. We applied
Stauffer and Grimson’s Gaussian Mixture Model (GMM) method [9]. In our ap-
proach, we use the chrominance of the color space Y CbCr instead of the RGB
color space used by Stauffer and Grimson [9]. This permit us to ignore shad-
ows of the hand. From this background subtraction, we obtain a binary image
of the foreground pixels representing moving objects. We defined a search win-
dow including all the foreground pixels, which offers the advantage of reduced
computing time for the following operations.

Secondly, the search window in the color image is converted to a skin color
distance image. We emphasize the pixels with skin color chrominances, giving the
maximum values in the skin color distance image. The converted RGB image, I,
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into the Y CbCr color space is referred to as Iybr. Next, we calculate the inverse
distance to the skin color, subtracting the chrominance channels b and r from
Iybr with the experimental values bskin and rskin respectively.

Ib = |Iybr(b)− bskin|
Ir = |Iybr(r) − rskin |

Ibr =
√
Ib + Ir

Finally, we obtained a skin color distance image (see fig. 5), defined by :

Isk = 1 − Ibr

max(Ibr)

2.2 The Chinese Transformation

The Chinese Transformation (CT) takes its name from Zhongguo, usually trans-
lated as Middle Kingdom, the mandarin name for China. The CT is a voting
method: two points having opposite gradient directions vote for their mid-point.
This method has the same basic principle as Reisfeld [10].

In the example of figure 3, two edge points e1 and e2 obtained from an image
of an ellipse Ie, were defined with two parameters: the normal vector, ni, and
the position in the image, pi(x, y), with i = {1, 2}. Each normal vector was
represented by the orientation of the gradient at this point. p12 was the segment
drawn between the two points with pv its mid-point.

Fig. 3. (a) shows two edge points of
the image with their normal vectors, (b)
shows the two normal vectors superposed
forming an angle α

Fig. 4. Example of the CT for a rect-
angle. (a) original image, (b) oriented
edges, (c) and (d) votes array in 2D and
3D spaces.

Superposing e1 over e2, we can compare their orientations. We say that e1
and e2 have opposite orientations if the angle α12 formed between n1 and −n2

satisfies the condition:
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α12 < αthreshold (1)

Then, the CT votes for pv, the mid-point point of p12 if:

|p12| < d (2)

We create and increment an accumulator (votes array) with all the couples
satisfying the conditions (1) and (2).

Fig. 5. Illustrations of Chinese Transform. (a) Original image, (b) Skin color distance
image, (c) Oriented gradient image: each orientation is represented by a different color
in the image, (d) Votes array.

The Fig. 4 is an example of the CT algorithm applied to a rectangle. The Fig.
4.a represents the original image. The Fig. 4.b shows the contour of 4.a and we
can see the different orientations of the gradient in different colors. In practice,
we sample the gradient orientations in N = 8 directions; this operation fixes a
practical value for αthreshold. The choix of this value depends on the application.
With lower values there will be more pairs of voting points, increasing computing
time. With higher values, we obtain much less voting points, losing information.
The votes array (see Fig. 4.c and 4.d) is the result of applying the CT for all the
edge points of Fig. 4.a with d = 35.

In our application, we take advantage of the form of the index finger and
thumb (the two fingers forming the grip). Their parallel edges satisfy the distance
and gradient direction conditions. The accumulation zones founded in the votes
array can define the fingers regions (Fig. 5.d). A special function implementing
a few variants of Hough Transform for segments detection is applied to the
votes array (fig. 6). Each region’s point votes, in the Hough space, with a value
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Fig. 6. The segments resulting from the CT

proportional to the quantity of votes in the accumulator. The resulting segments
represent the finger regions.

Results of the CT can be compared with the morphological skeleton algo-
rithm. But this method employs regions and has to deal with their usual defaults:
holes presence, contour’s gaps, partial occlusion, etc. The CT works around these
problems with a statistical voting technique. In addition, it should be noted that
CT could be useful in other contexts like detection of axial symmetries or the
eyes localization in face images [11].

3 Gesture Tracking and Representation

Kalman filters [12] adapted to the segments makes it possible to both track the
finger segments and eliminate the false alarms.

3.1 Segments Tracking

The objective is the tracking of segments belonging to the fingers in a sequence of
images. This segments were obtained from the votes array of the Chinese Trans-
formation and the application of the Hough Transformation. The parameters
identifying each segment are (see fig. 7): Pm(xm, ym), mid-point coordinates, l
and θ, respectively the length and the angle of the segment.

Our system is made of three independent Kalman filters. Two scalar filters
for the length and the orientation, and one vectorial filter for the position. If we
consider constant speed, the state vectors are:

XPm =

⎛⎜⎜⎝
xm

˙xm

ym

˙ym

⎞⎟⎟⎠ X l =
(
l

l̇

)
Xθ =

(
θ

θ̇

)

We track all the segments in the image sequence. There are false alarms, but
they disappear in the successive images. We keep and track the segments corre-
sponding to the fingers. These segments follow the Kalman conditions and the
constraints on the grip model.
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Fig. 7. Segment model Fig. 8. Grip model

3.2 Grip Tracking

From two fingers segments, we model a grip (see Fig. 8) with the following
parameters: pc, mid-point of the segment m1m2; Θpc, angle that defines the
inclination of the grip; vd, unit vector which defines the grip’s orientation and
l12, length of the segment m1m2.

We add two other parameters: the orientations α1 and α2 of the segments s1
and s2, calculated after a change of coordinate axis, from the (x, y) (see fig. 8.a)
axis into the (pc, x′,y′) axis related to the grip (see fig. 8.b).

The new state vectors for the grip tracking are: Xpc , XΘpc , Xα1 , Xα2 and
X l12 . This representation was inspired from the studies on grasping gestures
from [2,3,5,4]. We can easily observe the principal variables used in these studies:
inter-distance between fingers (grip aperture), positions and orientations of the
hand related to the scene (and to the objects), etc. In addition, we can define an
articulatory model of the grip. By considering its geometrical model inversion,
we can simulate a robotized representation of the grip in an OpenGL virtual
environment.

4 Results

We apply the CT in a video sequence, taked from a webcam at 14 frames/second,
composed of three stages. The first stage shows a hand going to grasp an imag-
inary object in the corner of the EP (see Fig. 9). The next stage shows the
subject’s hand puting the imaginary object down in the opposite corner of the
EP. The final stage is the hand returning to the initial position. Here, we present
only the result obtained for the stage 1.

Results of the CT on the first stage are shown in Fig. 10. In Fig. 10.a we can
see all the segments recorded along the first 38 frames from the sequence. In the
Fig. 10.b, the trajectory of the pc point is shown. The grip aperture and hand
velocity curves for the stage 1 are showed in Fig. 10.c and Fig. 10.d, respectively.
According to Jeannerod, the arm mouvement to the target-object location of a
normal subject is divided into 2 phases: a high-speed phase corresponding to the
75% of the movement of approach towards the object and a final low-speed phase
[3]. In fig. 10.d we notice the first phase until the frame 15 characterized by a
great acceleration and an increase in the distance inter fingers (fig. 10.c). Then,
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Fig. 9. This figure shows a picture sequence of the stage 1. On the left picture, we can
see the camera view and, on the right image, the OpenGL environment with a virtual
grip reproducing simultaneously the gesture.

Fig. 10. Results for the stage 1: (a) all the segments. (b) trajectory of the point pc.
(c) distance between fingers (d) velocity of the hand. This figure show in dot points
the hand labeled data for the curves (b), (c) and (d).

there are a deceleration of the hand while approaching to the object, reaching
the final hand grip aperture.

This information can be used by the specialists in order to measure the
patient’s ability. They can also be useful for medical diagnostics.

5 Conclusion and Perspectives

Our goal was the tracking of the grasping gestures in a video sequence to de-
tect psychomotor diseases. This article presented a system for the acquisition
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and analysis of the human grasping gestures. It used a new method for fingers
detection and localization, called Chinese Transform. This technique is a vot-
ing method inspired by Hough Transform. Kalman filters were used for gesture
tracking. The obtained results were in accordance with observations of medical
studies [2,3].

The next steps of our works will be oriented in the determination and the
prediction of the grip points on an object. For that, we will have to analyze the
gesture related to the intrinsic (form, size, etc) and extrinsic (position, orienta-
tion) object characteristics.
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Abstract. We describe an automated system that classifies gender by utilising a 
set of human gait data. The gender classification system consists of three stages: 
i) detection and extraction of the moving human body and its contour from im-
age sequences; ii) extraction of human gait signature by the joint angles and 
body points; and iii) motion analysis and feature extraction for classifying gen-
der in the gait patterns. A sequential set of 2D stick figures is used to represent 
the gait signature that is primitive data for the feature generation based on mo-
tion parameters. Then, an SVM classifier is used to classify gender in the gait 
patterns. In experiments, higher gender classification performances, which are 
96% for 100 subjects, have been achieved on a considerably larger database. 

1   Introduction 

The study of human gait has generated much interest in fields including biomechan-
ics, clinical analysis, computer animation, robotics, and biometrics. Human gait is 
known to be one of the most universal and complex of all human activities. It has 
been studied in medical science [5, 10], psychology [6], and biomechanics [15] for 
decades. In computer vision, automated person identification by gait has recently been 
investigated [11]. The potential of gait as a biometric has further been encouraged by 
the considerable amount of evidence available, especially in medical [10, 14] and 
psychological studies [6]. As a biometric, human gait may be defined as a means of 
identifying individuals by the way they walk. Using gait has many advantages over 
other biometrics such as fingerprints, most notably that it is non-invasive and can be 
used at a distance. Various approaches [2, 11] for the classification and recognition of 
human gait have been studied, but human gait identification is still a difficult task. 

On the other hand, gender classification could play an important role in automatic 
gait recognition if the number of subjects is large, as it would split the number of 
subjects to be searched [2]. In study by Kozlowski and Cutting [8], they examined 
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recognising the gender of walker from moving light displays (MLDs) involving 3 
male subjects and 3 female subjects all about the same height. Their results showed 
that humans were able to correctly identify gender using full body joint markers at 
63% correctness on average, which is just better than chance (50%). In a later study, 
Mather and Murdoch [9] showed that frontal or oblique views are much more effec-
tive than a side view for gender discrimination, and emphasised that male subjects 
trend to swing their shoulders more while female subjects tend to swing their hips, the 
results improved to an accuracy of 79%. 

In this paper, we propose an automated gender classification system in human gait 
using Support Vector Machine (SVM). The large amount of human gait data was 
collected from DV cameras, and the human body and its contour is extracted from the 
image sequences. A 2D stick figure is used to represent the human body structure, and 
it is extracted from body contour by determining the body points. To extract the body 
points, joint angles of each segment are extracted from gait skeleton data by linear 
regression analysis, and gait motion between key-frames is described by tracking the 
moving points of locomotion. The body segments and moving points are basically 
guided by topological analysis with anatomical knowledge. Also, the features based 
on motion parameters are calculated from sequence of the stick figures, and then an 
SVM classifier is employed to classify gender in the gait patterns. 

2   Extracting Human Gait Motion 

In computer vision, motion analysis of the human body usually involves segmenting, 
tracking and recovering the human body motion in an image sequence. Fig. 1 shows 
the system architecture used within this study. Here, a simplified 2D stick figure with 
six joint angles [16] is used to represent the human body structure for recovering and 
interpreting the human movement. Also, the horizontal centre of mass in the upper 
body is used as a gait symmetry point to detect the gait cycle. According to biome-
chanical analysis [15], the upper body’s speed varies a little, being fastest during the 
double support phases and slowest in the middle of the stance and swing phases. 
Hence, the centre of mass of the upper body will keep the maximum distance from 
front foot at initial contact, end of terminal stance or terminal swing, and it has mini-
mum distance from the front foot at end of mid-stance or mid-swing. 

DV Camera

Input Image 
Sequences Extracting Gait 

Signature
Body ContoursPre-Processing 

Gait Images

Gait Motion 
Analysis

Sequences of 
Stick Figures

Feature 
Extraction and 

Selection

Motion 
Parameters

Classifying 
Gender by Gait 

Patterns

Gait Features

 

Fig. 1. Overview of Gender Classification System 
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2.1   Human Gait Database 

The SOTON database [12] developed by the ISIS Research Group is one of the recent 
databases within the DARPA Human ID at a Distance program. An image sequence 
in the database contains only a single subject walking at normal speed and was ac-
quired at 25 fps with 720×576 colour pixels from good quality progressive scan DV 
cameras. All subjects in the database are filmed fronto-parallel (where the walking 
path is normal to the camera view) or at an oblique angle. Each subject has at least 
four image sequences and each image sequence contains at least one gait cycle, to-
gether with background and other supporting data. The most recent version of the 
SOTON database contains more than 100 different subjects and was mostly acquired 
from young and healthy university students during the summer.  

Fig. 2(a) shows sample image from the SOTON indoor database. As can be seen in 
the figure, a chroma-key laboratory was constructed to allow controlled lighting con-
ditions. Due to the nature of both the capture and colour data in the database, the use 
of a colour specific extraction is possible. That is, human body extraction from the 
image sequences can be easily achieved through background subtraction as shown in 
Fig. 2(b). After that, the histogram projection profiles are analysed to estimate the 
position of a human body as shown in Fig. 2(c), and the body region is verified by 
prior knowledge such as size and shape. Thresholding and morphology are then used 
to extract the contour of a detected human body. Here, a thresholding method based 
on similarity measures between the background and the object image is used. Finally, 
the body contour is extracted by subtraction followed by dilation and erosion. 

2.2   Extracting Gait Signature 

The analysis of human motion often requires knowledge of the properties of body 
segments. To extract body points in a contour image, a skeleton data with body seg-
ment properties is used. For a body height H, an initial estimate of the vertical posi-
tion of the neck, shoulder, waist, pelvis, knee and ankle was set by study of anatomi-
cal data to be 0.870H, 0.818H, 0.530H, 0.480H, 0.285H, and 0.039H, respectively [1]. 
The gait skeleton can be simply calculated by two border points of each body part p 
with a range constraint. The angles θp of body part p from skeleton data can be ap-

  
(a) Sample Image (b) Background Subtraction (c) Object Detection 

Fig. 2. Background Subtraction and Object Detection 
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proximated by using the slope of the lines in linear regression equation. Also, each 
body point (position) can be calculated by  

, cos( ) sin( )p p i p p i p px y x L y Lφ θ φ θ= + + + −  (1) 

where φ is the phase shift, xi and yi are the coordinates of a previously established 
position, and Lp is the length of body segments guided by anatomical knowledge [1]. 

Now we can extract a 2D stick figure with the nine body points from the skeleton 
data of each body segment. The body points are clearly extracted around three double 
supports [14], but the points around single support appear less well defined than those 
for the double support. Thus, a motion tracking method between double supports is 
used to extract body points at the lower limbs. To track knees and ankles, the left-
most skeleton points around the knee region and the right-most skeleton points around 
the ankle region are considered. In addition, functional or physical constraints are 
used to improve the robustness of the method. For example, during the gait cycle, the 
other foot is in contact with the floor (and does not move forwards), and the crossover 
of the two legs is performed on two single supports during one gait cycle.  
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Fig. 3. Example of Extracted Gait Motion during One Gait Cycle 

The extracted stick figures from an image sequence are shown in Fig. 3(a), and its 
forward displacement at hip, knee, and ankle shown in Fig. 3(b). The gait signature 
can be defined as a sequence of the stick figures obtained from gait silhouette data 
during one gait cycle. Here, the forward displacement of joints is consistent with 
medical data [5, 10, 14], and it is an important component for showing quality of the 
extracted gait signature. Also, the stick figure model is the most effective and well-
defined representation method for kinematic gait analysis. Moreover, the stick figure 
is closely related to a joint representation, and the motion of the joints provides a key 
to motion estimation and recognition of the whole figure. 

2.3   Feature Extraction and Selection 

In the previous section, the gait signature is represented by a sequence of the simpli-
fied stick figure with 8 sticks and 6 joint angles, and gait motion can be describing the 
motion in a compact form as sequence of the joint parameters. Namely, each gait 
signature can be characterised by the body segments (the sticks) and joint angles. The 
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joint angles of the hip, knee and ankle have been considered as the most important 
kinematics of the lower limbs. By definition [15], the joint angles are measured as one 
joint relative to another, so the relative angles in each joint are computed from the 
extracted angle values. In normal walking, the trunk of a human body can be consid-
ered to be almost vertical. Thus, the relative hip angle (θhip) is the same as that of the 
extracted value (θH), and the knee angle can be calculated from the extracted hip an-
gle (θH) and knee angle (θK) as θknee=θH -θK. 

Kinematic analysis of human gait usually characterises the joint angles between 
body segments and their relationship to the events of the gait cycle [14, 15]. In addi-
tion, the trajectories of the gait signature contain many kinematic characteristics on 
human movement. The kinematic characteristics include linear and angular position, 
their displacements and the time derivatives, notably the linear and angular velocities 
and accelerations. Here, the kinematic parameters are obtained from the joint angles, 
which are interpolated by 4th-order trigonometric polynomials [16], during one gait 
cycle. In general, the kinematic parameters are time series data during the gait cycle, 
thus mean and standard deviation values of the time series can be used as gait fea-
tures. Moreover, moments [4] are used to generate the features, which are invariant to 
translation and scaling of the hip and knee angles. The hip-knee cyclograms [4] repre-
sent the movement of nearly the entire body, thus they can be representative of the 
subject’s gait pattern. 

The trajectories of gait signature also contain the general gait parameters such as 
stride length, cycle time (or cadence) and speed and provide a basic description of the 
gait motion [14]. These parameters present essential quantitative information about a 
human gait and give a guide to the walking ability of subject. In addition, each pa-
rameter may be affected by such factors as age, sex, height, muscle strength, etc. The 
period of the gait is determined by number of frames during one gait cycle in image 
sequence, and the frame rate of the SOTON database was 1/25 seconds. The cycle 
time and the gait speed are given by 

_ (sec) _ (frames) _ (frames / sec)cycle time gait period frame rate=  (2) 

(m/sec) _ (m) _ (sec)speed stride length cycle time=  (3) 

where the stride length can be directly estimated from the physical dimensions of the 
image plane. Namely, the stride length is determined by the coordinates of the for-
ward displacements of the gait signature during one gait cycle. 

To classify the gender in the human gait, a total of 26 parameters are considered as 
gait features. These are including general (temporal and spatial) parameter, kinematic 
parameters, and moments. The gait features may contain information that is redundant 
or superfluous, in which case it is usually required to select a subset to reduce extra-
neous noise. This process of removing irrelevant and redundant features is known as 
feature selection. Here, a statistical distance measure that distribution of subjects or 
classes in the feature space is employed. That is, inter-class separation due to mean-
difference with respect to the class covariances is measured by a variation of the 
Bhattacharyya distance [3]. As a result, 19 important features are selected from these 
feature sets. The selected feature set includes most of general parameters, the joint 
angles, dynamic of the hip angles, the correlation coefficient between the left and 
right leg angles, and the centre coordinates of the hip-knee cyclogram.  
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3   Gender Classification by SVM 

In gender classification, 100 different subjects (84 males and 16 females) with seven 
gait signatures of each subject, a total of 700 gait signatures ( 19,534 images), are 
used. A total of the 400, 100, and 200 feature vectors extracted from the gait signa-
tures are used for training, cross validation and testing. Support vector machines 
(SVMs) and neural network are employed as classifiers for this gender classification 
task in a way of 10-fold cross validation (CV). 

3.1   Support Vector Machines 

Support vector machines can perform binary classification and regression estimation 
tasks. Given a set of two-class labelled data (xi, yi), i = 1, 2, .., n and yi = 1, an SVM 
learns a separating hyper-plane < , > + b = 0, where i∈Rn, ∈Rn,  and b∈R. In 
the linear hyper-plane, the SVM looks for a discriminating plane that maximises the 
margin by minimising || ||2/2, subject to yi(< , i> + b) 1 for all i. In the linear 
non-separable case, the optimal separating hyper-plane can be computed by introduc-
ing slack variables i = 1, 2, .., n and an adjustable parameter C and then minimising 

( )2

iw 2 ,  subject to w, x 1- ,  and 0 for all .i i i ii
C y b iξ ξ ξ+ + ≥ ≥  (4) 

Lagrange multiplier i is used for solving the non-separable case by introducing the 
dual optimisation. The separating hyper-plane of linear function is not adjustable in 
many practical cases and takes the kernel function K(•) such that K( ) = φ( φ 
( ). This i can be computed by solving the quadratic optimisation problem as 
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Support vectors are the training examples with i > 0. Specifically unbounded support 
 vectors [7] are with 0 < i < C and bound support vectors with i = C. The pa-

rameters of the separating hyper-plane are  

1
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=

= −  (6) 

In the present study, the implementation of the SVM is based on the working set se-
lection strategy of SVMlight and there kernels of linear (< >), polynomial ((<

> + 1)p) and radial basis function (exp(-|| ||2 / p2)) are chosen. 

3.2   Experimental Results 

The two feature vectors of each subject are used for test and the five are used for 
training and cross-validation. The experimental results are summarised in Table 1. 
The accuracy is the average by the number of SVs, classification rate and computa-
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tional cost of all experiments with change in the kernel parameter p. The computa-
tional cost is measured by FLOP (floating point operation). The test result of 19 se-
lected features is a little higher than that of 26 original features. The average accuracy 
of polynomial kernel (p = 6) was the best with around 100.0% for training, 95.0% for 
CV and 96.0% for testing in the 19 features. The error rate of the linear kernel was 
lower than that of other kernels in terms of classification rate and computational cost. 
The result shows that polynomial kernel is better than linear or RBF (Radial Basis 
Function) kernel [13] in this gender classification task. 

Table 1. Experimental Results of 10-fold Cross Validation Test 

Classification rate (%) 
Kernel P fts SVs 

Training CV Testing 
FLOP 

 26 121.1±4.2 94.4±0.5 92.4±3.2 93.9±1.7 54.2±11.8 
Lin. 

 19 140.9±6.2 93.4±0.4 91.2±3.2 94.6±1.2 67.2±15.2 
26  64.1±2.3 100.0±0.0 95.8±1.8 94.4±0.9 1.6±0.5 

2 
19  57.4±3.4 100.0±0.0 95.4±3.3 96.1±0.7 1.9±1.3 
26 68.3±4.3 100.0±0.0 94.0±4.8 93.9±0.7 0.9±0.4 

Poly. 
6 

19 63.8±3.2 100.0±0.0 95.6±2.7 95.7±0.7 1.0±0.7 
26 137.6±4.6 96.8±0.3 94.4±2.8 95.7±0.9 4.1±0.4 

1.5
19 133.7±5.1 96.8±0.5 93.6±2.8 96.5±0.6 4.7±1.1 
26 145.6±6.6 96.2±0.4 93.8±3.2 95.4±0.9 3.5±0.7 

RBF 
2.0

19 143.3±4.4 95.8±0.4 94.2±2.2 96.7±0.3 4.0±0.9 
 

A 3-layer feed-forward neural network with resilient back-propagation learning al-
gorithm was also tested for comparative study. The average accuracy with the 10-fold 
cross validation was 98.0% for training, 93.0% for CV and 92.0% for testing with the 
network topology of 19×28×2. The overall result is that SVM outperformed neural 
network in the given task. Naturally we seek to extend the technique in terms of bio-
metric application capability as well as classifying gender for a large number of sub-
jects in future. Notwithstanding this, the gender classification task can clearly handle 
a large number of subjects successfully. By this, these results show that people can be 
identified according to gender by their walking pattern. This accords with earlier 
psychological suggestions, and buttressing other similar results. 

4   Conclusions 

We have described an automated gender classification system using computer vision 
and machine learning techniques. To achieve this, the gait signature has been ex-
tracted by combining a statistical approach and topological analysis guided by ana-
tomical knowledge. In the gait signature, the motion parameters were calculated, and 
the gait features based on the motion parameters were extracted, and the SVM and 
neural network classifiers were used to analyse the gender discriminatory ability of 
the extracted features. The results of SVM with polynomial kernel have produced 
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very good classification rates which were 96% for 100 subjects on average. As such, 
the automated gender classification system not only accords with psychological 
analysis in the results it can produce, but also confirms distinctiveness by gender - as 
earlier suggested in psychological studies. There is interest in gait analysis for medi-
cal purposes as its convenience will also benefit analysis of children and elderly. 
Further, there is opportunity for greater realism in biometrics, though this will doubt-
less require more sophisticated features and modelling strategies. 

References 

1. Dempster, W. T., and Gaughran, G. R. L.: Properties of Body Segments Based on Size and 
Weight. American Journal of Anatomy, 120 (1967) 33-54 

2. Foster, J. P., Nixon, M. S., and Prügel-Bennett, A.: Automatic Gait Recognition using 
Area-based Metrics. Pattern Recognition Letters, 24(14) (2003) 2489-2497 

3. Fukunaga K.: Introduction to Statistical Pattern Recognition. 2nd eds. Academic Press, San 
Diego (1990) 

4. Goswami A.: A New Gait Parameterization Technique by Means of Cyclogram Moments: 
Application to Human Slop Walking. Gait and Posture, 8(1) (1998) 15-26 

5. Inman, V. T., Ralston, H. J., and Todd, F.: Human Walking. Williams & Wilkins, Balti-
more (1981) 

6. Johansson, G.: Visual Perception of Biological Motion and a Model for Its Analysis. Per-
ception and Psychophysics, 14(2) (1973) 201-211 

7. Joachims, T.: Learning to Classify Text Using Support Vector Machines. Dissertation, 
Kluwer (2002) 

8. Kozlowski, L. T., and Cutting, J. T.: Recognizing the Sex of a Walker from a Dynamic 
Point-Light Display. Perception and Psychology, 21(6) (1977) 575-580 

9. Mather, G., and Murdoch, L.: Gender Discrimination in Biological Motion Displays based 
on Dynamic Cues. In Proceedings of the Royal Society of London, Vol.B (1994) 273-279 

10. Murray, M. P., Drought, A. B., and Kory, R. C.: Walking Patterns of Normal Men. Journal 
of Bone and Joint Surgery, 46A(2) (1964) 335-360 

11. Nixon, M. S., Cater, J. N., Grant, M. G., Gordon, L., and Hayfron-Acquah, J. B.: Auto-
matic Recognition by Gait: Progress and Prospects. Sensor Review, 23(4) (2003) 323-331 

12. Shutler, J. D., et al: On a Large Sequence-based Human Gait Database. In Proceedings of 
Recent Advances in Soft Computing, Nottingham, UK (2002) 66-71 

13. Shin, M., and Park, C.: A Radial Basis Function Approach to Pattern Recognition and Its 
Applications. ETRI Journal, 22(2) (2000) 1-10 

14. Whittle, M. W.: Gait Analysis: An Introduction. 3rd eds. Butterworth Heinemann (2002) 
15. Winter, D. A.: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and 

Pathological. Waterloo Biomechanics, Ontario (1991) 
16. Yoo, J. H., and Nixon, M. S.: Markerless Human Gait Analysis via Image Sequences. In 

Proceedings of the ISB XIXth Congress, Dunedin, New Zealand (2003) 
 



J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 146 – 153, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Alternative Fuzzy Compactness and Separation 
Clustering Algorithm 

Miin-Shen Yang1,* and Hsu-Shen Tsai2 

1 Department of Applied Mathematics, Chung Yuan Christian 
University Chung-Li 32023, Taiwan 
msyang@math.cycu.edu.tw 

2 Department of Management Information System, Takming College 
Taipei 11451, Taiwan 

Abstract. This paper presents a fuzzy clustering algorithm, called an alternative 
fuzzy compactness & separation (AFCS) algorithm that is based on an exponen-
tial-type distance function. The proposed AFCS algorithm is more robust than 
the fuzzy c-means (FCM) and the fuzzy compactness & separation (FCS) pro-
posed by Wu et al. (2005). Some numerical experiments are performed to as-
sess the performance of FCM, FCS and AFCS algorithms. Numerical results 
show that the AFCS has better performance than the FCM and FCS from the 
robust point of view. 

Keywords: Fuzzy clustering algorithms; Fuzzy c-means (FCM); Fuzzy com-
pactness & separation (FCS); Alternative fuzzy compactness & separation 
(AFCS); Exponential-type distance; Robust; Noise. 

1   Introduction 

Cluster analysis is a method for clustering a data set into most similar groups in the 
same cluster and most dissimilar groups in different clusters. It is a branch in statisti-
cal multivariate analysis and an unsupervised learning in pattern recognition. Since 
Zadeh [14] proposed fuzzy sets that produced the idea of partial memberships to clus-
ters, fuzzy clustering has been widely studied and applied in a variety of  substantive 
areas (see Baraldi and Blonda [1], Bezdek [2], Hoppner et al. [7] and Yang [12]). In 
fuzzy clustering literature, the fuzzy c-means (FCM) clustering algorithm and its 
variations are the most used methods. 

Because the clustering results obtained using FCM are roughly spherical with simi-
lar volumes, many fuzzy clustering algorithms such as the Gustafson-Kessel (G-K) 
algorithm (Gustafson and Kessel [5]), the minimum scatter volume (MSV) and mini-
mum cluster volume (MCV) algorithms (Krishnapuram and Kim [8]), the unsuper-
vised fuzzy partition-optimal number of classes (UFP-ONC) algorithm (Gath and 
Geva [4]), Lp-norm generalization (Hathaway et al. [6]) and more generalized-type 
FCM (Yu and Yang [13]) were proposed to extend the FCM. However, most of these 
algorithms are based on a within-cluster scatter matrix with a compactness measure. 
Recently, Wu et al. [11] proposed a novel fuzzy clustering algorithm, called the fuzzy 
compactness & separation (FCS) algorithm. The FCS objective function is based on a 
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fuzzy scatter matrix so that the FCS algorithm can be derived by minimizing the com-
pactness measure and simultaneously maximizing the separation measure. Wu et al. 
[11] had also shown that FCS is more robust to noise and outliers than FCM. Al-
though FCS actually arose its insensitivity to noise and outliers to some extents, it 
somehow depends on the adjustment of the weighting exponent m and its parameters. 
On the basis of our experiments, we find that FCS and AFCM [10] still lacks enough 
robustness to noise and outliers, especially for unequal-sized-cluster data sets.  

In this paper we use an exponential-type distance based on the idea of Wu and 
Yang [10] to modify the FCS objective function. We then propose a clustering 
method, called the alternative FCS (AFCS) clustering algorithm. Since the exponen-
tial-type distance is more robust than the Euclidean distance. The proposed AFCS 
algorithm can improve the weakness found in the FCS and AFCM. The remainder of 
this paper is organized as follows. In Section 2 the proposed AFCS clustering algo-
rithm is presented and its properties are also discussed. Numerical examples are given 
and comparisons are made between FCM, FCS, AFCM and AFCS in Section 3. Fi-
nally, conclusions are made in Section 4. 

2   The AFCS Algorithm 

Let { }nxxX ,,1=  be an s-dimensional data set. Suppose 1( )xμ , …, ( )c xμ  are 

the fuzzy c-partitions where ( )ij i jxμ μ=  represents the degree that the data point 

jx  belongs to the cluster i , and { }naa ,,1  are the cluster centers. Then the FCM 

objective function is defined as follows: 

2

1 1
( , )

n c m
FCM ij j ij i

J a x a
= =

μ = μ −  

where the weighting exponent +∞<< m1  presents the degree of fuzziness . Re-
cently, Wu et al. [11] proposed the fuzzy compactness & separation (FCS) algorithm 
based on a fuzzy scatter matrix by adding a penalized term to the FCM objective 
function. The FCS objective function is defined as follows: 

2 2

1 1 1 1
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where the parameter 0iη ≥ . It is clear that FCS FCMJ J=  when 0iη = . The up-

date equations that minimize the FCS objective function are as follows: 
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We see that the FCM and FCS objective functions both use the Euclidean distance 

. . Wu and Yang [10] had claimed that the Euclidean distance is sensitive to noisy 

data points. They then proposed an exponential-type distance and extended the FCM 
to the alternative FCM (AFCM) algorithm. Next, we propose an exponential-distance 
FCS along with the Wu and Yang’s approach. We call it the alternative FCS (AFCS) 

clustering algorithm. Thus, the proposed AFCS objective function AFCSJ  is created 

as follows: 

2 2

1 1 1 1

( , ) (1 exp( )) (1 exp( ))
n c n c

m m
AFCS ij j i i ij i

j i j i

J a x a a x
= = = =

μ = μ − −α − − η μ − −α −  

where iη  and α  are parameters. By minimizing the AFCS objective function 

AFCSJ , we have the following update equations: 
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 (2) 

In fuzzy clustering, we restrict the fuzzy c-partitions ijμ  in the interval [0,1] . 

However, the ijμ  in the update equation (1) might be negative for some data point 

jx  so that we need to make some restrictions on it. For a given data point jx , if  

2 2
1 exp( ) (1 exp( ))j i i ix a a x− −α − ≤ η − −α −  then 1ijμ = , and ' 0

i j
μ = , 

for all 'i i≠ . That is, if the exponential-distance between the data point and the ith 

cluster center is smaller than 
2

(1 exp( ))i ia xη − −α − , these data points will then 

belong exactly to the ith cluster with membership value of one . Each cluster in AFCS 
will have a crisp boundary such that all data points inside this boundary will have a 

crisp membership value {0,1}ijμ ∈ and other data points outside this boundary will 

have fuzzy membership value [0,1]ijμ ∈ . Each crisp boundary, called a cluster 

kernel, will form a hyper-ball for the corresponding cluster. Figure 1 shows a two-
cluster data set in which each cluster contains a cluster center and a cluster kernel. 
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The volume of each cluster kernel is decided by the term 
2

(1 exp( ))i ia xη − −α − . In our AFCS, crisp and fuzzy membership values co-

exist. These are similar to Özdemir and Akarun [9] and Wu et al. [11]. To guarantee 

that no two of these c cluster kernels will overlap, iη  should be chosen as follows: 

( ) ( )' '

2 2
( / 4) min 1 exp( ) max 1 exp( )i i k ki i i

a a a x
≠

η = β − −α − − −α −  

where 0 1≤ β ≤ . In general, α  could be chosen as 1

1
( )

n

jj
x x n −

=
α = − .  

Note that the value ( ) '

2 1/ 21 4 (1 exp( )ii
a a− −α − is a half the distance between 

cluster centers 'i
a and ia . Thus, equation (3) should guarantee that no two of these c 

cluster kernels will overlap. If 1.0β = , then the AFCS algorithm will cluster the data 

set using the largest kernel for each cluster. If 0β = , then the AFCS algorithm will 

cluster the data set with no kernel and will be equivalent to the AFCM algorithm 
proposed by Wu and Yang [10]. Thus, the proposed AFCS clustering algorithm is 
summarized as follows:  

 
The AFCS algorithm 

Step 1: Fix nc ≤≤2  and fix any .0>ε  

Give initials 
(0) (0) (0)

1( , , )cμ μ μ=  and let 1=s . 

Step 2: Compute the cluster centers 
)(sa  with 

( 1)sμ −
 using (2).  

Step 3: Update 
( )sμ  with 

)(sa  using (1). 

Step 4: Compare 
( )sμ  to 

( 1)sμ −
 in a convenient matrix norm ⋅ . 

  IF 
( ) ( 1)s sμ μ ε−− < , STOP 

              ELSE s=s+1 and return to step 2.  

Let us first use the data set shown in Fig.1. We find that the clustering results from 
AFCS well separate the data into two clusters with symbols, cross “+” and circle “ ”, 
and also with two cluster kernels. We then run the AFCM and AFCS algorithms for 
the data set with 2=m  and =β 0.05, 0.1 and 0.5. The results are shown in Fig. 2. 

We find that the clustering results from AFCS will have very similar clustering results 
as AFCM when the parameter β in AFCS is small. However, the kernel volume for 

each cluster in AFCS will grow bigger when the parameter β in AFCS is larger as 

shown in Fig. 2. In fact, the cluster kernel volumes will increase when β in AFCS 

increases. Finally, we mention that the proposed AFCS is considered by replacing the 
Euclidean distance in FCS with an exponential-type distance. On the other hand, we 
can see that AFCS is a generalization of AFCM by adding a penalized term.  
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Fig. 1. Clusters obtained by AFCS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Membership functions of AFCM and AFCS 

3   Examples and Numerical Comparisons 

In this section we use some numerical examples to compare the proposed AFCS algo-
rithm with FCM, AFCM and FCS. These algorithms are implemented under the same 
conditions with the same initial values and stopping rules. 

Example 1. First, we use a popular clustering problem with two clusters (see Ref. [3]) 
in that there are two great different cluster numbers for two clusters. The data set is 
given in Fig. 3. According to our experiments, Figs. 3(a)~(c) show that FCM and FCS 
with m = 2 and β = 0.1, β = 0.2 do not give good enough clustering results where 

one cluster is with the symbol of cross “+” and another cluster is with the symbol of 
circle “ ”. Obviously, FCM and FCS couldn’t tolerate these unequal-sized clusters in 
the data set when the weighting exponent m = 2. However, if we set m = 6 for FCM 
and FCS, we find that FCS does give good enough clustering results with m = 6, β = 

0.1 (see Fig. 3(f)), but FCM does not give good clustering results either (see Fig. 
3(d)). Overall, FCS with a larger m value gives good clustering results for the un-
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equal-sized-cluster data set. According to Figs. 3(g) and (h), AFCM and AFCS actu-
ally give good clustering results when m = 2. That means, AFCM and AFCS presents 
less sensitivity to the weighting exponent m than FCM and FCS. 

Next, we add an outlier with the coordinate (30, 0) into the data set for our experi-
ments. The clustering results from FCS, AFCM and AFCS are shown in Fig. 4. Even 
though the weighting exponent m = 6 or m = 8 is given, the FCS clustering results are 
obviously affected by this outlier where the outlier becomes a cluster alone so that the 
original two clusters are incorporated into one cluster as shown in Figs. 4(a)~(c). In 
Figs. 4(d)~(f), the results show that AFCM may be also affected by this outlier even 
though the m value is large. On the contrary, Figs. 4(g)~(i) show that AFCS are not 
affected by the outlier when m = 6, β  = 0.7. 

Example 2. According to Wu and Yang (2002), the AFCM is good for the unequal 
sample size data set. In this example, we make the comparisons of AFCS with AFCM 
and FCS. We add an outlier with the coordinate (10, 0) to the data set as shown in  
Fig. 5. The clustering results of AFCM, FCS and AFCS are shown in Figs. 5(a)~(f), 
respectively. Figs. 5(a)~(c) show that AFCM and FCS are affected by this outlier. 
Figure 5(d) shows that FCS with a large m value is also affected by the outlier. Figure 
5(f) shows that our proposed AFCS with a large m value can detect unequal sample 
size clusters and is not affected by the outlier. 

        
    (a) FCM (m = 2)         (b) FCS (m = 2, β = 0.1)     (c) FCS (m = 2, β = 0.2) 

             
(d) FCM (m = 6)        (e) FCS (m = 5, β = 0.1)     (f) FCS(m = 6, β = 0.1)        

     
     (g) AFCM(m = 2)       (h) AFCS(m = 2, β = 0.1) 

Fig. 3. FCM, FCS, AFCM and AFCS clustering results for unequal sample size data set without 
outlier 
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(a) FCS(m = 6, β = 0.1)     (b) FCS(m = 6, β = 0.7)     (c) FCS(m = 8, β = 0.1) 

         
      (d) AFCM (m = 2)                (e) AFCM (m = 6)              (f) AFCM (m = 8) 

         
(g) AFCS (m = 6, β = 0.1)    (h) AFCS(m = 6, β = 0.6)   (i) AFCS(m = 6, β = 0.7) 

Fig. 4. FCM, FCS, AFCM and AFCS clustering results for unequal sample size data set with an 
outlier (30, 0) 

 

      
         (a) AFCM (m = 2)               (b)AFCM (m = 6)           (c) FCS (m = 6, β = 0.1) 

       
(d) FCS (m = 8, β = 0.1)   (e)AFCS (m = 6, β = 0.1)   (f)AFCS (m = 6, β = 0.2) 

Fig. 5. FCS, AFCM and AFCS clustering results for unequal sample size data set with an out-
lier (10, 0) 
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4   Conclusions 

In this paper, we proposed a clustering algorithm, called AFCS, using an exponential-
type distance. Each cluster obtained by the AFCS will have a cluster kernel. Data 
points that fall inside any one of the c cluster kernels will have crisp memberships and 
be outside all of the c cluster kernels that have fuzzy memberships. The crisp and 
fuzzy memberships co-exist in the AFCS. Numerical examples show that, although 
FCS could tolerate unequal-sized clusters and is robust to outlier to some extent, but it 
needs to adjust the weighting exponent m to a larger number. On the other hand, FCS 
and AFCM are affected by an outlier for the unequal-sized-cluster data sets. However, 
the proposed AFCS clustering algorithm can overcome the above drawbacks. Overall, 
AFCS actually works better than FCM, AFCM and FCS. 
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Abstract. This article exposes wood pieces classification method according to 
their color. The main difficulties encountered by the Company are primarily in 
the color recognition according to a certain graduality, and the decision to take 
on all the board with the different sides. These problems imply the use of 
flexible/robust model and the use of an “intelligent” information management 
delivered by the sensors. In order to improve the current system, we propose to 
integrate a method, whose principle is a fuzzy inference system, itself built 
thanks to fuzzy linguistic rules. The results obtained with our method show a 
real improvement of the recognition rate compared to a bayesian classifier 
already used by the Company. 

1   Introduction 

The wood product industry is placed in a highly competitive market. One task that 
lumber or wood product suppliers are currently faced with is the matching boards 
according to their color properties. For example, the face of higher quality wooden 
cabinets should be uniform in color. In general, the color grading procedure is highly 
subjective and requires human intervention. In order to reduce overhead costs and 
improve product quality, companies are looking to state-of-the-art technology. One 
relatively low-cost solution that may be applied to improve the color grading process 
involves adding a sensor to existing industrial wood scanners specifically designed to 
capture the color properties of the wood. However, colors are not easily quantified 
and sensor data in its raw form does not suffice to make decisions with regard to the 
color properties of boards that have been scanned. To address the issue of color 
classification, this paper introduces a novel approach to the robust classification of 
board color by incorporating sensor data into a new fuzzy classification system. 

The work described here has been motivated by a collaborative effort between 
academia and industry. The Automatic Research Center of Nancy (CRAN) is the 
academic partner and Luxscan Technologies, an aggressive start-up company based in 
the Luxembourg is the industrial partner. Because the algorithms developed in this 
work are to be implemented into production systems, the ability to process boards and 
sort them according to their color properties in real time is crucial. In general, 
production lines may reach speeds of 180 meters of board length per minute. The 
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sensors intended for this application return data at a rate of 1500 lines per second 
where each line is composed of 900 pixels. Hence the method described here must be 
capable of processing at least 1,350,000 pixels per second. Figure 1 gives an 
overviews of the scanning and decision making system that has been developed for 
this work. 

 
 
 
 

 
 
 
 
 

 
 
 

 

 

 

Fig. 1. Vision system 

In this article, we present an improvement of the color classification module of this 
vision system. We only detail here the board classification according to the color of 
only one of these faces. In the next step of the process, this color information will be 
merging with the other one provided by the other face, i.e. by the second sensor (see 
figure 1). Finally, the vision system supplies a color label for the wooden board, in 
accordance with the industrial classification. In our case, we must distinguish 
different color classes according to the considered wood specie and customer wishes. 
So this study has been realized on red oak separated on 6 classes: Dark Red, Red, 
Light Red, Dark Brown, Brown and Light Brown. These colors don’t correspond to a 
precise wavelength; they are defined according to the customer perception.  

The first section of this article concerns the way to obtain the characteristic vector 
that we use to make the color recognition. The second part explains the Fuzzy 
Reasoning method used to make the color classification. Finally, we expose the 
results obtained with our Fuzzy Linguistic Rules Classifier, compared to the current 
classification based on bayesian classifier, and used by the Company.  

2   Characteristic Vector Extraction 

2.1   Color Characterization 

Two aspects are essential to characterizing color: the reference color space and the 
characteristic vector. One of the most common color spaces denoted RGB, organizes 
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the color information of an image into its red, green, and blue components.  However, 
the International Commission on Illumination (CIE) does not recommend its use 
because the color components are not independent of one another. Other popular color 
spaces include the Lab and HSV (Hue, Saturation, Value (intensity)) spaces. Many 
studies on color space selection have been conducted elsewhere, i.e. [5][13]. After 
conducting several internal tests on various sets of wood samples, we decided to work 
in the Lab space because it provides the best color discrimination in our case. 
Moreover, this colorimetric reference space better represents colors seen by humans. 

The choice of lighting is another important parameter for our study. The intensity, 
spectral density, and time variance of light, as well as ambient temperature, all have a 
significant effect on how colors are perceived. Extensive testing has been performed 
in order to determine parameters for how these features influence color perception. 
For example, a red piece of wood may be classified as brown if the temperature varies 
by just 5°C.  Further discussion of these parameters is limited in order to protect the 
partner’s intellectual property.  Finally, we decided to work with white, non-neon 
lighting and process image data in the Lab space to obtain the best distribution of 
colors to sort. 

2.2   Size of the Region of Interest 

The manufacturing process allows us to only take an image from the side of the 
board. An example of obtained images is shown in the figure 2. 

Fig. 2. Side image with 4 processing ROIs 

For our application, we need to split the image in several Region Of Interest (ROI) 
to manage the color transition in a better way. Indeed, the board color is not really 
constant along the entire side. The wood is not a homogeneous material. It exists lots 
of variations in a board according to its color or its grain. Especially, if there are two 
or more colors on the processed board, we can classify it in a specific category. So, 
we propose to split the images in several ROI and we apply our classification method 
on each. The results, which will be presented further in this article, allow taking into 
account the importance of the ROI size. Its size must be large enough to be 
independent from the wood texture, but it must not be too large to avoid the confusion 
of two separated colors. A too large ROI also increase the processing time. 
Effectively, one of the main constraints for our system is the processing time, which 
is very small when we consider the quantity of information to manage on a whole 
board. Considering that the used sensors acquire 1500 lines per second, the time 
constraint for a 300 lines ROI must not exceed 0.2 s.  

In the same way, it is necessary to characterize a color with simple characteristic 
vector. We choose one of the simplest attribute responding to the calculation time 
criterion: the average. So, we have defined the characteristic vector V with the 

R1          R2           R3        R4 
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expression (1) for each processed ROI. We could use additional information through 
the standard deviation of the different components, but, as said before, the wood is not 
a homogeneous material. A light wood board can have a dark grain and a dark board 
can have a light grain. For these two cases, the standard deviations will be the same. 
The size of 300 lines was selected after a study of ROI size impact in processing time 
between 50 lines and 450 lines. 

.
L

a

b

m

V m

m

=
 

(1) 

where mi represent the mean value of the variable i ( i = {L,a,b} ). 

3   Methodology of Color Classification 

The second step for the color labeling is the classification method. Other methods 
were used to classify wooden boards according to color [9] [10]. But the color 
perception is a subjective concept in the image processing. It does not exist crisp 
boundary between the different colors, which we would like to classify. That’s why 
we decide to use a method based on the fuzzy sets theory [11]. This theory allows 
keeping the subjectivity notion in the taken decisions. Fuzzy logic is an interesting 
tool to obtain repeatability in the colors recognition, because the colors can be 
regarded as intrinsically fuzzy [3]. Other methods based on 3D-color-represention 
[12] have been tested, but the results are not correct on unknown samples of wood. 
There are a lot of methods using Approximate Reasoning on numerical data. We have 
chosen to work with fuzzy logic concept and especially to use fuzzy linguistic rules 
based mechanisms. The main reason is the potentiality of human interpretation of the 
generated models from such a method. 

3.1   Fuzzy Inference System (SIF) 

The method for colors classification must allow using numerical information provided 
by the sensors. In fuzzy rules, we can use two different reasonings. The abductive 
reasoning allows obtaining information on the input X from the output variable Y; 
and the deductive reasoning allows deducing the output Y from input values X. In our 
case, we use the Modus Ponens, which corresponds to the second case. The generated 
rules can be classified in two categories: conjunctive and implicative rules. This 
dichotomy is explained also in a ”cultural” point of view. For the implicative rules, 
the reasoning is governed by the knowledge. The more information we will have on 
the product, the more the results will be precise. In our case, we are located in the low 
level part of the image processing, so we don’t have enough rich information to use 
this kind of rules. In fact, the conjunctive rules result from the data analysis field.  
That’s why we have chosen a conjunctive parallel rules mechanism.  

Two main models can be used to build such parallel mechanism: Larsen model and 
Mamdani model [3]. The difference between them is made according to the T-Norm 
choice for implicative operator. Finally, we have chosen an inference mechanism 
based on Larsen model, because the Product is more adapted than the Minimum  
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T-Norm in our case. In fact, by using the Product, we allow a non-linear splitting of 
input variables spaces [2]. After this premises processing, we combine the different 
partial results with a disjunction operator (T-Conorm): the Maximum. In our case, we 
don’t want to generate a composition law but use a pseudo-implication of Larsen [3]. 
The output of our Fuzzy Linguistic Rule Classifier is a fuzzy vector providing the 
different membership degree of a sample to the different defined color classes. 
Finally, to take a decision, we affect the processed sample to the class with the 
maximum membership degree. The membership functions (figure 3) are constructed 
thanks to the expert knowledge. In fact, we split the representation space of the 
different attributes (L, a, b-averages) according to the color distribution. This 
processing engine is very adapted to this kind of data analysis problem [6]. The 
interest of our method is the calculation speed and the certainty to obtain coherent and 
non-redundant rules. There are many methods, which supply automatically fuzzy 
rules from a data set [1][5]. We decided, thanks to the criteria previously evoked, to 
use the technique developed by Ishibuchi, Nozaki and Tanaka [16]. The inference 
engine works as illustrated by the scheme of figure 3. The different parts of the 
algorithm are exposed in section 3.2. 

Fig. 3. Module of color recognition 

In the section 4, we present a comparison between our method and a method much 
more traditional, which does not take into account the gradual aspect of the color, and 
our classification methodology [2]. 

3.2   Fuzzy Linguistic Rules Classifier 

This mechanism is divided in three steps: the input fuzzification, the fuzzy generation 
rules and their adjustment. 

Input attributes fuzzification: this part consists to split the characteristic vector 
parameters in several terms. We qualify these terms with a word in natural language. 
By example, the intensity of a color can be “light”, “medium” or “dark”. The 
decomposition number is currently realized empirically thanks to wood expert 
knowledge. Thanks to these words, we can thus generate linguistic rules. 
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Fuzzy rules generation: this part consists in generating fuzzy rules, like “IF… 
THEN...”. These rules are obtained according to a training samples set. 

If we consider two input attributes and one output color, the associated fuzzy rule 
is: 

“IF x1 is Ai AND IF x2 is Ak THEN y1 is the color Cn.” 
with  x1 and x2 the input parameters 
 y1 the output data 
 Ai and Ak the fuzzy subsets 
 Cn the color class n 

Fuzzy rules adjustment: this part corresponds to the iterative step of the algorithm. 
In fact, we adjust the splitting of parameters representation spaces according to the 
training samples set. The base of fuzzy rules is under the form of a numerical matrix 
made up of the attributes, output classes to be recognized and a confidence degree. 
This degree associated to each rule, can be compared to a relevance degree of the rule 
in agreement with the input data.  The results provided by our recognition module are 
similarity degrees [8] with the output classes. In other words, we are interested with 
the resemblance of our object to identify with the nearest color class. 

4   Comparative Results with a Bayesian Classifier 

To compare our method to a bayesian classifier, we selected 350 color samples for the 
training step and 1000 color samples for the identification step. The chosen colors are 
those specified in the introduction. We firstly compare the results provided by using a 
300-lines-ROI. We have also tried to show the importance of the ROI’s definition (cf. 
section 2.2) and the processing time for the two compared methods. The results shown 
in table 1 expose the enhancement that the use of fuzzy classification method gives. The 
increase of the generalization rate is promising and proves a good capacity for 
extrapolating in case of an unknown sample. For a use in an industrial environment, the 
generalization recognition rate is still too low, but all the products could not be 
classified according the color. Thus, the “unknown” pieces can be kept for other uses. 

Table 1. Recognition rate on the training samples set 

 Bayesian Classifier Fuzzy Classifier 
Training Recognition Rate 77.20% 91.10% 

Generalization Recognition Rate 72.48% 83.89% 

4.1   Impact of the ROI Size in Color Recognition Rates 

In this section, we want to show the influence of the ROI size in order to choose the 
better one for our application. Table 2 presents the results in generalization for 
different ROI size and the two tested methods.  

The results concerning the different ROI size are also important. If the zone size is 
too small, the recognition rates are not the betters in generalization. To the opposite, 
by exceeding a certain threshold, we don’t improve any more the identification rates. 
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Table 2. Recognition rates on the generalization samples set for different ROI sizes 

 Bayesian Classifier Fuzzy Approximate Classifier 
ROI size (in 

line) 
50 

15
0 

30
0 

45
0 

50 
15

0 
3

00 
45

0 
Recognition 
Rate (in %) 

69.
19 

71.
24 

72.
48 

72.
37 

72.
41 

77.
20 

8
3.89 

82.
97 

With this generalization samples set, the best ROI size is 300 lines in the board 
length. As said in section 2.2, we process the images by ROIs. This explains because, 
if a board has two colors on one side in the length, we will make an error on the color 
classification. We precise our process must allow the labeling of the global board 
color. If a board has two colors in its width, we use a specific decision technique to 
process the color variation. 

4.2   Processing Time for Color Classification 

The second aspect checked to validate our method is the processing time. As said 
before, our time constraint is about less than 0.2 s.  

Table 3. Processing time for one ROI of 300 lines 

 
Bayesian 

Classifier 
Fuzzy 

Classifier 
Processing 

time 
0.12 ms 0.05 ms 

The results exposed in table 3 allow us to validate the time performance of our 
method. The given time results are computed for the classification step of one ROI. It 
doesn’t take into account the calculation time for obtaining the characteristic vector. 
However, the remaining laxity is large enough. 

5   Conclusion 

The color perception in the wood is a very subjective concept. This paper presents a 
methodology to keep the human-like perception to classify the color. Our numeric 
model is constituted of fuzzy conjunctives rules activated in parallel and merged with 
disjunctive operator. This model is generated from the Ishibuchi-Nozaki-Tanaka 
algorithm, which replies at our system constraints. This study demonstrates the 
advantages of using fuzzy logic. This is checked through the improvement of the 
recognition rates and the decrease of the time consuming. The future works concern 
the use of our developed sensor. Indeed, by using the fuzzy logic, we have access to 
fuzzy information through the membership degree to the different color classes. 
That’s why we would like to improve our system by integrating the fuzzy sensor 
concept [14]. After this part, we must work on the information fusion. This topic is 
very important in our case because we scan boards on the different sides. The system 
must take a global decision for all the board. And it is not evident when the board has, 
by example, two sides of different colors. Thanks to the fuzzy data, which can be 
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given by our system, we could also work on the notion of fuzzy information fusion 
[6][15]. The taken decisions for the scanned wooden boards should be perhaps more 
realistic. 
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Abstract. In this paper, a method to design separable trade-off corre-
lation filters for optical pattern recognition is developed. The proposed
method not only is able to include the information about de desirable
peak correlation value but also is able to minimize both the average cor-
relation energy and the effect of additive noise on the correlation output.
These optimization criteria are achieved by employing multiple training
objects. The main advantage of the method is based on using multiple
information for improving the optical pattern recognition work on im-
ages with various objects. The separable Trade-off filter is experimentally
tested by using both digital and optical pattern recognition.

Keywords: Filter design, Separable filter, Optical and digital image
processing, Optical correlator.

1 Introduction

It has been shown that correlation filters are an effective avenue for object dis-
crimination in imaging pattern recognition [1,2,3]. The method used in the design
of a correlation filter can strongly impact in its capacity to identify objects in
an image. The correlation filters can be classified according to the size of the
training set to be used. If one target object is used the correlation filters can be
designed following: The Classic Matched Filter (CMF) method [4], the Phase
Only Filter (POF) method [5], and the Inverse Filter (IF) method [6]. For cases
in which more than one training object is used, the filter receives the name of
�
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synthetic discriminate function (SDF) [7] and some examples are: The Minimum
Variance (MVSDF) filter, the Minimum Average Correlation Energy (MACE)
filter, and the Trade-Off filter [8,9,10]. Each one of the mentioned filter, are
designed to optimize some quality criteria [1]. For example, the CMF filter op-
timizes the signal to noise ratio (SNR) criteria; the MACE filter optimizes the
Peak to Correlation Energy (PCE) criteria. The Trade-off filter proposed in [11]
can optimize more than one quality criteria by means of a parameter β that
permits to control the degree of compromise between the chosen criteria.

Normally, to process two-dimensional images, 2D correlation filters are neces-
sary generating therefore 2D operations. The design of separable two-dimensional
digital filters is proposed by Twogood et al. [12]. They show an efficient tech-
nique to filter design and implementation of separable filters using 1D instead
of 2D operations. Mahalanobis [13] proposes one-dimensional separable filters to
process two-dimensional images, with the advantage of using less memory stor-
age and only 1D digital processing techniques. A separable filter is one in which
the separability property of the digital filters, h(x, y) = hc(x)hr(y), is imple-
mented. A procedure for deriving optimal separable filters is treated in [14] by
using singular value decomposition method, which is applied using a Maximum
Average Correlation Height (MACH) criterion.

Mahalanobis [13] has developed a design methodology of separable filters
for one training image using only the PCE criteria. In this work, we improve
the Mahalanobis methodology not only by taking into account two optimization
criteria: the approach of minimizing the energy of the correlation and reduce the
effect of noise, but also by including more than one training image. The foregoing
has the advantage of designing one filter using multiple information, which can
improve the pattern recognition work on images with various objects. On the
other hand, it is well known that optical pattern recognition perform high speed
correlation operations, and optical process permits parallelism in information.
Therefore, we test the proposed method implementing the designed filters in an
optical correlator to perform optical pattern recognition.

The paper is structured as follow. In Section 2 the proposed method is de-
veloped. Implementations of the method and experimental setup of an optical
correlator are described in Section 3. Digital and optical pattern recognition
results are presented and discussed in Section 4. The main conclusions are pre-
sented in Section 5.

2 Design of Separable Trade-Off Correlation Filters

Let us start considering N d×d training images xi (i = 1, ..., N); let hr and hc be
the filters of length d that process the rows and the columns respectively. Also,
let us consider the Fourier Transforms (FT) of xi, hr and hc as Xi(k, l), Hr(l)
and Hc(k) respectively, with k and l the horizontal and vertical frequencies.
Further, ui is the desired ith output of the correlator given by,

d∑
k=1

d∑
l=1

Hr (l)Hc (k)X∗
i (k, l) = ui,
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where ∗ denoted the complex conjugated. The average correlation energy Eav is
expressed by

Eav =
1
N

N∑
i=1

d∑
k=1

d∑
l=1

|Hr (l)|2 |Hc (k)|2 |Xi (k, l)|2,

and the output noise variance σ2 is given by

σ2 =
d∑

k=1

d∑
l=1

|Hr (l)|2 |Hc (k)|2 C (k, l),

where C(k, l) is the power spectral density of noise with zero mean. Now, to
design the Trade-off filters, we have to minimize the correlation plane average
energy Eav and minimize the effect of additive noise on the correlation output
(σ2) fulfilling the value of each ui, this is:

To minimize the term:

(1 − β)NEav + βσ2 = (1 − β)
N∑

i=1

d∑
k=1

d∑
l=1

|Hr (l)|2 |Hc (k)|2 |Xi (k, l)|2+

β

d∑
k=1

d∑
l=1

|Hr (l)|2 |Hc (k)|2 C (k, l), (1)

subject to the condition:
d∑

k=1

d∑
l=1

Hr (l)Hc (k)X∗
i (k, l) = ui, (2)

where β is the balance parameter of the Trade-off separable filter. Applying the
Lagrange multipliers, it can be shown that the functional Φ is given by

Φ =
d∑

k=1

d∑
l=1

|Hr (l)|2 |Hc (k)|2
{

(1 − β)
N∑

i=1

|Xi (k, l)|2 + βC (k, l)
}
−

2
m∑

i=1

λi

(
d∑

k=1

d∑
l=1

Hr (l)Hc (k)X∗
i (k, l)− ui

) ,

where λi are coefficients introduced for satisfy (1) and (2). Now deriving the
functional Φ with respect to Hr, and equaling it to zero, we obtain for Hr(l)

Hr (l) =

∑
k

H∗
c (k)

N∑
i=1

λiXi (k, l)

∑
k

|Hc (k)|2
{

(1 − β)
m∑

i=1

|Xi (k, l)|2 + βC (k, l)
} (3)

This can be expressed in matrix notation as:

Hr (l) =

h+
c

[
m∑

j=1

λjxj (l)

]
h+

c T (l)hc

(4)
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where hc is a column vector of the filter Hc(k), + indicates the transpose conju-
gated, xj(l) is a column vector formed with the lth column of each FT, i.e, equal
to xj(l) = [Xj(1, l), ..., Xj(d, l)]+ and T(l) is a diagonal matrix with the sum of
the columns of the power spectral density of the input images plus the columns of

the matrix C(k, l) calculated by Tj,j (l) =
{

(1 − β)
N∑

i=1

|Xi (j, l)|2 + βC (j, l)
}
.

Replacing (4) in (2) one obtain

ui =
d∑

l=1

h+
c

[
N∑

j=1

λjxj (l)

]
x+

i (l)hc

h+
c T (l)hc

(5)

Now, if u = [u1, u2, ..., uN ] and L = [λ1, λ2, . . . , λN ], the equation (5) can be
rewritten in matrix form as AL = u, and A is an N ×N matrix such that each
elements is calculated by

a (i, j) =
d∑

l=1

h+
c
xj (l) x+

i (l)hc

h+
c T (l)hc

, i = 1, ..., N ; j = 1, ..., N. (6)

Then replacing L = A−1u in (4) allows the calculus of the filter Hr(l) by
means

Hr (l) =
h+

c

[
X+ (l)A−1u

]
h+

c T (l)hc

(7)

where X(l) is a d × N matrix formed by the l column of the FT of the N
training images, i.e. X(l) = [x1(l),x2(l), . . . ,xN (l)]. The value of Hc(k) will
come out from maximizing a functional in the way

J (hc, i, j) =
d∑

l=1

h+
c
xj (l) x+

i (l)hc

h+
c T (l)hc

(8)

whose solution for a given l and i = j is

hc = T (l)−1 xi (l) .

In the most general case, we propose maximizing (8) with a filter with the
same structure of the trade-off filter [3] solution, calculated by

hc = T−1X
(
X+T−1X

)−1
u (9)

where T is the mean of the T(l) matrix and X are the mean of X(l) for all l.
Moreover, the Hr(l) filter is obtained from (7).

Next, we implement this method to design separable trade-off filter and per-
form both digital and optical pattern recognition. Further, the optical experi-
ments are made with an optical convergent correlator and the behavior of filters
is measured.
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3 Optical Implementation

The convergent optical correlator used in this experiment is shown in Fig. 1. In
this figure, a monochromatic source of light (λ= 632.8nm) at point O illuminates
the correlator, and L1 and L2 are lenses. The input scene x(m,n) is introduced
in the image plane. The optical Fourier transform of x(m,n) is obtained in the
filter plane by means of the L1 lens. In such plane, the trade-off separable filter
H∗(k, l) is set. Finally in the correlation plane the optical correlation (c(m,n))
between the input scene and the Fourier transform of the filter (H∗(k, l)) is
obtained by means of L2 lens. A CCD camera captures the intensity plane and
it is send to a computer to save it as a bitmap image to be analyzed. The
filter was synthesized by digital holographic techniques using Lee’s codification
method [15] and implemented in a plastic substrate. Also, in this figure the
(m,n) coordinate represents the spatial domain and (k, l) represents the spatial
frequency domain.

Fig. 1. Setup of optical convergent correlator. O is a monochromatic source light, L1

and L2 are lenses, the Fourier transform of the input image x(m,n) is obtained in the
filter plane. Finally the correlation is captured by a CCD camera. The separable filter
is introduced in the filter plane.

To quantify the recognition ability, we use the discrimination capability (DC)
criteria given by [16]

DC = 1 −
max

{∣∣∣c2f ∣∣∣}
max {|c2o|}

(10)

where co and cf are the correlation peak values of the object to be recognize and
to be discriminated against, respectively. DC values near to 1 indicate a good
discrimination, and near to zero value indicates a poor discrimination.



Image Pattern Recognition with Separable Trade-Off Correlation Filters 167

4 Results

In this section, we present results obtained with the separable trade-off filter.
The training objects are shown in Fig. 2a. They correspond to three angular
positioned faces of two people. The input images have 256× 256 pixels in gray
scale. The separable trade-off filter is adapted to have a compromise between
robustness to noise (β = 0) and sharpness of the correlation peaks (β = 1)
criteria. This parameter exhibits a nonlinear behavior for both quality criteria,
and we use a balance parameter of β = 0.999 [16]. The filter is designed to
recognize three angular position faces in the left column of Fig. 2a, labelled with
0, 2 and 4 respectively; and to reject the faces of the right column of Fig. 2a,
labelled with 1, 3 and 5 respectively. In this case, we obtain the DC values for
each face of Fig. 2a from

DC i = 1 −
max

{∣∣∣c2f−i

∣∣∣}
max {|c2o|}

, i = 0, 1, 2, 3, 4, 5 (11)

where DC i is the DC values of (10) applied for the object i. cf−i is the maximum
of the correlation obtained for object i and co is the correlation peak for the
reference object. We have selected the faces 0, 2 and 4 of input image (Fig. 2a)
as reference objects for the calculus of DC i. For a good discrimination, the DC i
values for i = 1, 3 and 5, must be near to one, and DC i for i = 0, 2 and 4, must
be near to zero.

(a)

(b) (c)

Fig. 2. a) Original input scene. A trade-off separable correlation filter has been designed
for recognition of the objects 0, 2 and 4, and rejection of the 1, 3 and 5 objects. b)
and c) 3-D intensity correlation planes obtained by numerical and optical experiments
results respectively.
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In Fig. 2b and Fig 2c, 3-D graphs of intensity correlation planes are shown.
Numerical result of the intensity correlation plane obtained with the separable
filter is shown in Fig. 2b. It can be clearly seen that the maximum peaks are in
the position of the object to be recognized. In Fig. 2c, an experimental result
by using an optical correlator is presented. We can observe that the correlation
peaks are located at position of object 0, 2 and 4. However, the values of the
correlation peaks corresponding to the objects 1, 3 and 5 are much higher than
the numerical results. The noise in the optical results is higher than in the
numerical results.

Table 1. Numerical DC i values obtained with trade-off separable filter for each object
of Fig. 2a. The reference objects used are 0, 2 and 4 of Fig. 2a.

Reference DC 0 DC 1 DC 2 DC 3 DC 4 DC 5
Object 0 0,000 0,966 0,036 0,945 -0,018 0,923
Object 2 -0,038 0,965 0,000 0,943 -0,057 0,920
Object 4 0,018 0,967 0,054 0,946 0,000 0,924

The performance of the designed separable trade-off filter is shown in tables
1 and 2. In Table 1 the values obtained by numerical simulation of DC i for
the input image of Fig. 2a are shown, when the objects 0, 2 and 4 are used as
reference. It is clear that the filter is having the ability to perform a correct
classification of the objects. We can note that the values of DC for 0, 2 and
4 objects are near to zero, this means similar peaks values between objects
indicating a good recognition. On the other hand, the rejection for 1, 3 and
5 objects with values near to one indicates low cross correlation peaks values.
In Table 2 the experimental values obtained by means of an optical correlator
are presented. It can be clearly seen that the parameters DC 1, DC 3 and DC 5
present lower values than the ones obtained with numerical results. However, the
ability to perform a correct classification is maintained. In fact, the correlations
with the objects to be rejected are at least 50% lower than the correlation with
the objects to be detected.

Table 2. Experimental DC i values obtained with trade-off separable filter for each
object of Fig. 2a. The reference objects used are 0, 2 and 4 of Fig. 2a.

Reference DC 0 DC 1 DC 2 DC 3 DC 4 DC 5
Object 0 0,000 0,717 -0,063 0,562 -0,042 0,518
Object 2 0,059 0,734 0,000 0,588 0,020 0,547
Object 4 0,040 0,729 -0,020 0,580 0,000 0,538

5 Conclusions

In this work a methodology for the design of separable trade-off filters is pre-
sented. The design methodology is based in two criteria: the correlation plane
energy and the signal to noise ratio on the correlation output. The aim of the fil-
ter is to be useful in cases when more than one object have to be recognized. Our
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results show a good performance of the separable filter designed for digital pat-
tern recognition, exhibiting that the procedure of reducing to 1-D processing is
an efficient processing alternative reducing memory storage. In optical pattern
recognition, our results show that the performance of the separable trade-off
filter has a similar behavior, but the noise is higher than in the numerical exper-
iments. The proposed method will be evaluated with a larger and statistically
more significant data set in the future.
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Abstract. To automatically determine a set of keywords that describes
the content of a given image is a difficult problem, because of (i) the
huge dimension number of the visual space and (ii) the unsolved ob-
ject segmentation problem. Therefore, in order to solve matter (i), we
present a novel method based on an Approximation of Linear Discrimi-
nant Analysis (ALDA) from the theoretical and practical point of view.
Application of ALDA is more generic than usual LDA because it doesn’t
require explicit class labelling of each training sample, and however al-
lows efficient estimation of the visual features discrimination power. This
is particularly interesting because of (ii) and the expensive manually ob-
ject segmentation and labelling tasks on large visual database. In first
step of ALDA, for each word wk, the train set is split in two, according
if images are labelled or not by wk. Then, under weak assumptions, we
show theoretically that Between and Within variances of these two sets
are giving good estimates of the best discriminative features for wk. Ex-
perimentations are conducted on COREL database, showing an efficient
word adaptive feature selection, and a great enhancement (+37%) of
an image Hierarchical Ascendant Classification (HAC) for which ALDA
saves also computational cost reducing by 90% the visual features space.

Keywords: feature selection, Fisher LDA, visual segmentation, image
auto-annotation, high dimension problem, word prediction, CBIR, HAC,
COREL database, PCA.

1 Introduction

The need for efficient content-based image retrieval has increased in many ap-
plication areas such as biomedicine, military, and Web image classification and
searching. Many approaches have been devised and discussed over more than a
decade. While the technology to search text has been available for some time,
the one to search images (or videos) is much more challenging. Most of image
content based retrieval systems require the user to give a query based on im-
age concepts, but in general he asks semantic queries using textual descriptions.
Some systems aim to enhance image word research using visual information

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 170–177, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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[13]. Anyway, one needs a fast system that robustly auto-annotates large un-
annotated image databases. The general idea of image auto-annotation systems
is to associate a class of ‘similar’ images with semantic keywords, e.g. to index
by few keywords a new image according to a reference train set. This problem
has been pursued in various approaches, such as neural networks, statistical clas-
sification, etc. One major issue in these models is the huge dimension number of
visual space, and “it remains an interesting open question to construct feature
sets that (...) offer very good performance for a particular vision task” [1].

Some recent works consider user feedback to estimate the most discriminant
features. This exploration process before or during classification, like in Active
Learning, requiers a lot of manual interactions, many hundreds for only 10 words
[6]. Therefore these methods can’t be applied to large image databases or large
lexicons. In this paper we propose to answer to the previous question by auto-
matically reducing the high dimensional visual space to the most efficient usual
features for a considered word. The most famous method of dimensionality re-
duction is Principal Components Analysis (PCA). But PCA does not include
label information of the data. Although PCA finds components that are useful
for representing data, there is no reason to assume that these components must
be useful for discriminating between data in different classes. But where PCA
seeks direction that are efficient for representation, Fisher Linear Discriminant
Analysis (LDA) seeks ones that are efficient for discrimination ([3] pp 117).

Indeed recent works in audio-visual classification show that LDA is efficient
under well labelled databases to determine the most discriminant features, reduc-
ing the visual space [4,10,7]. Unfortunately, most of the large image databases
are not correctly labelled, and do not provide a one-to-one relation between
keywords and image segments (see COREL image sample with their caption
in Fig. 1). Consequently usual LDA can’t be applied on real image databases.
Moreover because of the unsolved visual scene segmentation problem (see Fig. 1),
real applications or training of image auto-annotation systems from web pages,
would require a robust visual features selection method from uncertain data.
Therefore, we present a novel Approximation of LDA (ALDA), in a theoretical
and practical analysis. ALDA is simpler than usual LDA, because it doesn’t need
explicit labelling of the training samples for generating a good estimation of the
most discriminant features. ALDA first stage consists, for each word wk, to split
train set in two, according if images are labelled by wk or not. Then, under
weak assumption, we show that for a given wk, Between and Within variances,
between these two sets, are giving good estimates of the best discriminative fea-
tures. Experimentations are illustrating features dependency to each word, and
significant classification enhancements.

2 LDA Approximation and Adaptive Visual Features

Major databases are not manually segmented and segment-labelled, thus given
a set of training images Φ = {φj}j∈{1,..,J} and a lexicon λ = {wk}k∈{1,..,K},
each image φj is labelled with some words of λ (e.g. φj has a global legend
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constructed with λ as shown in Fig. 1). In order to extract visual features of
each object included in each φj , one can automatically segment each image in
many areas called blobs. Unfortunately, blobs generally do not match with the
shape of each object. Even if they do, there is no way to relate each blob to the
corresponding word.

Fig. 1. Examples of an automatic segmentation (Normalized Cuts algorithm [11]) of
two COREL images [1]. Image caption are (left image) “Windmill Shore Water Harbor”
and (right) “Dolphin Bottlenosed Closeup Water”. Each blob of each image is labelled
by all words of its image caption. Notice also that dolphin is split in two parts as many
as other objects after the Normalized Cuts algorithm.

Nevertheless, we show below that despite the fact that each word class wk

is not associated to a unique blob, and vice-versa, one can estimate for each
wk which are the most discriminant visual features. To this purpose we need to
define four sets: S, T , TG and G. Let be S the theoretical set of values of one
feature x, calculated on all the blobs that are exactly representing the word wk.
We note for any feature set E, cE its cardinal, μE the average of all xi values of
x ∈ E, vE their variance. Let be T the set of x values of all blobs included in all
images labelled by wk (of course T includes S). Let be TG such that T = TGUS,
with empty intersection between TG and S. We assume cTG �= 0 (otherwise each
image labeled by wk contains only the corresponding blobs).

Let be G the set containing all values of x from all blobs contained in images
that are not labelled by wk. In the following, we only assume the weak assump-
tion (hyp. 1) μTG = μG and vTG = vG, which is related to the simple assumption
of context independency provided by any large enougth image database. We note
BDE (resp. WDE) the Between variance (resp. the Within variance) between any
sets D and E. The usual LDA is based on the calculation, for each feature x of the
theoretical discrimination power F (x;wk) = 1

1+V (x;wk) where V (x;wk) = WSG

BSG
.

We show below that V̂ (x;wk) = WT G

BT G
is a good approximation of V (x;wk), and

that if one apply V to ordinate all x for a given word wk, then this order is the
same by applying V̂ , at least for the most discriminant features x. Therefore
the selection of features whith higher theoretical discriminative powers F can be
carried out from the calculation of practical F̂ (x;wk) = 1

1+V̂ (x;wk)
values.

Let pS = cS

cT
and qS = 1−pS = cT−cS

cT
= cTG

cT
. We have μT = qS .μTG +pS .μS .

Therefore:

μT = qS .μG + pS .μS . (1)
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Let derive vT with vS , vG, and for any x ∈ T , the probability pi of event ‘x = xi’:

vT =
∑
xi∈T

(
xi − μT

)2

pi =
∑
xi∈T

(
xi − qS .μG − pS.μS

)2

pi

=
∑

xi∈TG

(
(xi − μG) + pS(μG − μS)

)2

pi +
∑
xi∈S

(
(xi − μS) + qS(μS − μG)

)2

pi

=
∑

xi∈TG

(xi − μTG)2pi + 2pS(μG −μS)
∑

xi∈TG

(xi − μG)pi + p2
S(μG −μS)2

∑
xi∈TG

pi

+
∑
xi∈S

(xi − μS)2pi + 2qS(μS − μG)
∑
xi∈S

(xi − μS)pi + q2
S(μS − μG)2

∑
xi∈S

pi

= qS .vTG + 2pS(μG − μS)
( ∑

xi∈TG

xi.pi − μG

∑
xi∈TG

pi

)
+ p2

S(μG − μS)2qS

+pS.vS + 2qS(μS − μG)
( ∑

xi∈S

xi.pi − μS

∑
xi∈S

pi

)
+ q2

S(μS − μG)2pS

= qS .vG + 2pS(μG − μS)(qS .μTG − μG.qS) + p2
S .qS(μG − μS)2

+pS.vS + 2.qS .(μS − μG).(pS .μS − μS .pS) + q2
S .pS(μS − μG)2

then vT = qS .vG + pS .vS + pS .qS .(μG − μS)2 (2)

We are now able to derive and link BTG and BSG:

BTG =
cT

cT + cG

(
μT − cT .μT + cG.μG

cT + cG

)2

+
cG

cT + cG

(
μG − cT .μT + cG.μG

cT + cG

)2

=
cT

cT + cG

(cG.μT − cG.μG

cT + cG

)2

+
cG

cT + cG

(cT .μG − cT .μT

cT + cG

)2

BTG =
cT .cG(μT − μG)2

(cT + cG)2
(3)

=
cT .cG.(qS .μG + pS .μS − μG)2

(cT + cG)2
=

cT .cG.p
2
S(μS − μG)2

(cT + cG)2
=

cG.c
2
S .(μS − μG)2

cT .(cT + cG)2
.

Similary to Eq. (3) we have: BSG =
cS .cG.(μS − μG)2

(cS + cG)2
. (4)

Thus from Eq. (4) and (5): BTG =
cS .(cS + cG)2

cT .(cT + cG)2
.BSG. (5)

We also derive the Within variances WTG and WSG:

WTG =
cT .vT + cG.vG

cT + cG
=

cT .(qS .vG + pS .vS + pS .qS .(μG − μS)2) + cG.vG

cT + cG
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=
(qS .cT + cG).vG + pS .cT .vS + pS .qS .cT .(μG − μS)2

cT + cG

then WTG =
(cT − cS + cG).vG + cS .vS + pS .qS .cT .(μG − μS)2

cT + cG
. (6)

By definition WSG =
cS .vS + cG.vG

cS + cG
, so vG =

cS + cG
cG

.WSG − cS .vS

cG
.

WTG =
(cT − cS + cG).

(
cS+cG

cG
.WSG − cS .vS

cG

)
+ cS .vS + pS .qS .cT .(μG − μS)2

cT + cG

=
(cT − cS + cG).(cS + cG)

cG.(cT + cG)
.WSG− cS .(cT − cS)

cG.(cT + cG)
.vS +

cS .(cT − cS)
cT .(cT + cG)

.(μG−μS)2.

(7)

V̂ (x;wk) =
(cT −cS+cG).(cS+cG)

cG.(cT +cG) .WSG − cS.(cT −cS)
cG.(cT +cG) .vS + cS.(cT−cS)

cT .(cT +cG) .(μG − μS)2

cS .(cS+cG)2

cT .(cT +cG)2 .BSG

=
cT (cT − cS + cG)(cT + cG)

cG.cS(cS + cG)
WSG

BSG
+

(cT − cS)(cT + cG)
cS .cG

(
1 − cT

cG

vS

(μG − μS)2
)

thus V̂ (x;wk) = A(wk).V (x;wk) +B(wk).
(
1 − C(x;wk)

)
(8)

where A and B are positive constants independent of x, only depending on
number of blobs in sets T , S, G (experimentations on COREL database show
that for all words, A and B are close to 10). Therefore, for any given word wk,
V̂ (x;wk) is a linear function of V (x;wk) if C(x;wk) is negligible in front of 1.
This is the case if (hyp. 2) cT

cG
is small, which is true in COREL database since it

is close to 0.01 for most words, and never exceeds 0.2 (actually one can build any
database such that CT << CG) and (hyp. 3) vS is tiny in front of (μG − μS)2

which is the case when x is a reasonably good feature to discriminate G and S
(e.g. wk is represented by a rather stationnary feature value different from the
mean contextual value). Then order of V̂ and V values are the same. Finally, for
each word wk, even without knowing which blob of the image it labels, one can
estimate the most discriminant features by simply ranking F̂ values. Thereby,
in order to estimate how many and which of the Xn, n ∈ {1, .., δ} features are
really discriminant for each word wk, we simply sort by decreasing order all
the F̂ (Xn;wk), and calculate N < δ where δ is the dimension number of visual

space and N is defined by:
∑N

n=1 F̂ (Xn;wk) =
∑ δ

n=1 F̂ (Xn;wk)

2 . Thus X1, ..,XN

are considered as the N best discriminative features for wk.

3 Experimentations on COREL Image Database

To test the efficiency of ALDA, extensive experiments are done on the COREL1

images database [9] made of 10 000 images with approximately 100 000 segments

1 We thank K. Barnard and J. Wang for providing COREL image database.
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Fig. 2. Maximum values of normalised estimated discrimination power Hn(x;wk) =
F̂ (x;wk)/

∑
x F̂ (x,wk) for COLOR, TEXTURE, SHAPE, and POSITION features sets

for the 14 most frequent words of the database (other words are represented by a simple
dot). Results are intuitively correct: TREE, ROCK, FLOWER, PLANTS are mostly
discriminated by color; while BUILDING and STREET are more discriminated by
texture. SHAPE is in average not very competitive in comparison to COLOR, neither
POSITION. BIRD is the word the most discriminated by POSITION, indeed most of
COREL images with a bird represent a bird in the image center.

preprocessed by K. Barnard and al. [1]. Each image is labelled by an average
3.6 words from a lexicon of 267 different words, and has an average of 10 visual
segments (‘blobs’) from the Normalized Cuts algorithm [11], which somehow
produces small ones. Each blob is described by a set of δ = 40 features listed
below by their dimension index. Firstly POSITION and SHAPE: (1,2) horizontal
and vertical blob’s position; (3) the proportion of the blob in its image; (4) ratio
of bold’s area to the perimeter squared; (5) moment of inertia; (6) ratio of the
blob’s area by its convex hull. COLOURS (7,..,24) are represented by the average
and standard deviation of (R,G,B), (r,g,S) and (L,a,b). TEXTURES (25,..,40)
are extracted by gaussian filters [1].

3.1 F Estimation for COLOR, TEXTURE, SHAPE and POSITION

We run ALDA on 6 000 COREL images, and measure for each word the maxi-
mum value of F̂ for SHAPE, COLOR or TEXTURE features sets. These values
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represented in Fig. 2 for the 14 most frequent words are intuitively correct and
show the word dependence of ALDA. The repartition analysis, over words of
all the 6 000 images of the train set, of selected N best features are respec-
tively 3% for POSITION, 8% for SHAPE features, 65% for COLOR features,
24% for TEXTURE features. COLOR features are confirmed to be the most
discriminant ones (see also Fig. 2). The simple TEXTURE features (16 gaussian
filters) are better than the SHAPE ones, certainly because blobs’ segmentation
are imprecise (see Fig. 1).

3.2 Hierarchical Ascendant Classifications Improved by ALDA

To demonstrate ALDA efficiency on a classification task, we now run on COREL
a Hierarchical Ascendant Classifications (HAC) of visual features into word cat-
egories [12]. As in [2], we measure the system performance using the Normalised
Score NS = sensi.+ specif − 1 [1,8]. Compared to the raw visual input space,
good results have been obtained reducing HAC visual features inputs to ALDA
N best discriminant features as previously defined end of section 2 (method
called NADAPT0.5). NS values for HAC on the 40 usual visual dimensions or
word adaptive features are shown in Fig. 3.
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Fig. 3. Word visual consistency representation for 40DIM method (in X-coordinate)
and for NADAPT0.5 method (in Y-coordinate). NADAPT0.5 method gives better
results than 40DIM except for closeup, garden, street, forest, horse.
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Classification of the 3 000 images of the test set shows a gain of +37% of
NS, and simultaneously an average over all words of a dimension reduction from
δ = 40 to 4 best features (see [12] for more details on the HAC experiments).

4 Conclusion

In this paper we present ALDA based on an approximation of the Fisher LDA.
We shown that, under weak assumptions (hyp. 1 to 3), ALDA estimates N best
features which enhance HAC task, while reducing by 10 the visual space dimen-
sion. The main contributions on this paper are summarized as follows: (a) For the
first time a theoretical demonstration of ALDA is given in the first section. (b)
We implement ALDA on a reference image database and we analyse word depen-
dant features sets constructed using ALDA. (c) We integrate ALDA in a simple
HAC model, leading to significant improvements. Further auto-annotation exper-
iments are currently being done on COREL with a bayesian system (DIMATEX
model [5]), yielding to promising first results.
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Abstract. The irradiance measurement performed by vision cameras is not
noise-free due to both processing errors during CCD fabrication and the be-
haviour of the electronic device itself. A proper characterization of sensor per-
formance, however, allows accounting for it within image processing algorithms.
This paper proposes a robust algorithm named R2CIU for characterizing the noise
sources affecting CCD performance with the aim of estimating the uncertainty of
the intensity values yielded by vision cameras. Experimental results can be found
at the end of the paper.

1 Introduction

As it is well known, vision cameras measure the spatial distribution of light incident
on a light-sensitive device (typically a CCD) and produce, accordingly, bidimensional
descriptions of this distribution known as images. Due to both processing errors during
CCD fabrication and the behaviour of the electronic device itself, the measurement pro-
cess is, however, not noise-free. In contrast with geometric calibration, for which lots
of algorithms have been published, the characterization of this noise for vision cameras
(i.e. radiometric calibration) has been rarely studied. Perhaps, the paper by Healey and
Kondepudy is one of the most detailed studies on the subject which can be found [1].
Their calibration algorithm is based on their own camera noise model and estimates the
gain, the charge-independent non-spatial noise, the camera dark current and the photo-
response non-uniformity. After the paper by Healey and Kondepudy, Tarel [2] proposed
several experiments for estimating the charge-independent non-spatial noise, the dark
current and the joint effect of the fixed pattern array and the shadowing introduced by
the camera optics due to the effect known as vignetting [3]. Finally, Gevers and Stok-
man [4] make use of a simplified camera noise model consisting of electronic gain, shot
noise and dark current for error propagation inside an image segmentation framework.

On the basis of the camera noise model of [1], this paper describes how to determine
intensity uncertainties on the basis of the estimates computed by a new robust algorithm
for radiometric camera calibration called R2CIU (Robust Radiometric Calibration and
Intensity Uncertainty estimation). It is based on uniform reflectance cards and, contrary
to [1] and [2], does not intend to estimate spatial noise pixel by pixel, which is not

� Partially supported by project CICYT-DPI2001-2311-C03-02 and FEDER funds.

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 178–185, 2005.
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essential to compute intensity uncertainties, but focuses on the corresponding distribu-
tion parameters, making the estimation procedure simpler, but, at the same time, robust
since all the image cells are involved in the computation of the estimates. Finally, the
material presented in this paper is the continuation of a work which started in [5].

The rest of the paper is organized as follows: section 2 presents the image formation
model assumed in this work; next, section 3 describes the procedures to estimate the
distribution parameters of the different noise sources involved; the determination of the
uncertainty for digital intensity levels is discussed in section 4; section 5 provides the
calibration results obtained for a real CCD camera and illustrates the computation of
intensity uncertainties; finally, section 6 concludes the paper.

2 Camera Operation Model

Ideally, the number of electrons accumulated at a given collection site or image cell
(i, j) for colour band c, Ic(i, j), can be expressed as:

Ic(i, j) = T

∫
Λ

(∫
y

∫
x

E(x, y;λ)Sr(x, y)η(λ) dx dy
)
τc(λ)dλ , (1)

where: (i) (x, y) are continuous coordinates on the sensor plane, (ii)Λ represents the set
of wavelengths λ within the visible spectrum, (iii) T is the integration or exposure time,
E(x, y;λ) is the irradiance incident at point (x, y) over the collection site, (iv) Sr(x, y)
is the spatial response of the collection site, (v) η(λ) is the ratio of electrons collected
per incident light energy (a form of the so-called quantum efficiency), and (vi) τc(λ) is
the filter transmittance for colour channel c.

Assuming a non-attenuating propagation medium and ignoring the blurring and
low-pass filtering effects of the point-spread function of the optics in a properly fo-
cused camera, E(x, y;λ) and the corresponding scene radiance L(p;λ) are related as
E = (π/4) (d/f)2 (cosϕ)4 L, where d is the effective diameter of the lens (i.e. its
aperture), f is the focal distance and ϕ is the angle between the optical axis and the
straight line that, passing through the lens nodal point, connects (x, y) with the scene
point p [3]. The quantity f/d is the so-called F-number.

Several sources of noise can affect the performance of CCD-based imaging systems,
preventing them from measuring actual irradiance values. According to [1], the digi-
tized signal corresponding to pixel (i, j) can be stated as a random variable Dc(i, j) =
μc(i, j) +N c(i, j) as follows:

Dc(i, j) =

μc(i,j)︷ ︸︸ ︷
(K(i, j)Ic(i, j) + μdc(i, j)) Ac +

Nc(i,j)︷ ︸︸ ︷
(Nc

S(i, j) + Ndc(i, j)) Ac︸ ︷︷ ︸
Nc

e (i,j)

+NRAc + NQ︸ ︷︷ ︸
Nc

f

, (2)

where: (i) K represents a random variable of (spatial) mean EI [K] = 1 and (spatial)
variance VarI [K] expressing the site-to-site non-uniformities among image cells due to
processing errors during CCD fabrication, also called photo-response non-uniformity
(PRNU); (ii) N c

S is the so-called shot noise, representing the uncertainty in the number



180 A. Ortiz and G. Oliver

of electrons collected at a given image cell, which is, in turn, distributed as a Poisson
random variable of variance KIc; (iii) μdc is the expected dark current generated by
thermal energy at every collection site, and therefore expresses the dark current non-
uniformity across image cells (DCNU), while Ndc corresponds to the uncertainty in the
number of dark electrons, the dark current shot noise, whose variance is μdc; (iv) NR is
the zero-mean noise introduced by the charge-to-voltage output amplifier of the camera;
(v) NQ is a uniform random variable defined over the interval [−1/2, 1/2] accounting
for the quantization noise; and (vi) Ac is the camera gain for colour channel c. In (2),
N c represents non-spatial zero-mean additive noise, where N c

e depends on the number
of collected electrons while N c

f does not.

3 Estimation of the Camera Noise Model Parameters

This section presents a set of techniques for estimating the parameters of the camera
noise model expressed in equation 2. They are based on the use of a constant reflectance
matte calibration card covering the whole field of view of the camera. If the card is not
bent anyway and is uniformly illuminated, Ic(i, j) of equation 2 should be approxi-
mately constant across the image in absence of camera lens imperfections. Under those
circumstances, equation 3 results:

Dc(i, j) = (K(i, j)Ic + μdc(i, j))Ac +(N c
S(i, j) +Ndc(i, j))Ac +NRA

c+NQ . (3)

3.1 Estimation of the PRNU and the DCNU Distribution Parameters

Let us assume that several images of the calibration card with the same camera and
lighting parameters are taken and averaged pixel by pixel to produce image μDc . As
discussed in [6,7], the non-spatial noise N c tends to vanish in the average pixel values
μDc(i, j). If, in turn, the average across the whole image of the μDc(i, j) values is
taken, then equation 4 results for EI [μDc ], taking into account that EI [K] = 1:

EI [μDc ] = IcAc + EI [μdc]Ac . (4)

Next, given the independence between the PRNU and the DCNU and after the averaging
of theDc(i, j) values, the (spatial) variance of the μDc(i, j) values can be approximated
by equation 5:

VarI [μDc ] = VarI [K] (Ic)2 (Ac)2 + VarI [μdc] (Ac)2 , (5)

which, using equation 4, transforms into equation 6:

VarI [μDc ] = VarI [K] (EI [μDc ]− EI [μdc]Ac)2 + VarI [μdc] (Ac)2 . (6)

According to equation 6, points (EI [μDc ],VarI [μDc ]) lie in a parabola from whose
parameters the (spatial) variance of K and μdc, together with EI [μdc], can be estimated.
Such points can be obtained from several sets of images of the calibration card taken at
different values of Ic. These images can be easily generated changing, from set to set,
the camera optics aperture (i.e. the F-number) or placing neutral-density (ND) filters in
front of the camera.
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3.2 Estimation of Camera Gain and Charge-Independent Non-spatial Noise

Further manipulation of equation 3 allows estimating the camera gain Ac and the vari-
ance of the noise independent of the number of electrons stored at collection sites N c

f .
To perform this calculation, the (temporal) variance of the intensity level in a certain
image cell between exposures, σ2

Dc(i, j), will be determined (i.e. several images of the
calibration card under exactly the same imaging conditions are taken and the variance
image σ2

Dc is considered). In such a case, the variation comes from the shot noises N c
S

and Ndc, and from N c
f . On the basis of the independence between the different noise

sources, σ2
Dc(i, j) is given by:

σ2
Dc(i, j) = [K(i, j)Ic + μdc(i, j)] (Ac)2 +

(
σc

f

)2
, (7)

where (σc
f )2 is the variance of N c

f . Now, taking the (spatial) mean of the σ2
Dc(i, j)

values and using equation 4, equation 8 results:

EI [σ2
Dc ] = AcEI [μDc ] +

(
σc

f

)2
. (8)

Therefore, according to equation 8, pairs (EI [μDc ],EI [σ2
Dc ]) lie in a straight line whose

slope and intercept with the EI [σ2
Dc ] axis coincide with, respectively, Ac and (σc

f )2.
These pairs can be obtained taking several sets of images so that Ic changes from set to
set, as previously discussed, and computing the (spatial) average of the pixel-by-pixel
(temporal) mean and variance of the images within every set.

4 Determination of Intensity Uncertainties

Let us assume a plane card of constant reflectance and uniformly illuminated is imaged
by the camera. The goal is to quantify the variation which could be found in the resulting
image with respect to the noiseless digital intensity value IcAc which would result in
a perfect camera. Clearly, every noise source contributes to the final uncertainty value.
These contributions have already been expressed somewhere within section 3. From
the independence of the noise sources, the total uncertainty is given by the sum in
quadrature of the different contributions [1]. In this way, equation 9 provides, in the
form of expected value ± uncertainty [8], an approximation of the final digital value
returned by the camera, Dc, for every possible digital intensity level, IcAc.

Dc = (IcAc + EI [μdc]Ac)± tσc
I (9)

σc
I =

√
VarI [K] (IcAc)2 + VarI [μdc] (Ac)2 + (IcAc)Ac + EI [μdc] (Ac)2 + (σc

f )2

For a given t, equation 9 relates every possible intensity value IcAc with an interval of
values [Dc

a, D
c
b] where the corresponding digital value returned by the camera can lie

with a certain probability. Resorting to the Chebyshev inequality1, t = 2, 3 and 4 repre-
sent that the measurement Dc will lie inside [Dc

a, D
c
b] with, respectively, probabilities

of 75.00%, 88.89% and 93.75% [9]. If, besides, the Poisson distributions associated to

1 For a random variable X(μ, σ), P (|X − μ| ≥ kσ) ≤ 1/k2, k > 0.
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Fig. 1. (a) Uncertainty curves which derive from equations 9 after a proper calibration of the
camera and a certain value of t, for the red colour channel. (b) Confidence interval [DR

a , DR
b ]

corresponding to a certain measurement DR. (In both plots, the dashed horizontal straight line at
the bottom corresponds to EI [μdc]AR, while the slanted dashed line between the two uncertainty
curves is DR = IRAR + EI [μdc]AR).

the shot noises are approximated by Gaussian distributions, and the remaining noise
sources are assumed Gaussian, the noise distribution results to be normal, and, there-
fore, the previous probabilities for t = 2, 3 and 4 increase, respectively, up to 95.45%,
99.73% and 99.99%. By way of example, figure 1(a) shows uncertainty curves (solid
lines) for the red colour channel of a hypothetical camera.

Note that, however, equation 9 goes from the noiseless intensity values to the mea-
surements produced by the camera, although only the latter are effectively available.
Therefore, the relationship must be reversed to be useful: i.e. given a measure Dc, an
interval of possible noiseless intensities, [(IcAc)a, (IcAc)b], must be looked for (see
figure 1(b)). (IcAc)a and (IcAc)b can be easily obtained reversing equation 9 to get
equation 10, which involves a second degree polynomial in IcAc:

α(IcAc)2 − β(IcAc) + γ = 0

α =
(
1 − t2VarI [K]

)
β = (t2Ac + 2(Dc − EI [μdc]Ac))

γ = (Dc − EI [μdc]Ac)2 − t2
(
VarI [μdc](Ac)2 + EI [μdc](Ac)2 + (σc

f )2
) (10)

Once (IcAc)a and (IcAc)b are known for a certain Dc, a confidence interval [Dc
a, D

c
b]

can be calculated forDc by means ofDc
a = (IcAc)a +EI [μdc]Ac and Dc

b = (IcAc)b+
EI [μdc]Ac (see figure 1(b)).

5 Experimental Results

This section reports the calibration results for a JAI CV-M70 progressive scan colour
CCD camera with linear response and 8 bits per colour channel and pixel. The rest of
the calibration setup hardware consisted of 400 W halogen illumination and a COMET
Matrox frame grabber. Matte white calibration cards were used, although the particular
reflectance is not relevant provided that it is approximately uniform throughout the
image area. Besides, intensity uncertainties are also derived and illustrated.
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Fig. 2. (a) Estimation of camera gain and charge-independent non-spatial noise. (b) Estimation
of the PRNU and the DCNU distribution parameters by means of parabolas sharing the first
coefficient across colour channels. (c) Estimation of intensity uncertainties for the blue colour
channel.

Estimation of noise distribution parameters. Both spatial and charge-independent
non-spatial noise distribution parameters were measured by means of 12 sets of images
of the calibration card, each set corresponding to a different lens aperture. Besides,
each set of images consisted of 100 frames. For every set, pixel-by-pixel mean and
variance images μDc(i, j) and σ2

Dc(i, j) were calculated, which, in particular, allowed
reducing the non-spatial noise N c(i, j) in images μDc(i, j) at about only 10% of their
original magnitude [6,7], improving, thus, the calculation of EI [μDc ] and VarI [μDc ]
(see equation 6). Moreover, the 12 different values of Ic led to the generation of 12 pairs
(EI [μDc ],VarI [μDc ]) and (EI [μDc ],EI [σ2

Dc ]) for estimating, respectively, the PRNU
and the DCNU distribution parameters and the gain and charge-independent non-spatial
noise of the camera under calibration.

With this set of images, camera gain Ac and the variance of the charge-independent
non-spatial noise (σc

f )2 were estimated for every colour channel c following the pro-
cedure outlined in section 3.2. The resulting estimates were A = (AR, AG, AB) =
(0.0046, 0.048, 0.074)± (0.0012, 0.0016, 0.0018) and σf = (σR

f , σ
G
f , σ

B
f ) = (0.79,

0.59, 0.51) ± (0.04, 0.06, 0.06), while the correlation coefficients for all three colour
channels resulted to be (0.963,0.963,0.976). By way of illustration, figure 2(a) shows
the fitting corresponding to the blue colour channel.

On the other hand, VarI [K], EI [μdc]Ac and VarI [μdc](Ac)2 were measured fol-
lowing the procedure described in section 3.1, but ensuring an only VarI [K] value
resulted for the three colour channels because the internal organization of the cam-
era under calibration was based on an only CCD. In this case, the estimates were√

VarI [K] = 0.0057± 0.0001,
√

EI [μdc]A = (0.00, 0.00, 0.00)± (0.01, 0.01, 0.01)
and

√
VarI [μdc]A = (0.20, 0.17, 0.20)± (0.00, 0.00, 0.00), while the correlation co-

efficients resulted to be (0.998,0.994,0.994). Figure 2(b) shows the fitting parabola for
the blue colour channel.

Determination of intensity uncertainties. By way of illustration of the computation
of the intensity uncertainties, figure 2(c) plots the uncertainties corresponding to the
blue colour channel. The averaged parameters between the two executions of R2CIU
have been used. In the plot, DB −DB

a and DB
b −DB are shown, together with tσB

I , for
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UTLOG NATLOG

avgP stdP avgP stdP
FOM(1/9) 2.71 0.59 6.01 1.22
FOM(1) 3.13 0.42 6.32 1.19

D 5.66 1.78 12.60 4.53
Baddeley 6.03 2.30 13.48 5.03

(c)

Fig. 3. (a) Selection of zero-crossings in UTLOG. (b) Noisy image. (c) Comparison results.

t = 3. Although little difference can be observed among them in the figure, they turned
out to be relevant (i.e. larger than 0.5) for t > 7.

Example of application. To illustrate the use of the estimates produced by R2CIU,
an edge detection task based on detecting LOG zero-crossings is next presented. In
this case, uncertainties are used to devise a strategy for adaptive thresholding which
will be called UTLOG (Uncertainty-based Thresholding for LOG zero-crossings). In
particular, a detected LOG zero-crossing is classified as relevant if the positive and
negative peak LOG values along the direction of detection are larger than t times
the respective uncertainties. Those uncertainties are calculated using standard uncer-
tainty propagation rules, by which, if the output of the LOG operator is calculated as
f =

∑
x D

k(x)m(x), where m(x) would be the LOG mask constants, then δ(f) =√∑
x δ(Dk(x))2m2(x) [8]. By way of example, see figure 3(a), where only the zero-

crossing under the circle would be considered relevant.
In order to study the performance of UTLOG, and, by extension, the usefulness of

the estimated uncertainties, UTLOG was compared with a non-adaptive method which
will be called NATLOG (Non-Adaptive Thresholding for LOG zero-crossings) in which
LOG zero-crossings was selected by requiring negative and positive LOG peaks above
a global threshold independent of the intensities involved. The goal of the experiment
consisted in determining the optimum value of the only parameter of each algorithm
for each image of a series of noisy synthetic images. A lower standard deviation of the
optimum values found would mean, in this experiment, a larger easiness for finding the
proper value and, thus, a larger adaptivity.

The comparison was performed over a set of 100 synthetic images involving spheres
and planes of different reflectances (see Fig. 3(b) for an example) to which noise was
added according to the camera noise parameters estimated in section 5. Besides, up to
four empirical discrepancy evaluation measures were used to find the optimum values:
the often-cited Pratt’s Figure of Merit (FOM) with (1) α = 1/9 and (2) α = 1; (3) the
discrepancy percentage (D); and (4) the Baddeley measure, which was found the best
evaluation technique in a recent survey [10] which also involved, among others, Pratt’s
FOM and D. In this way, the result of the experiment did not depend on the optimization
strategy employed. As for the range of values considered for the respective parameters,
for UTLOG, t ∈ [1..15], while for NATLOG, global integer thresholds between 1 and
30 were considered.
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The quantitative results of the experiment appear in figure 3(c), where stdP is the
aforementioned standard deviation, while avgP is the corresponding average. As can
be observed, stdP is quite lower for UTLOG than for NATLOG in all cases. Besides,
column avgP indicates, for UTLOG, that t from 2-3 to 6-7 work well most times, while
for NATLOG the global threshold interval seems to widen so as to cover values between
6 and 17, confirming, thus, the higher adaptivity of UTLOG thanks to the incorporation
of intensity uncertainties in the thresholding.

6 Conclusions

An algorithm called R2CIU for radiometric camera calibration has been proposed. It
allows estimating the distribution parameters of the noise sources of the camera noise
model proposed by Healey and Kondepudy in [1]. The fact that all the pixels of the
captured image can participate in the estimation makes R2CIU a robust estimator of
the noise model parameters. It has also been shown how, with the previous estimates,
intensity uncertainties can be determined and an example of application in an edge
detection task has been presented to show how to incorporate those uncertainties in
computer vision algorithms. Some experimental results have proved the usefulness of
the uncertainties estimated. Other more sophisticated vision algorithms also using those
uncertainties can be found in other papers published by the authors (for instance [11]).
See [12] for more experimental results data and a more detailed presentation.
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Proc. 10ème Congrés AFCET, Reconn. des Formes et Intell. Artificielle, RFIA. (1996)

3. Horn, B.: Robot Vision. MIT Press (1986)
4. Gevers, T., Stokman, H.: Robust Photometric Invariant Region Detection in Multispectral

Images. IJCV 53 (2003) 135–151
5. Ortiz, A., Oliver, G.: Estimation of Scene Lighting Parameters and Camera Dark Current. In:

Frontiers in Artificial Intelligence and Applications. Volume 100., IOS Press (2003) 199–210
6. Holst, G.: CCD Arrays, Cameras, and Displays. 2nd edn. SPIE press (1998)
7. Janesick, J.: Scientific Charge-Coupled Devices. SPIE Press (2001)
8. Taylor, J.: An Introduction to Error Analysis. University Science Books (1997)
9. Lindgren, B.: Statistical Theory. 4th edn. Chapman & Hall (1993)

10. Fernandez-Garcia, N., et al.: Characterization of empirical discrepancy evaluation measures.
PRL 25 (2004) 35–47

11. Ortiz, A., Oliver, G.: A Physics-Based Colour Edge Detector. In: Frontiers in Artificial
Intelligence and Applications. Volume 113., IOS Press (2004) 201–208

12. Ortiz, A., Oliver, G.: R2CIU: Robust Radiometric Calibration and Intensity Uncertainty
estimation. Technical Report A-1-2005, Departament de Matemàtiques i Informàtica (Uni-
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Abstract. This paper addresses a wavelet statistical model for characterizing 
Chinese ink painting styles. The distinct digital profile of an artist is defined as 
a set of feature-tons and their distribution, which characterize the strokes and 
stochastic nature of the painting style. Specifically, the feature-tons is modeled 
by a set of high-order wavelet statistics, and the high-order correlation statistics 
across scales and orientations, while the feature-ton distribution is represented 
by a finite mixture of Gaussian models estimated by an unsupervised learning 
algorithm from multivariate statistical features. To measure the extent of asso-
ciation between an unknown painting and the captured style, the likelihood of 
the occurrence of the image based on the characterizing stochastic process is 
computed. A high likelihood indicates a strong association. The research has the 
potential to provide a computer-aided tool for art historians to study connec-
tions among artists or periods in the history of Chinese ink painting art. 

1   Introduction 

To analyze a large collection of paintings from different artists and to compare differ-
ent painting styles is an important problem for not only computer scientist, but also 
for the art community. With advanced computing and image analysis techniques, it 
may be possible to use computers to study more paintings and in more details than a 
typical art historian could. Computers can be used to extract nuance features and 
structures from images efficiently, and these numerical features can be applied to 
compare paintings, artists, and even painting schools. 

In this paper, a wavelet statistical model is presented to study collections of Chi-
nese ink paintings. The distinctive digital profile of an artist is defined as a set of 
feature-tons and their statistical distributions. The feature-tons and their distribution 
are learned from thousands of multivariate statistical features by using an unsuper-
vised clustering algorithm. The multivariate statistical feature is modeled by a set of 
high-order wavelet statistics, and the high-order correlation statistics across scales and 
orientations, while the feature-ton distribution is represented by a finite mixture of 
Gaussian models. Simulation experience is conducted on a database of high resolution 
photographs of Chinese ink paintings. The algorithm presented here has the potential 
to provide a computer-aided tool for art historians to study connections among artists 
or periods in the history of Chinese ink painting art. 
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1.1   Major Challengers 

Unlike natural color images, Chinese ink paintings are in monochromic ink and some-
times do not even possess gradually changing tones. In terms of image content, there 
is little to compare among these paintings, because most of them depicted mountains, 
trees, rivers/lakes, and so on. So Chinese ink paintings demand unconventional image 
analysis techniques. An important aspect of Chinese ink paintings art historians often 
examine when studying and comparing different paintings is the characteristic stroke 
used by artists. 

In this paper, we first divide an input image into 64×64 blocks, and we assume that 
each block in a Chinese ink painting contains a single fine style element. Because the 
fundamental idea behind the wavelet transform is to analyze the image at several 
different scales, block-based features are extracted from each training image based on 
the wavelet decomposition. In order to reduce the sensitivity to the variations in dig-
itization and the image content, only the high-order statistics of the high frequency 
wavelet coefficients, which reflect the changes in pixel intensity rather than the abso-
lute intensity, are used for the feature vector of each block. Here the feature vector 
extracted from each block is assumed to have been generated by one of a set of alter-
native random sources, so finite mixture models are used to fit the multivariate feature 
vectors. 

1.2   Related Works 

Research problems in concern and methodologies used in this paper are related to 
several technique fields, among which include computer vision, image retrieval and 
statistical image modeling. Instead of a broad survey, we try to emphasize some work 
most related to what we proposed. 

For a general introduction to digital imagery of cultural heritage materials, see [1]. 
In [2], a statistical model based on 2-D multiresolution HMMs is proposed to the 
problem of automatic linguistic indexing of image retrieval. Almost the same tech-
nique is proposed in [3] to study the different styles of Chinese ink paintings. They 
constructed 2-D HMMs based on the wavelet decomposition to capture properties of 
the painting strokes, and the learned mixture of 2-D multiresolution HMMs profile the 
style of an artist. In [4] a region-based image categorization method using an exten-
sion of Multiple Instance Learning (MIL) is proposed. Each image is represented as a 
collection of regions obtained from image segmentation using the k-means algorithm. 
In their method, each image is mapped to a point in a bag feature space, which is 
defined by a set of instance prototypes learned with the Diverse Density function. 

Although our statistical framework for profiling Chinese ink paintings was moti-
vated by those ideas proposed in [3] and [4], it has several important distinctions from 
those previous works. First we will not create a mixture of 2-D multiresolution 
HMMs for each image as described in [3]. We divided the training images into 
blocks, and high-order wavelet statistics, and the correlation statistics across scales 
and orientations are extracted as a feature vector. Each feature vector is considered as 
an instance which is assumed to be generated by a finite mixture multivariate Gaus-
sian Models. All of these feature vectors are clustered to form a set of feature-tons. 
However an important issue in mixture modeling is the selection of the number of 
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components, we adopt the modified Minimum Message Length Criterion proposed in 
[5] to deal with the above problem, and the estimation and the model selection can be 
seamlessly integrated into a single algorithm. This is the biggest difference between 
our method and the approach proposed in [4] which is based on an extension of Mul-
tiple Instance Learning (MIL). The obtained clustered feature-tons and their distribu-
tion can be used to profile the latent style for an artist. 

2   Multivariate Statistical Feature Extraction 

First we divide the training images into blocks. The wavelet transform is used to ex-
tract statistical features from these blocks. One reason for this utility is that such de-
compositions exhibit statistical regularities that can be exploited. The decomposition 
is based on separable quadrature mirror filters. As illustrated in Fig.1, this decomposi-
tion splits the frequency space into multiple scales and oritentations. This decomposi-
tion is accomplished by applying separable low-pass and high-pass filters along the 
image row and column, generating a vertical, horizontal, diagonal and low-pass sub-
band. Subsequent scales are created by subsampling the low-pass subband by a factor 
of 2 and recursively filtering. The vertical, horizontal, and diagonal subbands at scale 
i=1, 2, …, n are denoted as vi(x,y), hi(x,y) and di(x,y), respectively. 

As we know that the mean and the variance of the subband coefficients are highly 
correlated to the content of the input image. In order to reduce sensitivities to varia-
tions in digitization and the image content, only the high-order statistics (skewness, 
and kurtosis) of the subband coefficients at each oritentation and at scales i=1, 2, …, n 
are used. These statistics characterize the local coefficient distributions. As described 
in [3], the subband coefficients are correlated to their spatial, orientation, and scale 
neighbors. In order to capture the high-order correlations across different scales, these 
coefficient statistics are augmented with a set of statistics based on the errors in an 
optimal linear predictor of coefficients magnitude. 

For the purpose of illustration, consider first a horizontal band, vi(x,y), at scale i. A 
linear predictor for the magnitude of these coefficients in a subset of all possible 
neighbors may be given by 

)2,2()1,()1,(),1(),1(),( 154321 yxVwyxVwyxVwyxVwyxVwyxV iiiiii ++++−+++−=   

)12,12()2,12()2,12( 181716 +++++++ +++ yxVwyxVwyxVw iii
                                          (1) 

where wk denotes weights, and |•| denotes magnitude. The predictor coefficients (w1, 
…, w8) are determined as follows: The column vector V contains the coefficient mag-
nitudes of vi(x,y), and the rows of the matrix Q  contains the chosen neighboring 

coefficient magnitudes of vi(x,y). The linear predictor takes the form 

wQV =                                                                                (2) 

where the column vector Twww ),,( 81= . The predictor weights are determined by 

minimizing the quadratic error function: 

2][}{ wQVwE −=                                                                   (3) 



 A Wavelet Statistical Model for Characterizing Chinese Ink Paintings 189 

 

  

Fig. 1. A 3-level wavelet decomposition of a painting by Zeng Fan 
 

This error function is minimized by differentiating with respect to w : 

][2/}{ wQVQwdwdE T −=                                                       (4) 

Setting the above equation to zero and yield 

VQQQw TT 1)( −=                                                                  (5) 

Once the set of the predictor weights are determined, additional high-order statistics 
are collected from the errors of the final predictor. The entire process is repeated for 
each orientation, and at each scale i=1, 2, …, n-1. For a n-level wavelet decomposi-
tion, the coefficient statistics consists of 6n values, and the prediction error statistics 
consist of another 6(n-1) values, for a total of 6(2n-1) statistics. These statistics repre-
sent the local statistical feature vector of a block. 

2   Probabilistic Framework for Profiling Chinese Ink Paintings 

Let Y=[Y1, …, Y30]
T be a 30-dimensional random variable (here we apply the 3-level 

wavelet decomposition to each block), with y =[y1, …, y30]
T representing one particu-

lar feature vector generated by Y. It is assumed that Y follows a N-component finite 
mixture distribution if its probability density function can be written as: 

=

=
N

m
mm pp

1

)|()|( θα yy                                                      (6) 

where α1, …, αN are the mixing probabilities, each θm is the set of parameters defin-
ing the mth component, and θ={θ1, …, θN, α1, …, αN } is the complete set of parame-
ters needed to specify the mixture. Of course, being probabilities, the αm must satisfy 

αm ≥0, m=1, …, N, and 1
1

=
=

N

m
mα                                              (7) 

In this paper, we assume that all the components are multivariate Gaussian models. 
Given a set of k independent and identically distributed feature vector samples 
Y={y(1), …,y(k)}, the log-likelihood corresponding to a N-component mixture is  
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It is well known that the maximum likelihood (ML) estimate 

)}|({logmaxargˆ YpML
θ

=                                               (9) 

cannot be found analytically. 
At the beginning we can let N be some arbitrary large value and infer the structure 

of the mixture by letting the estimates of some of the mixture probabilities be zero. 
This is equal to pruning the mixture models. The inference criterion adopted from [5] 
is used as the number of clusters selection criterion 
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where M is the number of parameters specifying each component, i.e. the dimension 
of θm, and Nnz denotes the number of non-zeror-probability components. 

The usual choice of obtaining ML estimation of the mixture parameters is the EM 
algorithm. EM is an iterative procedure which finds local maxima of )|(log Yp . 

The EM algorithm is based on the interpretation of Y as incomplete data. For finite 
mixtures, the missing part is a set of k labels Z ={z(1), …, z(k)} associated with the k 
training feature vectors, indicating which component generated each features. Each 
label is a binary vector z(i)= [z(i)1, …, z(i)N], where z(i)m=1 and z(i)p=0, for p≠m, 
means that feature y(i) was generated by the mth multivariate Gaussian model. The 
complete log-likelihood is 
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Based on the above mentioned inference criterion, the EM algorithm produces a 
sequence of estimates of },2,1,0),(ˆ{ =tt , while at the same time to choose the 
number of non-zero-probability components Nnz by alternatively applying two steps: 

1) E-step: Computes the conditional expectation of the complete log-likelihood, 
given Y and the current estimation of )(ˆ t . Since )|,(log ZYp is linear with respect 

to the missing data Z, we simply have to compute the conditional expectation 

)](ˆ,|[ tYZEW ≡ , and plug it into )|,(log ZYp . The result is the so-called Q- 

function: 

)](ˆ,|)|,([log))(ˆ,( tYZYpEtQ =                                     (12) 

Since the elements of Z are binary, their conditional expectations are given by 
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where the last equality is simply the Bayes Theorem (
mα is the a prior probability that 

z(i)m=1, while w(i)m is the a posterior probability that z(i)m=1, after observing y(i)). In 
the initialization, we set 

nzm N/1)0(ˆ =α ( m = 1, 2, …, Nnz). 
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2) M-step: Here the EM algorithm to minimize the cost function in (10), with Nnz 
fixed, has the following M-step: 
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for m = 1, 2, …, Nnz. 
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for m: 0)1(ˆ >+tmα . In the initialization, Nnz is a large number, and randomly 

choose Nnz feature vectors as the initial center (mean) vectors of the initial Nnz clus-
ters from the all input training feature vectors. The initial covariance matrices of the 
components are initialized to diagonal matrices proportional to 1/10 of the mean 
variance along all the axes. 

Where w(i)m is given by the E-step equation. The θms corresponding to components 
for which 0)1(ˆ =+tmα  become irrelevant. Notice in (8) that any component for 

which 0=mα  does not contribute to the likelihood. An important feature of the M-

step defined by (14) is that it performs component annihilation, thus being an explicit 
rule for moving from the current value of Nnz to a smaller one. Hence the estimation 
of },2,1,0),(ˆ{ =tt  and the model selection Nnz can be seamlessly integrated into a 

single algorithm. 

3   Experimental Results 

In the experiments, we start with Nnz=N, where N is much larger than the true/optimal 
number of mixture components, hence this algorithm is robust with respect to initiali-
zation.  

We develop a distinct latent style profile for Tao Shi (1641-1724) who was an out-
standing Chinese ink painting artist especially for his “mountains-and- waters” works. 
In order to capture the comprehensive painting style of Tao Shi, 21 representative 
paintings of Tao Shi are used as the training images to estimate the number of textons 
and their distributions. A total 4892 feature vectors are obtained in the feature extrac-
tion stage. In the initial stage of clustering, we set the maximum number of clusters as 
200, and the minimum number of clusters as 10. 
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Fig. 2 shows the initial stage of clustering. After the unsupervised clustering algo-
rithm, only the 22 clustered textons are obtained, and the 22 textons and their distribu-
tions are used as the digital latent style of the artist. The final estimation is indicated 
in Figure 3. 

     
Fig. 2. Initialization with Nnz=200               Fig. 3. The final estimation with Nnz=22 

 
To estimate the association of an unknown painting to the captured style, first it is 

converted to a set of multiresolution feature vectors as described in Section 2. Given 
the set of the feature-tons of the training feature space 

1m , …, 
Nm and their distribu-

tion, all the obtained multivariate features 1t , …, testt of the testing image are classi-

fied to the corresponding feature-tons as following: 

2

2
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and compute the center of each cluster as following: 
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where Ni is the number of the testing feature vectors in the ith cluster. The testing 
feature space T can be constructed as: 

T
labelM

T
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21 21                  (19) 

Note here the dimension of the training feature space N may not equal to the dimen-
sion of the testing feature space M (M≤N). Some of the clusters may be empty. 

The likelihood of the unknown painting related to the captured style of the artist 
can be computed using the posterior probability of the trained mixture models: 
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This probability framework of estimation is to replace the “hard” decision by a “soft” 
decision. This statistical framework provides a computer-aided technique to Chinese 
ink paintings characterization. 
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In order to examine the accuracy of the learned 22 mixture Gaussian models, we 
choose 20 images painted by Tao Shi, and 20 images by Xiaoming Li, and another 20 
images by an imitator of Tao Shi – Xinya Chen as the test images. The 20 testing 
paintings of Tao Shi are different from the paintings that used for the training. Table I 
gives the classification results. In this preliminary experiment we can see that our 
method is somehow better than the method proposed in [3].  

Xiaoming Li used a very different Chinese ink painting skill from Shi, so the clas-
sification result is very good. However Xinya Chen is a skillful imitator of Tao Shi, 
sometimes even people can not tell the difference between the work painted by Shi 
and the painting by Chen. The stroke style of Chen is very similar to that of Shi. The 
method proposed in [3] can hardly tell the difference between the works of Chen and 
those of Shi. However our method is better than the method proposed in [3]. From the 
results shown in Table I our statistical framework can be extended to provide a com-
puter-aided technique to Chinese ink painting authentication. 

Table 1. The classification result obtained by the mixture Gaussian models. Each row lists the 
average classification accuracy of classify an artist paintings to Tao Shi. 

Our Method Method in [3]  
Percent (%) Shi Shi 

Shi 83% 72% 
Li 0 3% 

Chen 45% 68% 

4   Conclusions 

In this paper, a wavelet statistical model is developed to capture complex dynamic 
styles of Chinese ink paintings. The style profile of an artist is represented by a set of 
statistical feature-tons and their distribution. Local dynamics are captured by first- 
and high-order wavelet statistics, and the correlation statistics across scales and orien-
tations, while the global style are modeled by a finite mixture of Gaussian models 
estimated by an unsupervised learning algorithm from multivariate features. The 
mechanisms behind our approach and the scheme proposed in [3] should be explored 
and compared extensively in the future work. 
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Abstract. A visibility enhancement technique for highly-scattering media (e.g. 
turbid water) using an adaptive fusion of gated images is proposed. Returning 
signal profiles produced by gated imaging contain two peaks: the backscattering 
peak followed by the target-reflected peak. The timing of the backscattering 
peak is determined by the laser pulse parameters, while the location of second 
peak depends on the target distance. Thus, a sequence of gated images ranged 
over a variety of distances can be used to visualize scenes of diversified depths. 
For each fragment of the scene, the gated image containing the maximum signal 
strength (after ignoring the backscattering peak) is identified to form the corre-
sponding fragment of the fused image. This unique capability of capturing both 
visual and depth information can lead to development of fast and robust sensors 
for vision-guided navigation in extremely difficult conditions. 

1   Introduction 

Visibility in highly scattering media (e.g. turbid water) is severely degraded because 
imaging devices capture not only the signal reflected from observed objects, but also 
a large amount of radiance scattered toward a device by the medium. No significant 
enhancement can be achieved by illuminating the scene with a high-intensity light 
source, as this proportionally increases the scattering noise and the overall SNR (sig-
nal-to-noise ratio) remains unaffected. Although certain improvements in image qual-
ity are possible by post-processing, the target-reflected radiance and the scattered 
radiance are generally inseparable at “traditional” capturing devices. 

The alternative method is to capture images with devices that can discriminate be-
tween reflected and scattered signals. Range-gated imaging (e.g. [1], [2], [3], [4]) is such 
a technique. A gated imaging system basically consists of a pulsed laser (usually, the 
pulses are diverged into a conical shape) a high-speed gated camera and the control and 
synchronization circuitry. The principles of operation are explained in Fig.1. Projected 
laser pulses reflect from objects and return to a camera with electronically controlled 
(gated) shutter. If the gate opening is synchronized with the head of the pulse reflected 
from an object, and closing is synchronized with the pulse tail, the camera captures the 
image of this object (and possible other objects within the same range). 
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Fig. 1. Principles of gated imaging 

Reflections from more distant objects do not return before the shutter closes (i.e. 
such objects are invisible) while reflections from front objects return before the shut-
ter opens (i.e. such objects become dark shadows as no reflected signal is received at 
those areas). As an illustration, a non-gated image is compared to two gated images 
(ranged to different depths) in Fig. 2. These images are captured in low-turbidity 
medium. 

Additionally, the amount of backscattering noise is minimized in gated images as 
most of the backscattered signal (produced by the layer between the camera and the 
target) returns when the shutter is closed. Thus, if the distance to observed targets is 
correctly estimated, gated imaging can produce in turbid media images of much better 
quality (and at longer ranges) than “traditional” devices. It is claimed (see [5]) that 
visual penetration of turbid media is 3-6 times deeper for gated imaging systems than 
for their non-gated counterparts. As an example, Fig. 3 shows a test object captured in 
highly turbid water by a non-gated camera and a gated one. 

In more realistic scenarios, the observed scenes may contain numerous objects  
at diversified distances. To effectively use gated images in such unpredictable 
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Fig. 2. A non-gated image (left) and two gated images captured at different ranges. Note the 
contribution of ambient light to the gated images. 

  

Fig. 3. A non-gated image (left) and a gated one (right) captured in a highly turbid medium. 
The gated image is ranged to the actual distance to the object. 

conditions (in high-turbidity media, in particular) novel methods of image formation 
should be developed. This paper presents theoretical foundations and preliminary 
experimental results for such a method. The method would be particularly useful in 
short-range problems, (e.g. autonomous navigation in turbid waters, visibility en-
hancement in heavy smoke, etc.). Section 2 of the paper briefly overviews a model of 
short-range gated imaging and highlights the most significant properties of the model. 
The image formation by fusion of gated images is subsequently discussed in Section 
3, including exemplary experimental results. In Section 4, the obtained results are 
concluded and further developments of the methods are proposed. 

2   Model of Short-Range Gated Imaging 

The radiation returning to a camera after illuminating the scene by a laser pulse is an 
additive composition of backscattering noise and target-reflected signals. The actual 
profile of the returning signal depends on the pulse duration, the medium turbidity, 
and on the target reflectivity and its distance to the camera. Although the detail model 
of this phenomenon is very complex (e.g. [6]), under simplifying assumptions the 
returning backscattered signal can be modeled as a convolution (with fixed upper 
limit) of the emitted pulse profile P0(t) with the kernel S(r) representing optical  
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properties of the medium. If the assumed duration of the laser pulse is 2t0, and an 
opaque target is placed at r0 distance, the formula for the backscattering noise is: 
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The target reflected signal can be modeled as: 

)/2()( 00 vrtPBtPS −⋅=        for   2r0/v < t ≤ 2r0/v+2t0 (2) 

where B jointly represents the target reflectivity and optical properties of the medium. 
In Eqs (1) and (2) v is the speed of light in the medium. More analytical results and 
further discussions on the model limitations are available in [7]. 

As an illustration, model-predicted profiles (the light intensity returning to the 
camera - arbitrary units used) are given in Fig. 4. They are computed (for various 
water turbidities) for a target at 1.8m distance illuminated by 9ns laser pulses. 
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Fig. 4. Light intensity profiles returning to the camera computed for a 1.8m opaque target 
illuminated by a 9ns laser pulse in water of various turbidity levels (attenuation c) 

The actual profiles measured for the same scene are shown in Fig. 5. The measured 
profiles and their modeled counterparts are qualitatively similar, but some differences 
(due to the model simplification) can be noticed. For example, the backscattering 
peaks (the left peaks in Figs 4 and 5) in the measured profiles are delayed with respect 
to the modeled peaks (especially in high turbidities). This is because the 
backscattering signal is modeled using only single-scattering photons. In turbid 
media, a large portion of that signal is formed by multiple-scattered photons that are 
additionally delayed before returning to the camera. Moreover, the shape of reflected 
signal peaks (the right peaks in Figs 4 and 5) is not modeled accurately (the assumed 
profile of the laser pulses may differ from the actual pulse profile). 

Fig. 6 presents the modeled profiles for a similar scene (in high-turbidity 
conditions) illuminated by pulses of various durations (all pulses carry the same 
energy). 
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Fig. 5. Light intensity profiles returning to the camera measured for a 1.8m opaque target 
illuminated by a 9ns laser pulse in water of various turbidities (attenuation c) 
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Fig. 6. Light intensity profiles returning to the camera for high turbidity water (c=2.2/m) with a 
target at 1.5m. The laser pulses of 2, 4, 6 and 8ns (carrying the same energy) are used. 

Figs 4 to 6 show that the backscattering noise forms a peak in the returning signal 
before 2t0 time (the duration of the laser pulse). Afterwards, the noise rapidly 
diminishes and eventually terminates at approx. 2r0/v+2t0 time (where r0 is the target 
distance and v is the light speed). The peak’s magnitude is proportional to the 
turbidity level. Although the model predicts that for higher turbidities the 
backscattering peak appears earlier, this effect is not observed in the measured 
profiles (as explained earlier). The reflected signal peak always starts at the moment 
corresponding to the target distance, and the width of the target peak is determined by 
the duration of laser pulses. 

In scenes with several targets at various distances, the backscattering part of 
profiles will be similar for the whole scene. The target-reflected peak, however, will 
be differently shifted in various parts of the scene. 
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A gated image is formed by integration of a returning signal profile from t1 (gate 
opening) to t2 (gate closing). Figs 4-6 clearly explain that a high-quality image can be 
obtained when the gating period <t1, t2> coincides with the target-reflected peak. The 
effects of incorrect and correct timing of gate opening are shown in Fig. 3 (more 
details on gating period optimization are given in [6] and [7]). 

3   Fusion of Gated Images 

Scenes containing multiple objects at diversified distances cannot be visually 
represented by a single gated image that depicts only a narrow “slice” of the scene. 
Nevertheless, a sequence of gated images timed to various depths contains enough 
information to visualize the scene over a wide range of distances, even in turbid 
media. Therefore, a fusion of gated images is the most natural approach to improve 
visibility in high-turbidity conditions. However, the method would be efficient only if 
the pieces of visual data are relevantly extracted from individual gated images to form 
the fused image. 

Assume that for each location (x,y) within the formed image, the returning signal 
profile Px,y(t) can be approximated (using a sequence of gated images of gradually 
increased range). For low-turbidity media, the target-reflected peak is always much 
higher than the backscattering peak (see selected profiles in Figs 4 and 5) so that for 
any (x,y) coordinate of the fused image intensity  should be selected as maximum of 
the returning profile: 
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where <0; T> is a period of time over which the returning profile (i.e. a sequence of 
gated images) has be captured/reconstructed. 

The method works well (more in [8]) but in low turbidities there is no real need for 
gated imaging since sufficient quality can be achieved by non-gated imaging (i.e. by 
integration of the whole returning signal). In high turbidities (when there is the actual 
need for gated imaging) the backscattering peaks dominate (see Fig. 6) and images 
fused by “choose max” approach are mostly formed of noise. Thus, their quality is not 
better than the quality of non-gated images., Fig. 7 compares an exemplary  fused 
image to an image than averages (integrates) the returning profile. 

 

 

  

Fig. 7. A clear water image (left) and images in highly turbid water obtained by averaging the 
returning profile (center) and by “choose max” fusion of gated images (right) 
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The same method, nevertheless, can be more successful if the search for the profile 
maximum is limited to <2t0+Δ; T> period (where 2t0 is the pulse length and Δ is a 
short additional increment). Most of the backscattering noise returns before 2t0+Δ 
moment (see Fig. 6) so that the maximum value found in the remaining part of the 
profile corresponds to the target reflections (except for the areas with no target, where 
only backscattering noise of rather small magnitude is detected). Fig. 8 shows how 
this method works for an exemplary complex scene. The figure contains three gated 
images, the resulting fused image and the corresponding non-gated. 

   
A                                       B                                      C 

     
D                                             E 

Fig. 8. Images captured in high-turbidity water. (A, B, C) – selected gated images; (D) – the 
image fused from a sequence of gated images; (E) – the corresponding non-gated image. 

A disadvantage of the method is its inability to capture objects at very short 
distances (so that the reflected peak overlaps the backscattering peak)). It can be 
corrected, however, by using shorter illumination pulse (if shorter range is needed). 
For example, the minimum distance for a 4ns pulse is approx. 0.5m (in water) or 0.7m 
(in air) that is acceptable for typical prospective applications. 

A more advanced version of the method would be a detail analysis of the returning 
profiles in order to detect the second peak (or at least a bulge) that would indicate the 
target reflection. If the second peak is not detected, the formed fused image remains 
black (i.e. the signal at that location would be assumed backscattering noise only). 
The method would also generate the range information since the timing of detected 
peaks corresponds to the target distance. In this advanced method, even targets at very 
short distances and targets of very low reflectivity would be identified (providing the 
receiver’s gated camera is sensitive enough). Our experiments have shown feasibility 
of this approach, but the available equipment does not fully satisfy the method’s re-
quirements. In the conducted experiments, we reconstructed the returning profiles by 
subtracting consecutive gated images differing by very short (1ns) gating time incre-
ments. The system parameters (in particular, fluctuations of the laser pulses and the 
dark noise of the camera) have not been found satble enough for the accurate recon-
struction of the profiles. There are, however, promising emerging technologies (e.g. 
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[9], [10]) that may possibly be used to overcome the current limitations. This would 
eventually lead to development of unique sensors capable of capturing both visual and 
depth information with extremely high speed, high reliability in turbid media and over 
a wide range of distances (including very short distances). 

4   Conclusions 

The paper presents a method for good quality visualization of complex scenes in 
highly turbid media. The theory is supported by exemplary experimental results. The 
experiments have been conducted in the Robotics Research Centre of NTU using a 
gated imaging system developed around a 3m water tank (with controllable level of 
turbidity). In most cases, a laser illuminator producing 9ns pulses carrying 18mW 
energy was used with a gated camera of 14ns minimum gating time. In some 
experiments, a high-sensitivity camera of 0.2ns gating time was used with a low-
energy laser (to prevent the camera damage). Additionally, a specialized FPGA-based 
device has been developed to test the automatic on-line control of parameters (e.g. 
gating delays, laser triggering) and to perform in real-time the fusion of gated images. 
Details of the device are reported in [11]. 

In the future, we plan to further develop the digital control module (using high 
capacity and high speed FPGA) and to integrate a more compact gated imaging 
system (with additional improvements of its optical path). The theory supporting the 
experimental results is continuously developed as well. 
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Abstract. This paper proposes a novel digital auto-focusing algorithm using 
image fusion, which restores an out-of-focus image with multiple, differently 
out-of-focus objects. The proposed auto-focusing algorithm consists of (i) 
building a prior set of point spread functions (PSFs), (ii) image restoration, and 
(iii) fusion of the restored images. Instead of designing an image restoration fil-
ter for multi-object auto-focusing, we propose an image fusion-based auto-
focusing algorithm by fusing multiple, restored images based on prior estimated 
set of PSFs. The prior estimated PSFs overcome heavy computational overhead 
and make the algorithm suitable for real-time applications. By utilizing both re-
dundant and complementary information provided by different images, the pro-
posed fusion algorithm can restore images with multiple, out-of-focus objects. 
Experimental results show the performance of the proposed auto-focusing  
algorithm.

1   Introduction 

A demand for digital multi-focusing techniques is rapidly increasing in many visual 
applications, such as camcorders, digital cameras, and video surveillance systems. 
Multi-focusing refers to a digital image processing technique that restores multiple, 
differently out-of-focused objects in an image. Conventional focusing techniques, 
such as manual focusing, infra-red auto-focusing, through the lens auto-focusing, and 
semi-digital auto-focusing, cannot inherently deal with multi-focusing function. 
Multi-focusing can be realized with fully digital auto-focusing based on PSF estima-
tion and restoration.  

In this paper, a novel digital auto-focusing algorithm using image fusion is pro-
posed, which restores an out-of-focus image with multiple, differently out-of-focus 
objects. When an image contains two or more objects, the proposed auto-focusing 
algorithm can restore all of out-of-focus objects by restoring the image without PSF 
estimation and fusing several partially restored images. For image restoration, we 

                                                           
*  This work was supported by Korean Ministry of Science and Technology under the National Research 
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build a prior set of PSFs and restore the out-of-focus image with the generated set of 
PSFs. These multiple restored images are then fused to form an in-focus image with 
maximal focus information.   

The rest of the paper is organized as follows. Existing techniques and problem 
formulation are described in section 2. The proposed algorithm is described in section 
3. Simulation results and comparisons are shown in section 4. Finally, concluding 
remarks are outlined in section 5.  

2   Existing State-of-the-Art Methods 

The image restoration problem has been faced in many ways. NAS-RIF [2], for 
example, involves minimizing a cost function while NLIVQ (nonlinear interpola-
tive vector quantization) [3] and ARMA methods [4, 5], are borrowed from data 
compression field. Although both ARMA model and nonparametric approaches 
can provide acceptable focusing results under a set of assumptions, computational 
complexity due to numerical optimization and non-trivial number of iterations for 
convergence makes the corresponding system unrealizable as a commercial  
product.  

A practically realizable AF technique was proposed under assumption that the PSF 
of the image formation system is isotropic or symmetric in every direction [6]. Since 
this technique doesn’t involve an iterative procedure for identifying ARMA-model’s 
coefficients. It can be applied to real-time applications, such as a digital auto-focusing 
and a low-cost video surveillance system. While this technique has requires signifi-
cantly reduced hardware and computational overhead, it loses accuracy due to the 
inaccurate approximation of the isotropic PSF [6, 7]. 

Our work starts from the consideration found in [4, 5], which propose complete 
blind restoration system. In [8], analyzed images are subdivided in to sub-blocks and 
an edge detection algorithm, via gradient analysis, is applied. PSF is computed based 
on the average 1-D step response along the orthogonal direction of detected edges. 
Finally, a constrained least square filter is generated using the PSF.  

3   Proposed Auto-Focusing Algorithm 

The proposed auto-focusing algorithm uses the following three procedures to obtain a 
good restored image: (i) building a prior set of PSFs (ii) regularized iterative restoration, and 
(iii) fusion of the restored images.  

3.1   Prior PSF Estimation  

The discrete approximation of an isotropic PSF is shown in Fig. 1. As shown in 
Fig. 1, many pixels are located off concentric circles within the region defined  
as 
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Fig. 1. The geometrical representation of a 2D isotropic discrete PSF: The gray rectangles 
represent inner pixels of the PSF and the empty ones are outer pixels of the PSF 

To estimate a prior set of PSF’s the Gaussian width of the intensity distributions are 
used. The Gaussian PSF is given by  

2

2 2

1
( ) exp

2 2

x
G xσ πσ σ

−
= . (1) 

As can be seen in (1) Gaussian PSF can often be approximated with standard devia-
tion parameter : In our experiment we develop 100 prior PSF’s for varying values of 
. The range of values for sigma was chosen to be from [0.04, 4.0] with a fixed step 

increment of 0.04 for each PSF. This approximation of 2D discrete PSF is available to 
the popular isotropic blurs, such as Gaussian out-of-focus blur, uniform out-of-focus 
blur, and x-ray scattering. The optimal PSF’s were selected using the out-of-focus 
estimate by calculating the distance between the unit step function and a luminance 
profile across the edge of the restored with various PSF’s as  

( )1 / 22( ) ( ) ( )
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= − = − , 1, 2, , .for k K= , (2) 

where ( )ks  represents the restored edge profile with the thk  pre-estimated PSF in the 
selected AF region, and u  the unit step function. Here, N  denotes the number of 
points in the edge profile and k  is an index for a PSF in the set of K members. The 

optimal PSF can be determined by choosing the thk  PSF with minimum distance as  

( )arg min{ }, 1, 2, , .kd for k K=  (3) 

3.2   Constrained Least Square Image Restoration 

In this paper we present the CLS filter, which restores the out-of-focus image with the 
prior estimated set of PSF’s. Regularization methods play an important role in solving 
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out-of-focus problem with prior knowledge about the solution. Constrained least 
square image restoration is most suitable for multi-focusing because: (i) knowledge 
about the solution can be incorporated into the restoration process, (iii) the solution 
process can be monitored as it progresses, and (iv) constraints can be used to control 
the effects of noise [8].  

The image degradation model is given as 

y Hx= , (4) 

where y , H , and x  respectively represent the observed image, the degradation op-

erator, and the original image. The corresponding regularization results in minimiza-
tion of  

2 2
( )f x y Hx Cxλ= − + . (5) 

In (5), C  represents a high-pass filter, and Cx  represents a stabilizing functional 

whose minimization suppresses high frequency components due to noise amplifica-
tion. The regularization parameter λ  controls the fidelity to the original image and 
smoothness of the restored image. In order to derive the closed-form solution in the 
frequency domain, we can rewrite (5) as 

( ) ,T T T T T T T Tf x y y y Hx x H y x H Hx x C Cxλ= − − + +  (6) 

By setting 

( ) 0,f x
x

∂
=

∂
 (7) 

we have 

Tx b= , (8) 

where, 

T TT H H C Cλ= +  a nd Tb H y= . (9) 

The solution of equation (8) can be given as 

1 .x T b−=  (10) 

on condition that matrix T  is nonsingular.  Even if T  is nonsingular, it is not easy to 
compute its inverse because the size of the matrix is usually very large. By using the 
property that the two-dimensional DFT matrix can diagonlize any doubly block circu-
lant matrix, we can easily compute the solution of (8) in the frequency domain. By 
multiplying the two-dimensional DFT matrix of (10) on the left-hand side by F, using 
(9) and  the orthogonal property of the DFT matrix, we have 

( ) ( ) ( ){ } ( )( )1 1
* * *T T T T T T

Fx F H H C C F F H y F H H C C F FH F Fyλ λ
− −

= + = + , (11) 
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which can be rewritten as 

( ) 1T T Tx H H C C H yλ
−

= + , (12) 

where C  and TC  represent the diagonal matrices whose diagonal elements are equal 
to the row-ordered vector of the two-dimensional DFT of ( , )c m n  and its conjugate, 

respectively.  Because all matrices in (12) have been diagonalized, the two-
dimensional DFT of x  can be computed using scalar multiplications and divisions, 
such as, for , 0, 1, , 1k l N= − , 

{ }
{ } { }

{ }
*

2 2

( , )
( , ) { ( , )} ( , )

( , ) ( , )

DFT h m n
X k l DFT x m n DFT y m n

DFT h m n DFT c m nλ
= =

+
, (13) 

where {}DFT ⋅  represents the ( , )k l th coefficient of the two-dimensional DFT. 

Finally, the solution for x is obtained from the inverse transform as 

* *F x F Fx x= = . (14) 

In (13), if the regularization parameter λ  is equal to zero, the solution is equivalent 

to that achieved by the inverse filter. On the other hand, a nonzero λ  can control the 
amount of smoothness in the solution. The frequency-domain implementation of regu-
larization in equation (13) is also called the Constrained Least Squares filter. 

3.3   Focus-Based Image Fusion 

In order to produce the final restored image we need to fuse the images restored using 
prior training PSF’s. In order to apply the fusion algorithm, the focus measure at a 
point ( , )i j is computed as the sum of modified Laplacian values, in a small window 

around ( , )i j , that are greater than a threshold value, 

1
( , ) ( , ) ( , ) .

j Ni N

x i N y j N

k kF i j M x y forM x y T
++

= − = −

= ≥  (15) 

where 
k

M  refers to the laplacian value for the thk restored image given by, 

( , ) ,2 ( , ) ( 1, ) ( 1, ) 2 ( , ) ( , 1) ( , 1)kM i j I i j I i j I i j I i j I i j I i j= − − − + + − − − +  (16) 

In contrast to auto focusing methods, we typically use a small window of size, i.e. 
1N = . The arbitrary threshold value in the range [0, 30], provides acceptable results 

in most cases. A typical problem that can occur with any type of image fusion is the 
appearance of unnatural borders between the decisions regions due to overlapping 
blur at focus boundaries. To combat this, soft decision blending can be employed  
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using smoothing or low pass filtering of the saliency parameter. In this paper Gaus-
sian smoothing has been used for obtaining the desired effect of blending. The recon-
struction process, operates on each level of the pyramid of the original images in 
conjunction with sum modified Laplacian to generate the composite image C. The 
reconstruction process iteratively integrates information from the lowest to the highest 
level of the pyramid as follows:  

. (1 ) ,
ck k Ak K Bk

L M L M L= + −  (17) 

[ 1] 2.
k ck k

C L w C= + + ↑  (18) 

Where
k

C  represents the reconstructed image from level N , the lowest level, to level 

k  and 2↑  refers to the expand process. The expansion process consists of doubling 
the width and height of the image by introducing columns and row in the original and 
then convolving the resulting image by the w  filter. This creates weighted decision 
regions where a linear combination of pixels in the two images A and B are used to 
generate corresponding pixels in the fused image C. Then we have, 

. (1 )

, ,

, ,

, .
k Ak K Bk

Ak k

ck Bk k

M L M L

L M l

L L M h

otherwise+ −
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= >  (19) 

where 
k

M  is now a smoothed version of its former self.  

4   Experimental Results  

In order to demonstrate the performance of the proposed algorithm, we used real 
images with one or more differently out-of-focused objects from background. Ex-
periments were performed on a 256-level image of size 640x480. Here, each image 
contains multiple objects at different distances from the camera. Thus one or more 
objects naturally become out of focus when the image is taken. Fig 2(a) represents 
image with low depth of field, where focus is on the objects near from the camera 
lens. Each test image was restored using four different optimal PSF’s. The final re-
stored images is obtained by fusion of the multiple restored images.  Fig 2 shows the 
result of fusion based restoration applied to two images having different depth of 
focus. The resulting composite merges the portions that are in focus from respective 
images. Fig 2(b), (c), (d), (e) represents the images restored using different prior esti-
mated PSF’s.  Fig 2(e) is the final restored image formed by fusion of 2(c), (d), (e) 
and (f). The above set of results illustrates the effectiveness of the proposed fusion 
based algorithm and how it can effectively used to overcome the out-of-focus blur in 
images.  
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(a) 

              
  (b)                             (c)                            (d)                               (e) 

 

 
(f) 

Fig. 2. Experimental results: (a) The source image, (b)-(e) restored image using a prior set of 
PSFs, and (f) the restored image based on image fusion 

5   Conclusions 

In this paper, we proposed a novel digital auto-focusing algorithm using image fusion 
is proposed, which restores an out-of-focus image with multiple, differently out-of-
focus objects. For the realization of the digital auto-focusing, we used a set of prior 
estimated PSF’s, regularized restoration, and fusion. Although the proposed algorithm 
is currently limited to space invariant, isotropic PSFs, it can be extended to more 
general applications by incorporating segmentation based multiple PSF estimation 
and spatial adaptive image restoration.  
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Abstract. It is very difficult to evaluate the performance of computer vision al-
gorithms at present. We argue that visual cognition theory can be used to chal-
lenge this task. In this paper, we first illustrate why and how to use vision cog-
nition theory to evaluate the performance of computer vision algorithms. Then 
from the perspective of computer science, we summarize some of important as-
sumptions of visual cognition theory. Finally, some cases are introduced to 
show effectiveness of our methods. 

1   Introduction 

Since the early 1980s, much work has been done to challenge performance characteri-
zation in computer vision, but only a little success has been made. We indeed agree 
with that the theoretical analysis and the empirical evaluation can ultimately address 
the complicated evaluation problem, but L. Cinque et al in [8][10] explicitly pointed 
out: “we realize that many difficulties in achieving such a goal may be encountered. 
We believe that we still have a long way to go and therefore must now principally 
rely on human judgment for obtaining a practical evaluation; for some specific appli-
cations we feel that this is doomed to be the only possibility.” The visual cognition 
theory mainly investigates the principles of human vision system, such as seeing 
what, seeing where, how to see, so in this paper we will discuss in detail why and how 
to apply visual cognition theory to performance characterization of computer vision 
algorithms.  

2   Algorithms Evaluation and Visual Cognition Theory  

Three self-evident truths and two propositions will be discussed, which can illustrate 
that algorithm evaluation of computer vision requires visual cognition theory. 

Truth 1: Assumptions in computer vision algorithms have to be made, and un-
suitable assumptions must lead to poor results. 

All models of computer vision algorithm are certainly not accurate description of 
real world in a strict sense [1-5], so some assumptions are unavoidable. Bowyer et al 
argue that performance of computer vision algorithm will decrease or even fall when 
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complexity increases, so they suggest that the selection and measurement of the basic 
assumptions must be an essential part of algorithm development [11].  

Additionally, T. Poggio in [12] argues that most of computer vision issues are in-
verse optical problems and most of inverse problems are ill-posed. The most impor-
tant criterion for ill-posed problems is the physical assumption plausibility [13,pp.75, 
104]. So it is very important to extract and validate the assumptions of algorithms, 
which can be used to evaluate computer vision algorithms at the theoretical level. If 
the assumptions used by algorithm are unsuitable for a given application, the results 
produced by this algorithm must be poor. 

Truths 2: Each algorithm used by human vision system is the best and most gen-
eral, so the assumptions used by these algorithms must be physical plausibility. 

Proposition 1: To obtain optimal results for a given tasks, assumptions used by 
computer vision algorithm should be same as (or similar to) those employed by 
human vision system.  

According to Marr’s vision theory, each process should be investigated from three 
independent and loosely related levels: computational theory, representation and algo-
rithm, and hardware implementation. From the perspective of information processing, 
the most critically important level is the computational theory [13,pp.10-12], whose 
underlying task is to find and to isolate assumptions (constraints) that are both power-
ful enough to define a process and generally true for the real world [13, pp.22-28]. 
These assumptions (constraints) are often suggested by everyday experience or by 
psychophysical (vision cognition theory) [13, pp.331].  

Additionally, Computer vision problem in theory is similar to human vision prob-
lem, both of which are the process of discovering from images what is present in the 
world, and where it is [13, pp.1][14, pp.1-11]. The human eye and camera surely have 
the same mechanism from the perspective of optical imaging [14, pp.2][15, pp.1], so 
we can surely make use of principles of human vision to build a strong computer 
vision system [14, pp.19-20]. Therefore, in term of Truths 2, and above discussions, 
the Proposition 1 should be reasonable right.  

Truths 3: One of main tasks of visual cognition theory is to find the assumptions 
used by Human Vision System.  

Proposition 2: Visual cognition theory can be used to judge whether assumptions 
of an algorithm are suitable for given tasks, which can be further used to evalu-
ate the algorithm. 

Using Truths 3, Proposition 1, and Truth 1, the Proposition 2 can be easily logical 
proved right.  

Above discussions extensively illustrate that visual cognition theory can be used to 
evaluate computer vision algorithm both for theoretical evaluation and for empirical 
evaluation. These ideas are paraphrased into the Principle of Qualitative Evaluation 
for Computer Vision Algorithm:  

For a given task, if the assumptions used in computer vision algorithm are not 
consistent with assumptions of visual cognition theory (human vision system), the 
performance of this algorithm must be poor. 
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 Fig.1 shows three main steps to use this principle. The step 1 extracts assumptions 
used by the computer vision algorithm. The difficulty is that assumptions of many 
algorithms are so rarely explicitly expressed that we often have to infer them. The 
step 2 judges whether these assumptions are consistent with assumptions of visual 
cognition theory. The set of assumptions of cognition theory and their applicable tasks 
are build offline before evaluation (see Section 3). The step 3 reports the result of 
evaluation, which is divided into three categories: Good if all assumptions match, 
Fair if some assumptions match, and Poor if no assumption match.  

 
 
 
 
 
 
 

3   The Set of Assumptions  

Most of assumptions of visual cognition theory come from [13-21], which are reor-
ganized and reedited from the perspective of computer science.  

a. Both eye and brain [14, pp.128-136][15, pp.1-13]: Human has a plenty of 
knowledge about physical world and how they behave, which can be used to make 
inferences. Structured knowledge constraints: If we want to design a general-purpose 
vision machine, we must first classify and structure knowledge about real world for it. 

b. Abstract & classification principle [21, pp.1]: we use three principles of con-
struction to understand the physical world: (1) identifying the object and its attributes, 
e.g. a tree and its size; (2) identifying the whole and its components, e.g. a tree and its 
branches; (3) identifying different classes of object, e.g. the class of trees and the class 
of stones.  

c. Brain is a probability computer [15, pp.9-13]: Brain makes hypotheses and 
checks them, then makes new hypotheses and checks them again until making the 
best bet, during which all knowledge can be made use of. Eyes and other senses 
within a short time would rather provide evidence for brain to make hypotheses and to 
check them than give us a picture of world directly. Mechanism of inference is classi-
fied into unconscious inference and conscious inference [19, pp.1-16]. Methodology 
constraint: probability method may be better for computer vision problems. 

d. See world by object not pattern [20]: Human eye receives patterns of energy 
(e.g. lightness, color), but we see by object not pattern. We do not generally define 
object by how it appears, but rather by its uses and its causal relations. Once we know 
what the object is, we must know its shape, size, color and so on. Object constancy 
constraints: Physical object exists continuously, uniquely, and constantly, though 
time is flying [13, pp.205]. 

e. Do we have to learn how to see? [15, pp.136-169] The inheritance only forms 
the basis for learning, so that we have to learn much knowledge and ability for the  
 
 

Fig. 1. Three main steps to use 
the Principle of Qualitative 
Evaluation for Computer Vision 
Algorithm. The set of assump-
tions is built offline in advance.  
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sake of seeing. Computer learning constraint: we should continuously help computer 
with learning by active hands-on exploration to relate the perception to conception, as 
do it for a baby. 

f. The law of Gestalt [14, pp.113-123][17, pp.106-121]. The Grouping principle 
can be further summarized into five principles: (a) the principle of proximity, (b) the 
principle of similarity, (c) the principle of good continuation, (d) the principle of clo-
sure tendency, and (e) the principle of common fate. The Figure-ground segregation 
principle means that (1) in ambiguous patterns, smaller regions, symmetrical regions, 
vertically or horizontally oriented regions tend to be perceived as figures; (2) The 
enclosed region will become figure, and the enclosing one will be the ground; (3) The 
common borders are often assigned to the figure; (4) Generally, the ground is simpler 
than the figure.  

g. Simultaneous contrast [13, pp.259-261] [15, pp.87-92]: Human eyes don’t de-
tect the absolute energy of brightness, lightness, color, and motion, but their differ-
ence that is directly proportional to the background energy (e.g. Weber’s Laws). 
Threshold constraint: a differential value is better than absolute one. Compensation 
constraint: brightness, lightness, color, and motion should be compensated according 
to the background energy.   

h. Constancy world [14, pp.15-52]: According to the knowledge of geometrical 
optical imaging, the retinal image is different from the objects’ outline, and the retinal 
image continually varies as human moves, but the object looks the same to us, which 
is called Constancy. There are size constancy, color constancy, brightness constancy, 
lightness constancy, shape constancy, motion constancy, and so on.  

i. The principle of modular design [13, pp.99-103]: Each system (e.g. vision, 
touch etc.) of the perception and each channel (e.g. seeing color and seeing movement 
of vision) of different system work independently. Sometimes, different systems and 
different channels may make inconsistent conclusions, which force the brain to make 
a final decision. Multi-channel constraint, Information encapsulation constraint: have 
been applied to Object-Oriented analysis and design by computer community [21]. 
Furthermore, one channel (e.g. color) of vision system may affect or even mask an-
other channel (e.g. shape), which is called visual masking effects. 

j. Two eyes and depth clues [14,pp.53-90] [15, pp.61-66]: Two eyes share and 
compare information, so they can perform feats that are impossible for the single eye, 
e.g. the 3-D perception from two somewhat different images. Depth perception cues 
include retinal disparity, convergence angle, accommodation, motion parallax and 
pictorial information (occlusion, perspective, shadow, and the familiar sizes of 
things). Depth perception constraint: in order to yield definite depth perception, all 
clues must work collectively.  

k. Brightness is an experience [15, pp.84-97]: Brightness is a function not only of 
the intensity of light falling on a given region of retina at a certain time, but also of 
the intensity of light falling on other regions of retina, and of the intensity of the light 
that the retina has been subject to in the recent past. In the dark, the mechanisms of 
dark-adaptation trade eye’s acuity in space and time for increase in the sensitivity 
(The continuity of brightness change constraint). The brightness can be reflected by 
shading and shadow, which can indicate objects’ information (e.g. Top-down light 
source constraint). 
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l. Two seeing movement systems [14, pp.17-202] [15, pp.98-121]: One is the im-
age/retina system that passively detects the movement. Another is the eye/head 
movement system that positively seeing movement. When searching for an object, the 
eyes move in a series of small rapid jerks (Motion discontinuous assumption), but 
when following an object, they move smoothly (Motion continuous assumption). The 
eyes tend to suggest that the largest object is stationary (Motion reference frame con-
straint). Persistence and apparent movement imply continuity, stability and unique-
ness constraints.  

m. RGB is not the whole story [15, pp.121-135]: Only mixing two, not three, ac-
tual colors can give a wealth of colors. The mixture of three primary colors (e.g. 
RGB) can’t produce some colors that we can see, such as brown, the metallic colors. 
Color is a sensation. It depends not only on the stimulus wavelengths and intensities, 
but also on the surrounding difference of intensities, and on whether the patterns are 
accepted as objects (Color computational constraint).  

n. Topological rules in visual perception [18, pp.100-158]: Local homotopy rule: 
we tend to accept an original image and its transformed image as identical, if the 
image is made a local homotopy transformation within its tolerance space. The same 
is true for the homeomorphism rule, homeomorphism and null-homotopy rule in clus-
ter, the object superiority effect, and the configurable effect. 

o. The whole is more than the sum of its parts [13, pp.300-327] [16][17, pp.176]: 
The same parts (primitive) with different relations may construct different objects. It 
is possible to match a number of objects with a relatively small number of templates, 
because it may be easier to recognize parts (primitives) with relatively simper prob-
ability methods. 

p. Marr’s underlying physical assumptions [13, pp.44-51]: (1) existence of 
smooth surface in the visible world, (2) hierarchical spatial organization of a surface 
with a different scale, (3) similarity of the items generated at the same scale, (4) spa-
tial continuity generated at the same scale, (5) continuity of the loci of discontinuities, 
and (6) continuity of motion of an rigid object.  

q. Edge perception and edge type [14, pp.49-50]: The vision system only picks 
up luminance difference at the edge between regions, and then assumes that the dif-
ference at the edge applies throughout a region until another edge occurs. Furthermore 
vision system divides the various edges into two categories: lightness edge and illu-
mination edge. The perceptual lightness value at the edges is only determined by 
lightness edge.  

From other psychological literatures, we can extract more assumptions such as ob-
ject rigidity assumption, Gauss distribution assumption, and smooth assumption, etc.  

4   Case Studies 

4.1   The Problems of Optical Flow 

The optical flow problems were discussed by Horn [22] and Verr [23]. Their results 
are consistent with the judgments based on our principle, shown in Table 1, which is 
also harmony with the conclusion of McCane’s experiments in [9]. 
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Fig. 2. The ideas behind Waltz’s theory 

Table 1. the discussion about optical problem. Note: (k) in the table refers to kth assumption in 
Section 3.  

Problem Assumptions Suitable Result 
Flat surface Suit (p) 

Uniform incident illumination Ill-Suit (k, q) 

Some 
suit 
Fair 

Differentiable brightness Suit (k)  

Determining 
the optical flow 

Smooth optical flow Suit (p, l)  
Recovering 3-
D structure 

Motion field equals to optical flow field Ill-suit (l) Poor 

4.2   Waltz’s Line Drawings [13, pp.17-18] 

When all faces were planar and all 
edges were straight, Waltz made an 
exhaustive analysis of all possible local 
physical arrangement of these surfaces, 
edges, and shadows of shapes 
(Structured knowledge constraint and 
Abstract & classification principle in 
Section 3 a, b). Then he found an 
effective algorithm to interpret such 
actual shapes. Fig.2 shows that some of configurations of edges are physically plausi-
bility, and some are not. The trihedral junctions of three convex edges (a) or the three 
concave edges (b) are plausibility, whereas the configuration (c) is impossible. So the 
direction of edge E in (d) must be the same type as (a). This example shows the power 
of physical assumption plausibility. 

4.3   Attention Mechanism 

L. Itti et al define a set of linear “center-surround difference” operator  (Simultaneous 
Contrast in Section 3 g) to reproduce the attention mechanism of primate visual sys-
tem (visual masking effects in Section 3 i). However, it is only a bottom-up guidance  
 

Table 2. Attention models and their assumptions for object recognition or scene analysis. Note: 
(a) in the table refers to ath assumption in Section3.  

Model Assumptions Suitable Result 

Center-surround difference  
Simultaneous Contrast: suit 
(g) 

Only bottom-up 
Structured Knowledge con-
straints: ill-suit (a) 

L. Itti model 

Only focus on one element  Masking effects: suit (i)  

Some 
suit 
 
Fair 

V.Naval-
pakkam  
model 

L. Itti model & Distribution 
of background  

All suit (a, g, i) Good 

A. Oliva 
model 

L. Itti model & Task graph 
(Top-down) 

All suit (a, g, i) Good 
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of attention without using any prior knowledge. V. Navalpakkam et al proposed to use 
a task graph to describe the real world entities and their relationships as Top-down 
control [25]. A. Oliva et al used the distribution of background of scenes as knowl-
edge constraints [26]. Both V. Navalpakkam model and A. Oliva model employed 
Structured knowledge constraints (Section 3 a), so the effect and performance of their 
model are better than that of pure bottom-up attention model. 

4.4   Comparison with CVIR Experiments 

Many researchers have compared the performance of Content-based Visual Informa-
tion Retrieval (CVIR) algorithms in an experimental way [27, 57-305], listed in Table 
3. It is inherent consistency between these experimental results and the judgments of 
our principle.  

Table 3. comparisons between experimental results and those by our methods about CVIR 
algorithms. Note: NH=normal histogram; CH=cumulative histogram; EDH= edge direction 
histogram; Wavelet MM= wavelet Modulus Maxima; Local M= Local Motion detection; 
L&GM= Local motion detection after Global Motion compensation; (d) in the table refers to dth 
assumption in Section 3.  

Feature 
Method 
name 

Experimen-
tal Result 

Assumptions Suitable 
Our 
Result 

NH Poor Color is linear Ill-suit (m) Poor 
Color 

CH Fair Color is non-linear Suit (m) Fair 

EDH Fair 
Brightness changes in bound-
ary 

Suit (k, q) Fair 

Shape 
Wavelet 
MM 

Good 

Brightness changes in bound-
ary, Multi-size & Multi-
channel, and Gauss distribu-
tion. 

All Suit 
(k, q, i) 

Good 

CH Fair Color is nonlinear Suit (m) Fair 

EDH Fair 
Brightness changes in bound-
ary  

Suit (k, q) Fair 
Color 
& 
Shape NH & 

EDH 
Good 

Brightness changes in bound-
ary & Color is nonlinear 

Suit (m, k, 
q) 

Good 

LocalM Poor Absolute motion Ill-suit (g) Poor Mo-
tion L&GM Fair Relative motion Suit (g, l) Fair 

5   Conclusion and Further Work  

The preliminary study strongly suggests that vision cognition theory can be used to 
evaluate computer vision algorithms. In this paper, we propose the Principle of Quali-
tative Evaluation for computer vision algorithms. To easily use this principle, we 
summarize some important assumptions of psychology. Further works include: 1) to 
model users under the integrated framework to automatically define the ground truth; 
2) to explore cognition-based methods for empirical performance characterization; 3) 
to find more psychological assumptions and their applicable tasks. After all, our ulti-
mate aim is to evaluate the usefulness of a computer vision system for end users. 
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Abstract. We present an algorithm for constructing efficient topological
shape descriptors of three dimensional objects. Given a smooth surface S
and a Morse function f defined on S, our algorithm encodes the relation-
ship among the critical points of the function f by means of a connection
graph, called the Morse Connections Graph, whose nodes represent the
critical points of f . Two nodes are related by an edge if a connection is
established between them. This graph structure is extremely suitable for
shape comparison and shape matching and inherits the invariant prop-
erties of the given Morse function f .

1 Introduction

Due to the recent improvements in laser scanning technology, vast amounts of 3D
models are easily produced and archived. The World Wide Web enables access
freely or commercially to these digital archives. Thus, it becomes imperative to
develop efficient methods for comparison and matching of 3D shapes to enable
automatic 3D shape retrieval. One of the central issues in shape comparison
and shape matching is the representation of shapes by means of descriptors
[1]. To represent a shape we characterize it in terms of descriptors so that it
is possible to reconstruct the shape to a certain degree of precision from such
descriptors. Typically, the descriptors measure several shape characteristics of
statistical, geometrical, and topological nature. In our approach, we focus on
topological descriptors since they provide information that can remain constant
despite the variability in appearance of objects due to noise, deformation and
other distortions.

In this paper, we introduce a new topological descriptor for shape represen-
tation based on classical Morse theory. More precisely, given a smooth surface
S and a Morse function f defined on S, our algorithm encodes the relationship
among the critical points of the function f by means of a graph whose nodes
represent the critical points of f . Two nodes are related by an edge if a connec-
tion is established between them. That is, if the intersection of their stable and
� This research is supported by NSERC.
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unstable manifolds is not empty (details will be given in section 2). We call this
graph the Morse Connections Graph. The graph structure is extremely suitable
for shape comparison and shape matching. The role of the function is to measure
different characteristics of the 3D object while the graph is used to synthesize
the regions of topological interest of the object and the relationships between
them. Different Morse functions with specific invariant properties can be used
for the same object to provide graph structures inheriting the same invariant
properties.

The following section presents a background on Morse theory and pertaining
to the definition of the Morse Connections Graph. In section 3, we will give
details about the algorithms used to compute the Morse Connections Graph.
Finally, we will present some computational results.

2 Morse Connections Graph

Morse theory [2,3] has become a fundamental technique for investigating the
topology of smooth manifolds. The basic results in this theory prove that the
topology of a smooth manifold is very closely related to the critical points of a
smooth function on the manifold.

In the sequel M denotes a smooth compact, connected n-dimensional mani-
fold without boundary. A smooth function f : M → R is a Morse function if all
its critical points, i.e., points p ∈M where the differential Df vanishes are non
degenerate in the sense that near such a point p, there exists a local coordinate
system (x1, . . . , xn) in which the determinant of the Hessian of f at p

Hf (p) =
(

∂2f

∂xi∂xj

)
does not vanish. A second order invariant is associated with each non degen-
erate critical point p, which Morse called the index of f at p and denoted
λ (p), and which is defined as the number of negative eigenvalues of the Hessian
Hf (p). The index λ (p) corresponds to the dimension of the unstable manifold

Wu (p) =
{
q ∈ M | lim

t→−∞ψ (t, q) = p

}
, where ψ : R ×M → M denotes the

negative gradient flow associated with f on M. The unstable manifold Wu (p)
is homeomorphic to an open cell of dimension λ (p). In a similar way, the stable
manifold is defined as W s (p) =

{
q ∈M | lim

t→∞ψ (t, q) = p
}
. By contrast, the

stable manifold is homeomorphic to an open cell of dimension dim (M)− λ (p).
In addition, we denote by Mt the submanifold of M (also called the lower level
set of f) consisting of all points of M at which f takes values less than or equal
to t, i.e. Mt = {p ∈M | f (p) ≤ t}.

A fundamental result in this theory, called the Morse Lemma [3], asserts that
f has a quadratic form representation near critical points and allows to prove
that a Morse function defined on a compact manifold admits only finitely many
isolated critical points.
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Finding the critical points (including degeneracies) on a discretization re-
quires adequate tools. For this reason, we use the Conley index theory [4] which
is a topological version of the Morse index theory and better suited for dynamical
systems in the presence of perturbations due to noise and approximation. Briefly,
this theory is used to study invariant sets (sets containing the critical points)
and their type (minimum, saddle, maximum). An invariant set is a set of points
of M that remains constant over the time parameter for the flow associated to
f . Computing the invariant sets directly is a difficult task, so instead the theory
considers isolating neighborhoods of the invariant sets. The index is defined as
the rank of the relative homology type [5,6] of the isolating neighborhood with
respect to its exit set, that is the set of points whose trajectory exits the set
in the forward time. When the homology groups [5,6] are non-trivial, the index
indicates that the isolating neighborhood contains an invariant set.

First, we track the potential invariant regions of the gradient flow associated
with f and use the Conley index to confirm the presence of nonempty invariant
sets. Then, we decompose the surface into regions of homogeneous flow [7] better
known as stable and unstable manifolds. Figure 1 illustrates the decomposition
of the torus into the stable and unstable manifolds of its critical points for a
given Morse function (here the height function). In this example, there are four
critical points p, q, r and s. The stable manifold of p is the whole surface without
the inner bold and the upper dashed loops. W s (q) and W s (r) are respectively
the inner bold loop and the upper dashed loop. Finally, the stable manifold of
s is made of the isolated critical point s. The unstable manifolds decomposition
of the torus for the same height function is similar and shown in figure 1.

Fig. 1. Stable and unstable manifolds for the height function on the torus

2.1 Morse Connections Graph

In this section, we present how the Morse Connections Graph is defined. Readers
familiar with the Reeb graph [8,2] will observe some similarities. The Reeb graph
considers sections of the shape M, where each section is formed by the set of
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points contained between two consecutive lower level sets Mt and Mt−ε for some
small ε. As t will change, the Reeb graph will record any change occurring in the
topology of two consecutive sections. For a 2D shape embedded in a 3D space,
the Reeb graph will track the loops of the different sections and record any time
when a loop will appear, disappear or when any two loops will merge or split.
These changes in the topology of the sections are in fact related to the presence
of critical points of f . Since the critical points of f are directly related to changes
in the topology of the loops, the Morse Connections Graph will have the same
nodes as the Reeb graph. The difference will be in the way the arcs between
those nodes are established. In the Reeb graph, an arc is created between two
nodes when the associated loops belong to the same connected component. For
the Morse Connections Graph, an arc is created between two nodes when there
exists a connection as defined lower.

Let’s consider the flow ψ associated to the function f . All non-critical points
of f will lie on a unique trajectory. This trajectory is said to start at a critical
point p when going backward in time, the limit of the trajectory goes to p.
Similarly, the trajectory will end at a critical point q when going forward in
time, the limit goes to q. Let’s say that for a given regular point r, its trajectory
is starting and ending at the critical points p and q. Clearly, the point r will
belong to the unstable manifold of p, Wu (p), since it gets away of p as the t
parameter of the flow increases. Similarly, the point r will belong to the stable
manifold of q, W s (q), since it gets closer to q as the t parameter of the flow
increases. Thus we say that this trajectory is connecting the critical points p and
q, because the flow will gradually progress from p to q as the parameter t will
increase. It is this kind of connection characterized by the Morse Connections
Graph. For this purpose, we came with the following definition of a connection.

Definition 1. Let p and q be two critical points of a Morse function f : M → R.
We say there is a connection from p to q, denoted p � q, if Wu (p)∩W s (q) �= ∅.

For a given flow ψ, all regular points of M belong to a unique trajectory. So
when Wu (p) ∩W s (q) �= ∅, it means there exists a point of M belonging to a
trajectory starting from p and ending at q, thus connecting the critical points p
and q. From this notion, we define the Morse Connections Graph as follows.

Definition 2. The Morse Connections Graph is defined as MCGf = (Vf , Ef ),
where

Vf = {critical points of f} and
Ef = {(pi, pj) ∈ Vf × Vf | pi � pj} .

Possible degeneracies of the critical points are not a problem because the
definitions are formulated on the intersection of stable and unstable manifolds,
which can always be computed wether a critical point is degenerate or not. Also,
to obtain a more accurate representation shapes, labels can be assigned to the
nodes and edges. For the nodes, we can assign the critical value and the index
of the critical point. For the edges, we can assign the type of connection by
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Fig. 2. The types of connections can be used as a label for the edges of the Morse

Connections Graph

computing the homology type (connected components, holes, voids) of Wu (p)∩
W s (q) ∪ {p, q}. Figure 2 illustrates three different kinds of connections.

Computing the Morse Connections Graph requires finding efficient ways to
compute the critical points and their connections, that is their stable and unsta-
ble manifolds. The following section will detail efficient algorithms for computing
them. We state some results that will serve to validate these algorithms. In the
example of figure 1, the stable and unstable manifolds of the critical points of f
seem to form a partition on the points of M, since they cover the whole space
and have an empty intersection. Indeed, the following two results show that the
stable and unstable manifolds do form a partition of M.

Theorem 1. Let p and q be two distinct critical points of a Morse function f .
Then Wu (p) ∩Wu (q) = ∅ and W s (p) ∩W s (q) = ∅.

Suppose thatW s (p)∩W s (q) �= ∅. It means ∃r ∈ M such that r ∈W s (p) and
r ∈ W s (q). This is equivalent to say that p = lim

t→∞ψ (t, r) = lim
s→∞ψ (s, r) = q.

But p and q are distinct by hypothesis. Thus, W s (p) ∩ W s (q) = ∅. Similar
reasoning for Wu �

Theorem 2. Let {p1, . . . , pk} be the set of all critical points of a Morse function

f . Then
k⋃

i=1

Wu (pi) =
k⋃

i=1

W s (pi) = M.

Suppose that
k⋃

i=1

W s (pi) �= M. Then, ∃ q ∈ M such that q �∈
k⋃

i=1

W s (pi).

Since q lies on a distinct trajectory, let pq = lim
t→∞ψ (t, q) be the stationary ending

point (critical point) of the trajectory on which q is lying. Thus, by definition,

q ∈ W s (pq). But, by hypothesis, q �∈
k⋃

i=1

W s (pi) which is a contradiction. Thus

k⋃
i=1

W s (pi) = M. Similar reasoning for Wu �.

To end this section, we illustrate the difference between the Reeb graph and
the Morse Connections Graph. In the example of figure 3, the Reeb graph con-
nects the points r and q because they belong to the same connected component.
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Fig. 3. Reeb graph (a) and Morse Connections Graph (b) for the height function

It is possible to come up with more examples where the Reeb graph connects two
critical points because they belong to the same connected component but are
located arbitrarily far from one another. In our opinion, the Morse Connections
Graph is better suited for shape representation.

3 Implementation Details

Our algorithm takes a cellular complex and a smooth function defined on it as
input. The following data members are defined for the cells of highest dimension.

Cell:

– id : unique identifier of the cell.
– val : cell’s value of the function f .
– flow, invFlow : identifier of the next cell by iterating one step in direction (or

inverse direction) of the flow ψ.
– idWu, idWs: let idWu, idWs be identifiers of critical cells. This cell belongs

to Wu (idWu) and W s (idWs).

The main algorithm is composed of the following steps:
ComputeMCG()

1. Initialization.
2. Compute critical cells.
3. Compute stable and unstable manifolds.
4. Determine Connections.

First Step: This step initializes data members of all cells of the complex. To
each cell , we assign a unique identifier and its value by the function f . Also,
we compute the flow (and inverse flow) with respect to f , meaning we find the
next cell lying on the same trajectory in forward time (and reverse time). We
perform a smoothing of f by a gaussian kernel to average the main direction
of the flow. Once the main direction is determined, we select the nearest cell in
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this direction and assign that cell’s identifier to the flow data member. Similar
for invFlow. Finally, idWu and idWs are initialized to an invalid cell identifier.

Second Step: In this step, we used the Conley index [4] to determine the critical
cells but any preferred method could be used. It is not required to test for all
cells. We measured the rate of change of the angle made by the flow vector
and a reference axis. The cells for which this rate of change varies more than a
threshold are considered as potentially critical and only those cells are tested by
the Conley index to see wether or not they are critical. When a critical cell c is
found, we assign c.idWu = c.idWs = c.id.

Third Step: This step orders the cells by increasing value of f which takes
Θ (n logn) time. The stable manifolds is computed in linear time as follows.

For all cells "c" by increasing value of c.val
if(c.idWs != c.id) // if c is not critical

c.idWs = Cell(c.flow).idWs;

The function Cell(id) returns the cell referenced by the id identifier. Since the
cells lying on a trajectory of the flow are traversed by decreasing values of f ,

(a) (b)

(c) (d)

Fig. 4. a) Morse Connections Graph overlayed on the input image. b) Height field of
the input image. c-d) Respectively the stable and unstable manifolds decompositions.
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we always assign the stable manifold identifier of a cell that has been processed.
For the unstable manifolds, we use the decreasing order and the inverse flow.

Fourth Step: Finally, we need to establish the connections between the critical
points for which the intersection of their stable and unstable manifolds is not
empty. This is easily done in linear time by scanning all cells c and connect-
ing Cell(c.idWu) to Cell(c.idWs) because c is lying on a trajectory starting at
Cell(c.idWu) and ending at Cell(c.idWs).

In figure 4, we illustrate an example of the Morse Connections Graph ob-
tained for a two dimensional shape. We chose to use the smoothed pixel inten-
sities of an image as a 2D surface and the height function for f because this ex-
ample allows us to view the Morse Connections Graph overlayed on the shape in
an more convenient way. Also, we show the associated stable and unstable man-
ifolds decompositions. Some less significant critical points have been ignored,
which explains why the two decompositions don’t cover the whole surface.

In conclusion, we introduced the Morse Connections Graph for shape repre-
sentation. For a given Morse function, this graph will represent its critical points
and their connections. The Morse Connections Graph and the Reeb graph are
similar but differ in the way of establishing the connections. We believe that this
difference allows the Morse Connections Graph to give a better representation
of the shape. In a future work, we plan to test this tool for a real life application.
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Abstract. Evaluation of segmentation is a non-trivial task and most
often, is carried out by visual inspection for a qualitative validation.
Until now, only a small number of objective and parameter-free criteria
have been proposed to automatically assess the segmentation of color
images. Moreover, existing criteria generally produce incorrect results
on cytological images because they give an advantage to segmentations
with a limited number of regions. Therefore, this paper suggests a new
formulation based on two normalized terms which control the number of
small regions and the color heterogeneity. This new criterion is applied
to find an algorithm parameter to segment biological images.

1 Introduction

A segmentation process subdivides an image into regions in order to extract the
objects of interest from the scene. Many algorithms for segmenting color images
have been developed and reported in literature [1][2]. The problem is difficult
and there does not exist a universal solution to solve it. For these reasons, the
performance evaluation of color segmentations is very important for comparing
them. Segmentation results are usually assessed visually and qualitatively, but
it would be better to use an objective and quantitative method. In spite of the
development of color segmentation algorithms, their evaluations are relatively
limited. In 1996, Zhang has surveyed evaluation methods for image segmentation
[3] but most of them are applied on gray-level images.

In section 2, empirical methods able to quantify the quality of color seg-
mentations are reviewed. Section 3 presents an improvement of the Borsotti’s
criterion, based on more robust requirements. Finally, we show in section 4 the
validation and an application to find appropriate parameter for thresholding
cytological images.
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2 Empirical Methods To Evaluate Color Segmentations

Analytical methods directly examine the algorithm by analyzing their proper-
ties, whereas empirical methods evaluate the result of the segmentations on
given data sets. Most of the algorithms are not analytically defined, thus Zhang
concluded that empirical methods are preferable [3]. Two categories of empirical
approaches can be distinguished. The first one, so-called unsupervised, is based
on desirable properties of well segmented images, according to the human visual
interpretation. The second one, so-called supervised, requires a segmentation of
reference or a priori knowledge (e.g. number of objects, shape, reference colors
. . . ). Here, in the absence of reference segmentations we seek an empirical eval-
uation. Haralick and Shapiro defined qualitative criteria of segmentation quality
in [4].

2.1 Liu and Yang’s Evaluation Function

Liu and Yang [5] have suggested an elegant quality measure that does not require
any user parameter. The proposed criterion is based on two characteristics: (1)
segmented regions should respect color homogeneity, (2) for the same number of
misclassified pixels, the segmentation with limited number of created regions is
preferable. Translated into mathematical expressions, the authors have suggested
the F (I) function:

F (I) =
1

1000.A

√
R

R∑
i=1

e2i√
Ai

(1)

I is the segmented image, A the size of the image and R the number of regions
in the segmented image. Ai and ei are respectively, the area and the average color
error of ith region. e2i is defined as the sum of the Euclidean distance of the RGB
vectors between the original image and the mean color of the segmented region,
for each pixel belonging to the region i.

The average color error is significantly higher for large regions than for small
ones, thus, e2i is scaled by the factor

√
Ai. The term

√
R is a global measure which

penalizes the segmentation generating too many regions (e.g. small regions).
Small values of F (I) correspond to segmentations of good quality.

2.2 Borsotti’s Evaluation Function

Borsotti et al. [6] have observed that Liu’s criterion penalizes the presence of
many small regions only by the global measure

√
R. When the average color

error of small regions is close to zero, the function tends to evaluate very noisy
segmentations favorably. Thus, Borsotti et al. have proposed a new expression
Q(I):

Q(I) =
1

10000.A

√
R

R∑
i=1

[
e2i

1 + log(Ai)
+ (

R(Ai)
Ai

)2] (2)
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This formulation includes a new term in the sum: (R(Ai)
Ai

)2. It is designed
to penalize the numerous small regions, where R(Ai) represents the number of
regions having an area which is equal to Ai. Moreover, the denominator of e2i
has been modified to 1 + log(Ai) in order to obtain a stronger penalization of
small non-homogeneous regions.

3 The Revised Evaluation Functions

Borsotti’s method is commonly used to evaluate color segmentations. Neverthe-
less, as the Liu’s criterion, the Borsotti’s criterion has the undesirable property
of reaching a minimum value when the only segmented region is the entire image.
More generally, these two criteria favor segmentations with a limited number of
regions.

3.1 Increases of Robustness Against One-Region Segmentation

The drawback above is due to the global term
√
R which involves an a priori

knowledge on the number of objects in the scene, by penalizing too many re-
gions. To prevent the under-segmentation sensitivity, the factor

√
R has been

removed [7]:

Q1(I) =
1

10000.A

R∑
i=1

[
e2i

1 + log(Ai)
+

(
R(Ai)
Ai

)2
]

(3)

Moreover, we propose to compute e2i in a uniform color space (Luv or Lab)
because the Euclidean distance corresponds to the visual interpretation [8]:

e2i =
∑

(piL − μiL)2 + (piu − μiu)2 + (piv − μiv)2 (4)

The figure 1 shows how Q1 criterion ranks segmentation roughly consistently
with a human expert.

3.2 A Normalized Criterion

The elimination of the
√
R term makes the criterion Q1 more sensitive to noisy

segmentations (Fig. 2). When there are small noisy regions, the term
(

R(Ai)
Ai

)2

should compensate the small values of color heterogeneity, but the range of values
of these two terms are too different to be compared. Thus, we normalize each
term before adding them.

Color Heterogeneity. The normalization of the color heterogeneity term, h
consists of dividing the sum of the region heterogeneity by the heterogeneity of
the entire image. One is added to the denominator to avoid the null value of a
uniform color image.

h =

R∑
i=1

e2
i

1+log(Ai)

e2

1+log(A) + 1
(5)
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(a) stained cytological image

(b) (c) (d) (e) (f)
F : 47 (4) F : 41 (3) F : 21 (2) F : 10 (1) F : 901 (5)
Q : 25(4) Q : 22 (3) Q : 16 (2) Q : 11 (1) Q : 149 (5)

Q1 : 342 (2) Q1 : 344 (3) Q1 : 327 (1) Q1 : 905 (4) Q1 : 1136 (5)
C : 0.412 (2) C : 0.459 (3) C : 0.364 (1) C : 1.000 (4) C : 1.000 (4)

Fig. 1. A cytological image where the cell nucleus is stained in blue and vacuoles in
red (a). Five segmentations are proposed and ranked by a human expert: segmentation
(b) is better than (c), followed by (d), while (e) and (f) are both bad segmentations.
In fact, (e) is a non-segmented image and (f) is an over-segmented image where there
are as many regions as pixels. Values and ranks computed by Liu’s (F ), Borsotti’s (Q),
Q1 and C criteria are reported below each segmentation.

e2 is the color heterogeneity computed on the entire image. h is close to 1 for
a one-region segmentation but it is not necessarily the upper limit (Fig. 1e). At
the opposite, h vanishes for an over-segmention (Fig. 1f).

Number of Small Regions. The range of values of the normalized term n is
defined between 1

A for an over-segmentation and 1 for an under-segmentation:

n =

AMax∑
j=AMin

R(Aj)

A2
j

R
(6)

where, AMin and AMax are the area of the smallest and the largest segmented
regions.

The Proposed Formulation. With the previous definitions of h and n, the
normalization by the size of the image is implicit. As h and n have comparable
ranges of values, the formulation of C is the sum of these two terms:

C(I) =

R∑
i=1

e2
i

1+log(Ai)

e2

1+log(A) + 1
+

AMax∑
j=AMin

R(Aj)

A2
j

R
(7)
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(a) (g) (h)
F : 47 (1) F : 48 (2) F : 53 (3)

Q : 25.26(1) Q : 25.33 (2) Q : 28.31 (3)
Q1 : 341.72 (2) Q1 : 343.27 (3) Q1 : 341.71 (1)
C : 0.412 (1) C : 0.414 (2) C : 0.545 (3)

Fig. 2. From the segmentation of the figure 1a, pixels have been artificially added,
either by joining the existing regions (g) or by creating independent small regions (h).
We can note that criterion Q1 incorrectly favors segmentation (h) whereas criterion C

correctly favors segmentation (a).

(a) original color image

(b) (c) (d) (e) (f)
F : 39 (3) F : 61 (2) F : 85 (4) F : 178 (5) F : 22 (1)
Q : 43(2) Q : 42 (1) Q : 52 (3) Q : 94 (5) Q : 53 (4)

Q1 : 389(2) Q1 : 480 (1) Q1 : 750 (4) Q1 : 682 (3) Q1 : 1492 (5)
C : 0.25 (1) C : 0.35 (2) C : 0.49 (3) C : 0.55 (4) C : 1.02 (5)

Fig. 3. Validation on an image where nuclei are stained in magenta with the Giemsa
dye. Five segmentations are sorted by a human observer in this sort b,c,d,e,f. Scores
and relative ranks of criteria are shown under the corresponding segmentation. The C

criterion ranks segmentations as the human observer does.

According to this criterion, segmentations of figures 1 and 2 are ranked as by
the human expert, except for the segmentation (d) (Fig. 1). This first place is due
to the high color homogeneity and the absence of small regions which give a C
low value. Therefore, this rank is objectively correct but not in this application
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where interpretation involves other characteristics. Globally, C retains all the
merits of Q1 and Borsotti’s functions while overcoming their limitations.

4 Experimental Results

4.1 Validation of The Criterion

The proposed criterion has been validated on thirty images extracted from three
cytological applications:

- blue/red staining cell nuclei and vacuoles (Fig. 1a),
- Giemsa dye, which stains the nuclei in magenta (Fig. 3a),
- peroxydase dye, which stains the cytoplasm in brown (not shown).

According to the human evaluation, C ranking results are similar or better
than those of Liu or Borsotti (Fig. 3).

Table 1. Threshold values of twenty images. Five experts have been consulted and the
number of experts who have preferred this segmentation is reported in brackets. For
an image, the sum of experts can exceed five because multiple selections are allowed
when the quality is equivalent.

Image C Ridler’s Otsu’s
name threshold threshold threshold

10 0005 152 (3) 161 (1) 162 (2)
10 0006 150 (4) 162 (1) 163 (3)
10 0007 163 (4) 169 (4) 171 (5)
32 0758 147 (5) 164 (0) 166 (0)
51 0044 153 (4) 161 (2) 163 (0)
54 0780 143 (5) 152 (0) 154 (0)
54 0868 136 (5) 156 (0) 158 (0)
55 0352 123 (5) 148 (0) 151 (0)
58 0397 135 (5) 150 (0) 153 (0)
58 1116 164 (5) 168 (0) 170 (0)
58 1787 147 (5) 175 (0) 177 (0)
87 0091 161 (5) 168 (0) 170 (0)
92 0748 123 (5) 137 (0) 140 (0)
93 0150 78 (5) 98 (0) 101 (0)
93 0318 120 (5) 158 (0) 160 (0)
96 0203 149 (5) 155 (0) 157 (0)
134 0270 142 (5) 152 (0) 154 (0)
135 0594 133 (5) 146 (0) 147 (0)
148 0004 168 (5) 173 (1) 175 (1)
149 0145 138 (4) 165 (1) 168 (0)
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(a) (b) (c)

(d) C (threshold=78) (e) Ridler (threshold=98) (f) Otsu (threshold=101)

Fig. 4. (a)The original color image 93 0150, (b) the normalized green component and
(c) the associated histogram. The second row shows the segmentations obtained with
(d) the C criterion, (e) Ridler’s threshold (f) Otsu’s threshold. Colored nuclei are more
distinguishable in segmentation (d).

4.2 Application to Segment Cytological Images by Thresholding

The C criterion, defined to evaluate the segmentation quality, can also be used to
determine an optimal parameter value for a segmenting algorithm. The example
shown in this paper is related to a threshold value. First, the color image is
transformed into gray level images (e.g. components of color spaces). Then, all
threshold values in the range of gray-levels are tested and resulting segmentations
are evaluated by C. Finally, the segmentation corresponding to the smallest value
of C is selected as the best result.

The normalized green component (Fig. 4a and 4b) has been chosen because
magenta and green are complementary colors. Moreover, the luminosity variations
are eliminated by the normalization (previous studies [7][11]). If there is no a priori
knowledge on the color projection, each color component has to be computed.

Results are compared with the segmentations obtained with Ridler’s [9] and
Otsu’s [10] thresholding algorithms (Table 1). In order to validate the relevance
of the proposed method, five experts in cytology were independently consulted to
select the best segmentation among the three values of threshold. These results
shows that our method is clearly superior to Otsu and Ridler’s methods on these
cytological images (Fig. 4).

5 Conclusion

To compare different segmentations, it is useful to evaluate their quality without
adjusting parameters. Liu and Borsotti have proposed parameter-free functions
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which quantify the performance of color segmentations. To prevent the drawback
of Borsotti criterion, this paper suggests a new formulation based on normalized
terms that does not favor the under-segmentations of cytological images. The
two terms control the color heterogeneity of segmented regions and the number
of small regions. The validation has been performed on thirty cytological color
images. The proposed criterion can also be used to select the parameter value
of a segmentation algorithm that produces the best segmentation. In this paper,
the choice of a threshold value is described and validated by expert in cytology.
We can also use this criterion to determine the color space or the algorithm that
gives the most efficient results. In future work, we will validate the proposed
criterion on different types of images.
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Abstract. Selective Visual Attention Model (SVAM) plays an important role in 
region-based image retrieval. In this paper, a robust and accurate method for sa-
lient region detection is proposed which integrates SVAM and image segmenta-
tion. After that, the concept of salient region adjacency graphs (SRAGs) is  
introduced for image retrieval. The whole process consists of three levels. First 
in the pixel-level, the salient value of each pixel is calculated using an improved 
spatial-based attention model. Then in the region-level, the salient region detec-
tion method is presented. Furthermore, in the scene-level, salient region  
adjacency graphs (SRAGs) are introduced to represent the salient groups in the 
image, which take the salient regions as root nodes. Finally, the constructed 
SRAGs are used for image retrieval. Experiments show that the proposed 
method works well. 

1   Introduction 

Modeling human visual process is crucial for image understanding that is able to 
produce consistent results to human perception. The human visual system is able to 
reduce the amount of incoming visual data to a small but relevant amount of informa-
tion for higher-level cognitive processing [5]. Selective attention is the process of 
selecting and gating visual information based on saliency in the image itself.  

Several computational visual attention models have been proposed for simulating 
human visual attention [1] [2]. The model in [1] considered three low-level features 
(color, intensity and orientation) on different scales to compute the center-surround 
differences. To decrease the computational complexity, [2] only considered the color 
contrast in LUV space.    

However, most of these models are used for salient region detection and object rec-
ognition, little work has been done to extend these benefits for image retrieval, and 
existing region-based image retrieval method rarely consider the attention model [8]. 
So in this paper, a novel region-based image retrieval algorithm using selective visual 
attention model is proposed. First in the pixel-level, the salient value of each pixel is 
calculated using an improved spatial-based attention model. Then in the region-level, 
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in contrast to existing salient region detection methods, we use a maximum entropy-
based method to determine the salient regions after computing the saliency value of 
each segmented region. Furthermore, in the scene-level, the concept of salient region 
adjacency graphs (SRAGs) is introduced to represent the salient groups in the image, 
which use the salient regions as root nodes. Finally, the constructed SRAGs are used 
for image retrieval. 

The rest of this paper is organized as follows. The detail of salient region detection 
method is proposed in Section 2. Then, the Salient Region Adjacency Graphs are 
constructed and the image retrieval strategy is discussed in Section 3.  Experimental 
results are reported in Section 4. Finally, conclusions will be presented in Section 5. 

2   A Novel Salient Region Detection Method 

Selective visual attention model has been applied in multimedia area such as scene 
analysis and object recognition [1] [3]. It has been recognized that detection of region 
attracting user attention is much helpful in many applications such as region-based 
image retrieval [2]. Since the motivation of this paper is image retrieval, salient region 
detection is the basis of our work. In contrast to existing salient region detection 
methods which only consider the saliency map, in this paper, we combine the selec-
tive visual attention model with image segmentation method. The novelty of the com-
bination lies in that it provides a robust and reliable method for salient region detec-
tion especially when there exists more than one salient region in the image.  

In order to fulfill the proposed method, we first compute the saliency value by an 
improved selective visual attention model on pixel-level. Then, after combining im-
age segmentation method, a maximum entropy-based algorithm is used to determine 
the salient regions. The details are described in this section below. 

2.1   Pixel-Level Saliency Value Computing 

There are already several different selective visual attention model existed including 
two most popular ones [1] [2]. Itti’s method [1] consider three low-level features 
(color, intensity and orientation) on different scales, but it brings about high computa-
tional complexity. Ma’s method [2] only consider the color contrast for computational 
simplicity, but it may not be robust for the cases where color is not the most useful 
feature to detect saliency. In addition, Sun’s method [5] computes the grouping-based 
saliency map, but how to define the grouping is a difficult problem. So here we pro-
pose a simple but effective saliency value computing method on pixel-level which 
combines the above three models.  

The saliency value is computed on three resolution scales of the image (1, 21 , and 

41 ) separately. For a given color image, suppose x is a given pixel in NM × image, 

wx
is a size of dd × window centered at x for the computation of contrast. In our 

algorithm, we take 3=d . Then we compute the feature contrast between x and other 

pixels in wx
.  Many features can attract human’s attention. Here we follow [1] and 

[5]’s method which considering color, intensity, and orientation features. So the sali-
ency value for the pixel x can be calculated as: 
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where y is the pixel belong to wx
, ( )yxSCI

, and ( )yxSO
, denote the color-intensity 

contrast and orientation contrast between x and y . Here, α and β are the weighting 

coefficients and here be set to 1 for simplicity. (See [5] for details) 

After that, we use a Gaussian filter to remove the noise points: GSS xxx
⊗=

Λ
, 

where Gx
 is a gaussian filter with the standard deviation 1=σ .  The same work can 

be done on other two resolution scales.  
After all the three-level saliency values are computed, we combine the results to 

form the final saliency value on the original resolution scale. The examples of salient 
value computing on pixel-level are given in Fig.1. 

 
                                   (a)                                             (b) 

 
                                   (c)                                             (d) 

 
                                   (e)                                              (f) 

Fig. 1. Some results of salient value computing of pixel-level. Left: original image. Right: its 
saliency map. (a)-(b) Racecar. (c)-(d) Sailing. (e)-(f) Flower.  

2.2   Region-Level Salient Region Detection 

After obtaining the saliency value on pixel-level, the next step is to compute the sali-
ent regions. Detection of salient regions in images is useful for object-based image 
retrieval and browsing applications. Some methods based on the selective visual at-
tention model have been used for this task. Most of these works are based on the sali-
ency map with seeded region growing method. However, since saliency map is a blur 
map, how to choose the seeds for region growing is a difficult problem. Besides, the 
number of salient regions is various according to different circumstances. To avoid 
such problems, in this paper, we combine the classic region segmentation method and 
pixel-level saliency value to detect salient regions.  
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2.2.1   Image Region Segmentation Using K-Means Clustering Method 
To reduce the computational cost, the image is transformed from color level to gray 
level firstly. The K-means clustering image segmentation algorithm [9] is then used to 
obtain the segmented homogeneous regions.  

2.2.2   Salient Region(s) Detection Using Maximum Entropy-Based Algorithm 
After the image is segmented into homogeneous regions, salient region(s) have to be 
detected. Previous works for salient region detection assume that only one salient 
region exist in the image. However, this assumption won’t be robust for the cases 
where there are more than one salient region in the image.  In this paper, a robust 
salient region(s) detection method using maximum entropy-based algorithm is pro-
posed. The maximum entropy-based algorithm has been proved to be efficient for 
image threshold selection in [7]. Here we use this principle for salient region detec-
tion.  

For each segmented region Ri
in the image I , the region saliency value S Ri

and 

region average saliency value can be calculated as follows: 
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where sx
denotes the saliency value of pixel x . ( )Ri
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and [ ]Ni 1∈  where N is the number of regions in the image I . 

First, in order to remove some regions which have a large area but with the low re-
gion average saliency, we bring a threshold t .  If the region which average saliency 
value is below t , then it should be removed from the salient regions candidates.  

Then, suppose the scope of saliency value for each region is between [ ]L1 . The 

threshold to determine the salient regions is calculated as follows: 
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where Nu
is the number of  regions with saliency value u , L is the total number of 

saliency value levels and T is the threshold.  
After the threshold is determined, the salient regions are defined as the set of regions 

whose saliency value is above the threshold T . So the salient regions of an image can 

be denoted as: ≥≥ t
R

T
R AVSSR

i

&
i

i
. The examples can be seen in Fig. 2. 

 
 
Fig. 2. Some results of extracted salient regions which combining SVAM with image  
segmentation 
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3   Image Retrieval Based on Salient Regions 

Existing computational models of visual attention are mainly spatial-based. However, 
some researchers have proposed the object-based visual attention model. The mainly 
difference between object-based and spatial-based visual attention model lies in that 
the former holds that visual attention can directly select discrete objects while the 
latter holds that attention only select continuous spatial areas of the visual field. Since 
it’s difficult to build a pure object-based visual attention model, [5] defined the group-
ing to integrate object-based and spatial-based attention. Here we construct the Salient 
Region Adjacency Graphs (SRAGs) to achieve the integration between spatial-based 
and object-based visual attention. 

3.1     Scene-Level Salient Region Adjacency Graphs Construction  

Psychological experiments have shown that, human shift the attention from one sali-
ent object to another salient object. However, existing selective visual attention model 
can only simulate the shift from one salient region to another salient region. There 
exists the essential difference between object and region. Some existing methods [6] 
try to use so called attention window to represent the object or salient region, but how 
to define the size of the attention window has no general way.  Although perfect ob-
ject extraction is impossible from region-based segmentation, object is defined as a 
group of the related regions according to Gestalt rules, so here we propose the Salient 
Region Adjacency Graphs (SRAGs) to denote the salient groups. 

Region Adjacency Graph (RAG) is an effective way to represent an image because 
it provides a “spatial view” of the image. [4] proposed a BRAG and Sub-graph Iso-
morphism mechanism for image retrieval. The RAG is decomposed into several small 
graphs, called Basic RAGs. The decomposed graphs are used to compare the similar-
ity between two images. However, they construct Basic RAGs for each segmented 
regions without considering the saliency value of the regions. So the computational 
cost would be very high.  

Here we propose an improved method to construct Salient Region Adjacency 
Graphs (SRAGs). Each Salient Region Adjacency Graph is constructed which only 
uses salient region as root node. This method is based on two considerations: on one 
hand, each SRAG can denote the concept of “salient group” which is useful to simu-
late human’s selective visual attention model; on the other hand, using SRAG for 
image retrieval can effectively reduce the computation cost.  

3.2   Image Retrieval Method Based on Salient Region Adjacency Graphs 

After all the salient region adjacency graphs (SRAGs) are constructed well, we use an 
improved sub-graphic isomorphism algorithm proposed by [4] for the matching. 

First, the SRAGs of the input image and all reference SRAGs in the database are 
constructed and ordered by the root node’s salience value. In other words, we put the 
SRAGs in descending order according to the saliency value of each root node (salient 
region).  

Second, we propose a matching strategy using exhaust search method. Assume the 
input image A has m  SRAGs denoted as { }miAi

1= and the image in the data-
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base B has n SRAGs denoted as{ }njBj
1= . Besides, both of them have put their 

SRAGs in order according to the root node’s saliency value. The distance between 
them are calculated as: 
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dist , is the distance between two root nodes (salient regions) which 
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and Bj
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dist ,  is the distance between the branch nodes 

derived from the root nodes . wr
, wb

are the weighting of  root node distance and 

branch nodes distance. In the experiment we set wr
to 0.9, while wb

to 0.1 respec-

tively. Here we use HSV color features to represent the regions and the Euclidean 
distance is considered to measure the difference between two regions. The most simi-
lar k images can be obtained using above methods.  

4   Experimental Results  

To evaluate the performance of the proposed method, we choose 2035 images from 
18 categories of the Corel Photo Gallery as our test image database. In current ex-
periment, we choose a subset of the database which includes 500 images from ten 
selected categories. The selected ten categories are: flower, sunset, racecar, butterfly, 
forest, boat, animal, mountain, waterfall and factory. Since the proposed algorithm is 
based on visual attention model, so most selected images contain salient region(s).  

Precision and Recall are used as the basic evaluation measures. Precision is the ra-
tio of the number of correct images to the number of retrieved images. Recall is the 
ratio of the number of correct images to the total number of correct images in the 
database. They are defined as follows: 

Precision
N

N CN=)(  and Recall
M

N CN=)(   where N is the number of retrieved im-

ages, CN
the number of relevant matches among all N retrievals, and M the total 

number of relevant matches in the database.  
Fig. 3 shows part of query results with the proposed method where flower and sun-

set categories are selected.  
We test the proposed method using different query images and retrieval numbers, 

we also fulfill a region-based image retrieval method which consider all the seg-
mented regions for comparison. And the average precision and recall rates are seen in 
Fig. 4. 

In our experiment, we found that the flower and sunset categories can achieve bet-
ter results than factory and forest categories since the former two categories have 
salient regions or objects while the latter two have clutter scenes. However, the pro-
posed method still achieves improvements. The comparison between the proposed 
method and other region-based image retrieval methods is still under experiment. 
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                   (a)                                      (b)                                          (c) 

        
              (d)                                        (e)                                         (f)     

Fig. 3.  (a) to (f) denote the query results of the flower category and sunset category using the 
proposed method where retrieved numbers N are 20,30, and 40. The query images of flower 
and sunset categories are on the top-left of (a) and (d), respectively. 

                            
                          (a)                                                                      (b) 

Fig. 4. (a) and (b) denote the average precision and recall rates of ten categories. The traditional 
method used here is region-based image retrieval method which doesn’t consider the salient 
regions. 

5   Conclusion 

This paper presents a new region-based image retrieval algorithm based on the selec-
tive visual attention model (SVAM). The proposed method combines the SVAM with 
image segmentation method to extract salient regions. The advantage of the combina-
tion lies in that it provides a robust and accurate way for the salient regions extraction 
especially when there exists more than one salient region in the image. After the sali-
ent regions are chosen, the concept of salient region adjacency graphs (SRAGs) is 
proposed to represent the salient groups. Finally, the image retrieval method is pre-
sented based on the salient region adjacency graphs. Experimental results have proved 
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the proposed method. However, the proposed method can be further improved in the 
future. For example, a better image segmentation method is needed for the basis of 
salient region detection. How to represent the objects in the image is a crucial and 
interesting issue.  
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Abstract. In this paper, we present a method of region analysis for
business card images acquired in a PDA (personal digital assistant) using
DCT and information pixel (IP) density. The proposed method consists
of three parts: region segmentation, information region (IR) classifica-
tion, and character region (CR) classification. In the region segmenta-
tion, an input business card image is partitioned into 8 × 8 blocks and
the blocks are classified into information blocks (IBs) and background
blocks (BBs) by a normalized DCT energy. The input image is then seg-
mented into IRs and background regions (BRs) by region labeling on the
classified blocks. In the IR classification, each IR is classified into CR or
picture region (PR) by using a ratio of DCT energy of edges in horizon-
tal and vertical directions to DCT energy of low frequency components
and a density of IPs. In the CR classification, each CR is classified into
large CR (LCR) or small CR (SCR) by using the density of IPs and an
averaged run-length of IPs. Experimental results show that the proposed
region analysis yields good performance for test images of several types of
business cards acquired in a PDA under various surrounding conditions.
In addition, error rates of the proposed method are shown to be 2.2–
10.1% lower in region segmentation and 7.7% lower in IR classification
than those of the conventional methods.

1 Introduction

Business cards have been widely used by career men as a means of an advertise-
ment. Recently as one’s own p.r. is regarded as of great importance, the class of
business card users is being extended to common people. Accordingly, people get
more business cards of others and need efficient management of them instead of
carrying all of them. Up to now people usually manage business cards by putting
it in a book of business cards directly or making a note of its information in a
memo pad. A hand-held PDA widely used in recent days can easily obtain an
image of a business card by digitizing it with its built-in camera. It can also

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 243–251, 2005.
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recognize characters in an image and store the recognized characters. So such a
management of the information of a business card using the PDA may be more
efficient.

Business cards are generally composed of characters such as logotype, name,
affiliation, address, phone number, e-mail address, etc., pictures such as pho-
tograph, symbol mark, line, etc., and background. So if a region analysis that
divides a business card image into CRs, PRs, and BRs is performed, then any
following processing for business card management may be much more efficient.
Until now many region analysis methods have been proposed. Most of the meth-
ods are for document images [1]–[10]. In [4]–[6], a document image is first parti-
tioned into blocks, the blocks are then classified into IBs containing characters or
pictures and BBs using a block activity, and the image is finally divided into IRs
and BRs. As a block activity, variance of a block [4], edge information in a block
[5], or DCT energy in a block [6] is used. In addition, a document image is first
binarized as IPs and BPs, and then divided into IRs and BRs using a run-length
smoothing [1] or projection profiles of the binarized image [7]. Besides, an IR is
classified into CRs and PRs by using adjacency of character strings [8], repeti-
tion of character strings [9], or distribution of IPs in its binarized region [10].
In [11], an extraction of text lines for business card images acquired in scanners
has been proposed.

Since document images are usually acquired by high resolution scanners, they
usually have regular illumination and intensity distributions in their local regions
are nearly uniform. They also have many character strings of regular positions
and pictures somewhat isolated from their adjacent characters. On the other
hand, business card images acquired in a PDA with its built-in camera usually
have lower resolution. In addition, they may often have irregular illumination and
shadow due to acquisition under unstable hand-held situation. So their intensity
distributions in local regions may not be uniform but severely varied. Moreover,
they have low average density of characters and sizes of their characters may
often vary in a few lines of irregular positions, and often have pictures lie close
to their adjacent characters. Thus the performance of region analysis on business
card images acquired in a PDA using the conventional region analysis methods
for document images may be deteriorated. In this paper, we present a method
of region analysis for business card images acquired in a PDA considering the
characteristics of business card images.

2 Proposed Region Analysis

2.1 Region Segmentation Using DCT

In the region segmentation, an input image is first partitioned into blocks and
the blocks are classified into IBs and BBs based on a block activity using DCT.
We determine the block size as 8 × 8 by considering the averaged density and
size of characters in business card images and define the block activity as the
block energy with the absolute sum of low frequency DCT coefficients in the
block. We also normalize the block energy by the RMS (root mean square) of
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block signal, which is for compensation of the severe intensity variation in local
regions. Thus the block activity of the kth block can be written as

Ek
N =

1√
1
64
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j=0

(
xk

ij

)2

7∑
u=0

7∑
v=0
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uv| (1)

u+v≤3
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where xk
ij and Dk

uv denote the intensity value of pixel (i, j) and the DCT coef-
ficient of frequency (u, v) at the kth block, respectively. So the classification of
the kth block using (1) can be represented as

Decide IB if Ek
N ≥ ThE; otherwise decide BB (2)

where ThE denotes a threshold. In this paper, ThE is determined as the average
of Ek

N over the entire image. After the block classification, the input image is
then segmented into IRs and BRs by region labeling on the classified blocks.

Figure 1(a) shows an ordinary 640× 480 business card image with complex
background acquired in a PDA. Figure 1(b) shows the result image of block
classification for the image of Fig. 1(a). Gray parts represent IBs and black
ones BBs. As shown in Fig. 1(b), we can see that most of the blocks are well
classified. However, there are some isolated IB regions in the upper left part
which are actually BB regions. The isolated IB regions are eliminated in the
region labeling. Figure 1(c) shows the result image of the elimination of isolated
IB regions for the image of Fig. 1(b). From Fig. 1(c), one can see that almost
all of the isolated IB regions are eliminated so that the image is well segmented
into IRs and BRs.

2.2 Information Region Classification Using DCT and Information
Pixel Density

Among IRs, CRs usually have strong edges in horizontal and vertical directions.
On the contrary, PRs do not have such strong edges. They also have higher
energies in their low frequency bands and higher IP densities in their blocks
compared to the CRs. Based on these characteristics, the IRs are classified into
CRs and PRs. In the IR classification, the segmented IRs are first partitioned
into blocks of 8×8 size for locally adaptive classification which may be advanta-
geous for discriminating CRs from PRs. The energy of horizontal edges in each
block is computed only with DCT coefficients of horizontal frequency compo-
nents. Similarly, the energy of vertical edges is also computed. The energy of low
frequency components is computed with several low frequency DCT coefficients.
Thus the energy of edges in horizontal and vertical directions at the kth block
in the mth segmented IR, EEm,k, and the energy of low frequency components,
ELm,k, can be represented as

EEm,k =
7∑

u=1

|Dm,k
u0 |+

7∑
v=1

|Dm,k
0v | (3)
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(a) (b) (c)

(d) (e)

Fig. 1. An ordinary business card image with complex background and the results of
the proposed region analysis. (a) Original image, (b) block classification, (c) elimination
of isolated IB regions, (d) IR classification, and (e) CR classification.

ELm,k =
7∑

u=0

7∑
v=0

|Dm,k
uv | (4)

u+v≤2
(u,v) �=(0,0)

whereDm,k
uv denotes the DCT coefficient of frequency (u, v) at the kth block in the

mth segmented IR. Next, considering CRs have high energy of edges in horizontal
and vertical directions and PRs have high energy of low frequency components,
the ratio of the energy of edges EEm,k to the energy of low frequency components
ELm,k is computed at the kth block and the ratio is then averaged over the entire
mth segmented IR as

REm =
〈
EEm,k

ELm,k

〉
(5)

where < · > denotes the average of the quantity.
In order to compute the density of IPs in a segmented IR, each IR is binarized

with a threshold by Otsu’s threshold selection method [12]. In a binarized IR,
black pixels are IPs and white ones are BPs. Then the density of IPs in the mth
segmented IR is given as

DIPm =
NIPm

NIPm +NBPm
(6)

where NIPm and NBPm denote the number of IPs and that of BPs in the mth
segmented IR, respectively.



Region Analysis of Business Card Images Acquired in PDA 247

Using the ratio of energy REm and the density of IPs DIPm, the mth seg-
mented IR is classified into CRs and PRs as

Decide CR if REm ≥ ThR and DIPm ≤ ThD; otherwise decide PR (7)

where ThR and ThD denote thresholds. In this paper, ThR is determined as the
average of REm over the entire image and ThD is experimentally determined.
Hollows and holes in each PR are filled using the run-length smoothing method in
[1]. Figure 1(d) shows that the map image of the result of IR classification. Dark
gray parts represent CRs, bright gray ones PRs, and black ones BRs. We have
given the result of IR classification as the region map image to discriminate the
CRs from PRs. As shown in Fig. 1(d), one can see that the IRs are well classified
into CRs and PRs.

2.3 Character Region Classification Using Information Pixel
Density and Run-Length

Among characters in business card images, logotypes are usually larger than the
other characters such as name, affiliation, address, phone number, and e-mail
address. Logotypes are sometimes modified, so they may give little information.
Logotypes usually have higher densities of IPs and have longer run-lengths of IPs
compared to the other characters. Based on these characteristics, the CRs are
classified into LCRs and SCRs. For the CR classification, we define the average
run-length of IPs in the nth CR as

RLn = 〈HLn
i 〉 +

〈
V Ln

j

〉
(8)

where HLn
i and V Ln

j denote the maximum run-length of IPs at the ith horizontal
line and that at the jth vertical line in the nth CR, respectively. Using the density
of IPs in (6) and the average run-length of IPs in (8), the nth CR is classified
into LCR or SCR as

Decide LCR if DIPn ≥ Th′D and RLn ≥ ThL; otherwise decide SCR (9)

where Th′D and ThL denote thresholds. In this paper, Th′D and ThL are ex-
perimentally determined. Hollows and holes in each LCR are also filled using
the run-length smoothing method in [1]. Figure 1(e) shows that the map image
of the result of CR classification. White parts represent LCRs, dark gray ones
SCRs, bright gray ones PRs, and black ones BRs. As shown in Fig. 1(e), one
can see that the CRs are well classified into LCRs and SCRs.

3 Experimental Results and Discussion

To evaluate the performance of the proposed region analysis, test images of sev-
eral types of business cards were acquired using a PDA, iPAQ 3950 by Compaq,
with its built-in camera, Nexicam by Navicom, under various surrounding con-
ditions. In the business cards, there are ordinary business cards, special business
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(a) (b)

(c) (d)

Fig. 2. An ordinary business card image having shadows in its left part and the results
of the proposed region analysis. (a) Original image, (b) region segmentation, (c) IR
classification, and (d) CR classification.

cards of textured surfaces, and special business cards with patterns in their sur-
faces. The surrounding conditions can be divided into good condition and ill
condition containing irregular illumination, shadow, and complex backgrounds.

Figures 2 and 3 show a 640×480 ordinary business card image having shadows
in its left part and a special business card image with patterns in its surface and
their results of the proposed region analysis. One can see that the proposed
method yields good results of region segmentation, IR classification, and CR
classification. Experimental results have shown that the proposed method yields
similar results on other test business card images.

Next, we evaluated error rates of region segmentation. To do this, we pro-
duced standard region segmented images for 100 test business card images. In
the way, each test image is manually segmented into IRs and BRs and the map
image of the IRs and BRs is produced. Its original image is partitioned into 8×8
blocks and the blocks are classified as IBs and BBs. A block is classified as IB
if 10% or more pixels in the block belong to an IR of its region map image.
Otherwise, the block is classified as BB. After the block classification, a stan-
dard region segmented image is produced by region labeling on the classified
blocks. The error rate of region segmentation for the test image is evaluated by
comparing its region segmented image with its standard region segmented one.

The error rate of region segmentation for a test image is defined as εS =
(εIB + εBB) /2, where εIB and εBB denote the error rate of IB and that of BB,
respectively. The εIB and εBB are defined as εIB = NMIB/NIB and εBB =
NMBB/NBB, where NIB and NBB denote the number of IBs and that of BBs
in the standard region segmented image, respectively. The NMIB and NMBB

denote the number of mis-segmentated IBs and that of mis-segmented BBs in
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(a) (b)

(c) (d)

Fig. 3. A special business card image with patterns in its surface and the results
of the proposed region analysis. (a) Original image, (b) region segmentation, (c) IR
classification, and (d) CR classification.

Table 1. Comparative error rates of region segmentation for the conventional region
segmentation methods in [4]–[6] and the proposed region segmentation method

Type of Surrounding Variance Edge information DCT energy Proposed
business card condition % % % %

Ordinary Good 15.0 12.7 11.5 11.4
Ill 24.9 16.7 15.2 12.6

Special Good 22.8 22.6 16.0 15.3
Ill 35.3 28.5 23.7 18.3

Average 24.5 20.1 16.6 14.4

the region segmented image, respectively. Table 1 shows comparative error rates
of region segmentation for the conventional region segmentation methods in [4]–
[6] and the proposed region segmentation method. As shown in Table 1, we
can see that the proposed method gives 14.4% average error rates of region
segmentation so that it yields 2.2–10.1% performance improvement for the test
images. Besides, the performance of our method is especially better on the special
business card images under ill surrounding conditions.

In addition, we evaluated error rates of IR classification. To do this, standard
IR classified images for test business card images was produced in such a way
of the production of standard region segmented images. The error rate of IR
classification is defined as εC = NMIR/NIR, where NIR and NMIR denote the
number of IRs in the standard IR classified image and that of mis-classified
IRs in the IR classified image. Table 2 shows the comparative error rates of
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Table 2. Comparative error rates of IR classification for the conventional IR classifi-
cation method in [10] and the proposed IR classification method

Type of Surrounding Region Method in [10] Proposed
business card condition % %

Good CR 8.4 2.8
Ordinary PR 11.8 5.9

Ill CR 11.4 5.7
PR 18.7 6.7

Good CR 13.6 4.9
Special PR 16.7 5.6

Ill CR 13.7 6.0
PR 16.3 11.1

Average 13.8 6.1

IR classification for the conventional IR classification in [10] and the proposed
IR classification method. As shown in Table 2, we can see that the proposed
method gives 6.1% average error rate of IR classification so that it yields 7.7%
performance improvement for the test images.
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2. Sauvola, J., Pietikäinen, M.: Page segmentation and classification using fast feature
extraction and connectivity analysis. Proc. IEEE ICDAR’95 (1995) 1127–1131

3. Wang, H., Li, S.Z., Ragupathi, S.: Document segmentation and classification with
top-down approach. Proc. IEEE 1st Int. Conf. Knowledge-Based Intelligent Elec-
tronic Systems 1 (1997) 243–247

4. Chen, C.T.: Transform coding of digital image using variable block DCT with
adaptive thresholding and quantization. SPIE 1349 (1990) 43–54

5. Bones, P.J., Griffin, T.C., Carey-Smith, C.M.: Segmentation of document images.
SPIE 1258 (1990) 66–78

6. Chaddha, N., Sharma, R., Agrawal, A., Gupta, A.: Text segmentation in mixed-
mode images. Proc. IEEE Twenty-Eight Asilomar Conf. Signals, Systems and Com-
puters 2 (1994) 1356–1361

7. O’Gorman, L.: The document spectrum for page layout analysis. IEEE Trans.
Pattern Anal. Machine Intell. 15 (1993) 1162–1173

8. Li, X., Oh, W.G., Ji, S.Y., Moon, K.A., Kim, H.J.: An efficient method for page
segmentation. Proc. IEEE ICIPS’97 2 (1997) 957–961

9. Lee, S.W., Ryu, D.S.: Parameter-free geometric document layout analysis. IEEE
Trans. Pattern Anal. Machine Intell. 23 (2001) 1240–1256



Region Analysis of Business Card Images Acquired in PDA 251

10. Yip, S.K., Chi, Z.: Page segmentation and content classification for automatic
document image processing. Proc. IEEE Int. Symp. Intelligent Multimedia, Video
and Speech Processing (2001) 279–282

11. Pan, W., Jin, J., Shi, G., Wang, Q.R.: A system for automatic Chinese business
card recognition. Proc. IEEE ICDAR’01 (2001) 577–581

12. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans.
Syst., Man, Cybern. SMC-9 (1979) 62–66



Design of a Hybrid Object Detection Scheme for
Video Sequences

Nikolaos Markopoulos and Michalis Zervakis

Department of Electronic and Computer Engineering,
Technical University of Crete, Chania, Greece

{nikolasmark, michalis}@danai.systems.tuc.gr
http://www.ece.tuc.gr/

Abstract. A method is presented for extracting object information from
an image sequence taken by a static monocular camera. The method
was developed towards a low computational complexity in order to be
used in real-time surveillance applications. Our approach makes use of
both intensity and edge information of each frame and works efficiently
in an indoor environment. It consists of two major parts: background
processing and foreground extraction. The background estimation and
updating makes the object detection robust to environment changes like
illumination changes and camera jitter. The fusion of intensity and edge
information allows a more precise estimation of the position of the dif-
ferent foreground objects in a video sequence. The result obtained are
quite reliable, under a variety of environmental conditions.

1 Introduction

Traditionally, the most important tasks of surveillance and monitoring safety
are based on human visual observation; however, an autonomous system able to
detect anomalous or unexpected situations can help a human operator, even if
it cannot or should not replace his/her presence.

One of the goals of surveillance systems is to locate objects in the observed
scene by a static camera. The result is a binary mask that indicates the presence
or absence of a foreground object for each pixel in the image. Moving objects and
objects that do not belong to a predefined background generate changes in the
image intensity. Many authors have presented approaches towards surveillance
and automatic object detection. In most papers background subtraction is used.
Jabri, Duric and Wechsler [8] introduce confidence maps of the intensities of an
image in order to represent the results of background subtraction. Fengliang and
Kikuo [10] present a method where gray and depth images are used to enhance
reliability of the method. In [1] multiple constrains like motion vectors, temporal
edges from frame differences and color are used. The work in [4] attempts to
combine statistical assumptions with high-level information regarding moving
objects, apparent objects and shadows derived in the processing of previous
frames. These methods are quite effective under certain conditions, but most of
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them are not designed and are inappropriate for real time implementation as
their computational complexity is quite high.

This paper describes a robust object detection method for surveillance sys-
tems, monitoring indoor environments. The first problem to be addressed is the
localization of the objects of interest inside the scene. It is very difficult to de-
sign a unique, general and accurate detection scheme for objects of interest in all
possible surveillance applications. Our approach develops two detection schemes,
one based on the intensity difference of the current image of the sequence to the
background and the other based on the color edges of the current image. The
latter scheme is influenced by the former as to limit its search area in the re-
gions of interest defined by intensity differences. Merging both methods provides
a robust algorithm for detecting objects of interest. An updating of the back-
ground image is performed in parallel, in order to make the system illumination
adaptive.

The proposed method will be used in surveillance systems using a panoramic
view taken from several cameras within the EC funded project with the acronym
OPTAG [12]. The paper structure proceeds as follows. Section 2 presents the
object detection scheme proposed, whereas section 3 presents the issues related
to background estimation and updating. Examples are presented in section 4.

2 Object Detection

The object detection approach of this work is based on subtracting frames from
an ”empty room” as it has the advantage of detecting moving objects, objects
that temporarily stopped moving, or still objects which do not belong to the
predefined background. Due to similarities between the object and background
intensities, objects are often split into pieces at regions of such similarities. In
order to alleviate this problem, we use detailed edge information from such re-
gions in the frame under consideration, in order to enhance local region contrast
and enable the discrimination between object and background.

Overall, we propose the sequential use of abrupt temporal changes between
frame and background and smoother spatial changes in local regions of the frame
considered. The local regions are defined as regions of interest for edges by the
first process.

2.1 Object Detection Using Area

Image substraction is a fast and a low computational cost method to obtain
foreground objects from a scene. The current image is subtracted by a station-
ary one, modeling the background. By thresholding this difference we obtain a
binary image of the areas belonging to the foreground. A further labeling process
defines compact objects (blobs), as well as their bounding box. If B(x, y) is the
background image and Ii(x, y) any single frame, then the blobs result from the
difference image Di(x, y) which is calculated by thresholding as:

Di(x, y) =
{

0 if |Bi(x, y) − Ii(x, y)| ≤ threshold
1 if |Bi(x, y) − Ii(x, y)| > threshold

(1)
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Unfortunately perfect background and a still camera models do not exist which
often results in noisy difference images with incomplete blobs like the ones shown
in Fig. 1. False positive and false negative detection is usually experienced, result-
ing in grain noise on both the object and background regions. In order to reduce

(a) Background (b) Current image (c) Subtracted

Fig. 1. Simple differentiating method (thresholded)

noise and produce thicker homogenous areas we propose a three step approach.
First the absolute value of the difference is calculated. Then a two-dimensional
3 ∗ 3 averaging filter is applied to smooth the image and reduce random noise.
Finally, thresholding provides the areas not belonging to the background and a
final filtering process removes the remaining grain noise (scattered noise pixels
and areas of 10 or less connected pixels). If a low threshold is chosen, then the
probability of false negatives corresponding to noise, shadows and reflections
rises. A further refinement step labels the objects of interest and creates the
bounding boxes of the extracted blobs. The areas of the blobs and their corre-
sponding bounding boxes are used as a priori information for edge detection, as
presented in the next section (Sec. 2.2).

At this point it is worth mentioning that the previous step operates on in-
tensity rather than color information for deriving area differences. The reason
for that is efficiency, besides the side effect of reducing computational complex-
ity. Indeed, in several tests,the additional information gained from color-level
subtraction was found to be negligible. Besides the fact that the intensity of an
image embodies most area variations, it is also more prune to noise and camera
jitter dependencies. Color information is introduced in association with the next
stage, for edge detection within the specified bounding boxes.

2.2 Object Detection Using Edges

In figure 1 it is shown that the object detection based only on the area of the
image differences (current image and background) is often not reliable enough
to detect and define compact objects. In order to generate homogenous blobs
of the actual object, the image difference must be supplemented by additional
information that does not rely on the intensity of an image. Many authors have
proposed to use the static and the moving edges of an image to introduce such
intensity invariant information [8],[10]. The presented method makes only use
of the static edges. The aperture problem and the lack of speed of the objects
supersede the use of moving edges.
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For the process of edge detection, there are several methods that can effi-
ciently extract spatial edges from an image (Sobel, Canny, Prewitt, etc.). Sobel
is a simple, fast and efficient edge detector in terms of accuracy and susceptibil-
ity to noise. The Sobel approach detects edges using the Sobel approximation to
the derivative. It returns edges at those points where the gradient of the image
Ii is maximum. The Sobel edge detector uses two convolution kernels, one to
detect changes in vertical contrast and one to detect horizontal contrast. Other
edge detectors, such as the Canny, may have good or even better performance,
but their complexity and time delay make them less appealing for real time
applications.

The edge detector in our approach operates only within the bounding boxes
of interest defined by the previous step (section 2.1 in the current frame, but
considers differentiation in a color space; we use RGB in our application. The
information obtained by superimposing the edges of each color band is up to 10%
more than just using the intensity values of an image [9]. The contours provided
by the edge detector are postprocessed with simple morphological techniques.
The following flowchart demonstrates the steps for postprocessing of edges de-
tected using the Sobel operator (Fig. 2). At first, the edges of image Ii are

edge detection (Sobel)
I i selection of edges in

areas of
interest(mask)

cleaning of smal
edges (noise)

filling, thiningclosingfilling
Ai

cleaning

Ei

Fig. 2. Flowchart of the postprocessing steps using edges

computed within the bounding boxes of objects derived from the thresholded
difference image (Sec. 2.3). A cleaning step is necessary in order to remove small-
extent edges. The thinning block is then used to avoid merging of neighboring
edges that possibly trigger different objects. Line filling and morphological clos-
ing are used in order to produce homogenous areas and a final cleaning step is
employed to remove any remaining small regions. The closing step enables the
definition of areas enclosed by closed lines and derives area patterns from line
patterns as demonstrated in figure 2.3 (b) and (c). The final result Ai (as in Fig.
2), has the form of compact regions similar to those in section 2.1.

One major difference from many other methods that use contours to en-
hance the reliability of the extracted data, is that we do not extract edges of the
background. This makes the proposed process quite immune to camera jitter.
Notice that comparison of background edges in successive frames would indicate
displaced edges in the case of camera jitter, with a high possibility of misinter-
preting them as object edges and triggering false negative detection. Besides,
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our process of edge detection is only applied at selected local regions, which
drastically speeds up the algorithm.

2.3 Merging of the Area and Edge Methods

In previous sections we presented two procedures of detecting objects or parts
of objects from a scene using simple, robust and fast algorithms. A fusion of the
results of these procedures completes the hybrid method introduced in this paper
and can overcome the deficiencies of each method alone. The proposed approach
comprises the following steps: reference image acquisition (background), sample
image acquisition (current frame), calculation of the difference image, spatial
thresholding of the difference image into a binary image, morphological post-
processing of the binary image to remove pixel noise, bounding box creation
of the detected blobs. In parallel an edge detection in and around the area of
interest (blobs) obtained from the differentiating method is performed (within
the bounding boxes). The last step is the superimposition of areas from the
thresholded difference and the morphologically processed edge regions (Fig. 3).
The derived regions (blobs) from area and edge processing (Sec. 2.1 and 2.2) are
combined as Yi = max{Ai, Di}. Yi is the resulting binary image final form of
blobs that can be labeled and used in subsequent tracking.

Although the differential approach is a good method to obtain areas of inter-
est, the method is complemented by the edges of the image providing a robust
and partially illumination invariant method.

(a) Thresholded image dif-
ference

(b) Morphological proces-
sed edges

(c) Superimposition of a)
and b)

Fig. 3. Merging steps

3 Background Estimation and Updating

The maintenance of a background image is an important part of all object de-
tection methods. An ideal background maintenance system would be able to
handle problems like lightning changes or camera jitter [2],[3]. The use of the
background enables the discrimination and detection of temporarily stationary
objects like left bags and luggage.



Design of a Hybrid Object Detection Scheme for Video Sequences 257

3.1 Background Estimation

In [5] it is proposed to estimate an initial background image using a large number
of pictures and the median filter operating in the temporal axis. The assumption
is that the pixel stays in the background for more than half of the frames used
for the estimation.

Bx,y = median(I1(x,y), . . . In(x,y)) (2)

where B is the background image, I is the frame image and n is the number of
frames to be used for the approximation of the background.

3.2 Background Updating

To avoid false object detection (false negatives) that may be caused by slight but
steady lightning changes, a knowledge-based background updating algorithm is
proposed in [8]. The background image that has been given or estimated with
the background estimation algorithm has to be updated in regular time intervals.
Using the knowledge of the detected objects in a scene (Sec. 2), it is possible
to define a selective update, which computes a new background value only if a
point is not marked as an object pixel.

Two different types of backgroundupdating were considered:

– The blobs algorithm uses the blobs of the detected objects and updates ac-
cording to equation 3 the background around these blobs. The background
covered by the blobs is not updated and remains equal to the last updated
background.

– The bounding box algorithm behaves like the blob algorithm with the slight
difference that the background around the computed bounding rectangle of
each object is updated. In this case the updated area is smaller than ideally,
excluding the entire bounding box rather than the object itself, but the
implementation is simpler.

In both cases wider boundaries are chosen in order to avoid calculating shadows
or similar background colored objects in the updated image. The blobs algorithm
appears to be the better, as more background can be updated in each step.
Moreover, it is not dependent on object orientation compared to the bounding
box algorithm.

The new background is the weighted average between the current background
objects and the old background.

Bj = (1 − α)Bj−1 + αIi (3)

where Bj is the jth updated background image (j = i mod K), Ii is the current
image, and α (0 ≤ α ≤ 1) is a scalar representing the importance of the current
data and the learning rate of the model. K controls the update frequency of the
background to avoid the updating for every frame.



258 N. Markopoulos and M. Zervakis

4 Results Evaluation

The object detection approach presented in this paper was tested in several video
sequences provided by a public site of the CAVIAR project[11]. The evaluation
of object detection is difficult to present without being able to observe the se-
quences and the corresponding detected objects. The definitions of sensitivity
and specificity fail to describe the efficiency of the detector presented, as they
fail to encode the occurrence of occluded or split detected objects. For this pur-
pose, we provide a table (Tab.1) that lists the number of expected objects, the
number of merged objects , the number of split objects and the false negatives
that are recorded in the sequences. The objects in each sequence denote number
of objects in all frames of the sequence. The number of the false negatives is
experienced in the first two sequences that reflect slowly moving objects, due
to the fact that these objects influence the background updating scheme pre-
sented in chapter 3.1. A more efficient method for background estimation would

(a) Image with objects (b) Intensity diff. blobs (c) Hybrid technique blobs

Fig. 4. Resulting blobs

probably eliminate this effect. The results indicate that our method is effective
in detecting objects even in dense scenes, even though it slightly suffers form
merging or splitting in occlusion (as in the Walk2 sequence). This performance
can be drastically improved through efficient tracking of labels, which is not
implemented in this work.

Figure 4 shows two persons to be extracted and the results using a simple
thresholding and the presented hybrid algorithm. The hybrid solution detects
the two persons correctly as a whole blob with slight wider boarders which are
due to the dilation operation applied.

Table 1. Detection results

Sequence Objects Merged Split FN

Left Bag 1300 1 (0.08%) 3 (0.23%) 30 (2.30%)
Walk1 1050 165 (15.71%) 4 (0.38%) 80 (7.62%)
Walk2 1500 300 (20.00%) 500 (33.33%) 3 (0.20%)
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5 Conclusion

The proposed method allows a robust and accurate detection of moving and tem-
porarily stationary objects that not belong to the stationary background. The
key strength of this method is the hybrid object detection based on the merg-
ing of two different detection approaches. The first approach employs intensity
differences from a frame to the background and the other uses the color edges
of that frame. The utilization of edges provides additional information in areas
where the substraction scheme might fail. The background updating scheme em-
ployed allows detection independent of gradual changes in light conditions and
forms the a priori step for correctly extracting the desired regions of interest.
Extensions to the proposed method involve linking with a tracking algorithm,
which could handle occlusions in the range of the surveillanced area.
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Abstract. In this paper we present an interactive, object-based video
retrieval system which features a novel query formulation method that
is used to iteratively refine an underlying model of the search object. As
the user continues query composition and browsing of retrieval results,
the system’s object modeling process, based on Gaussian probability
distributions, becomes incrementally more accurate, leading to better
search results. To make the interactive process understandable and easy
to use, a custom user-interface has been designed and implemented that
allows the user to interact with segmented objects in formulating a query,
in browsing a search result, and in re-formulating a query by selecting
an object in the search result.

1 Introduction

Automatic segmentation and indexing of objects such as persons, cars or build-
ings, represents one of the most active research areas in content-based image
and video retrieval [1]. However, considering the interest in the problem and
the variation of approaches and effort currently undertaken in this direction [2]
[3] , progress is slow and performance accurate enough to be used in real appli-
cations still seems to be a distant goal. In the task of automatically segmenting
and indexing objects in image/video content, the main difficulty is the diverse
manifestations of an object in the image/video regardless of the object’s inher-
ent visual features such as colour, shape and texture. Factors such as different
lighting conditions and camera angles and occlusions make the actual segmen-
tation of an object extremely difficult, even before it can be accurately labeled.
Considering this problem, one workaround solution we have been exploring is to
use relevance feedback to take a human user’s judgements on object definitions
into account in retrieving objects. There is a long history of experimentation and
successful use of relevance feedback in text-based information retrieval. This has
included short-term modelling of a user’s information need by dynamically up-
dating the user’s query formulation in mid-search as well as long-term modelling
of user’s needs by profiling his/her interests over time leading to personalisation.
This has also been successfully applied to content-based retrieval [4][5].

In this paper, we present an interactive, object-based search system that
uses a novel query formulation mechanism and makes use of the user’s query
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Fig. 1. System Overview showing off-line indexing and interactive searching

formulations as automatic feedback to the system in order to develop and refine
the modeling of segmented objects in the database. As query formulation is the
key element for getting feedback from the user in our approach, the system we
have built incorporates a user interaction strategy at the front-end in which a
user can efficiently and easily interact with segmented objects in video keyframes.
The approach allows the user to highlight any segmented objects, select them,
and then to use them for subsequent query formulation. The novelty of this
work lies in using query formulations from users as implicit relevance feedback
in developing more accurate object classes, the use of object matching in retrieval
and the fact that we have built a system for users to interact with.

The remainder of the paper is organised as follows: in Section 2 we give an
overview of the system explaining how objects are segmented and stored in the
database and how user query formulation is used in an interactive session to
refine object modelling in the database for subsequent retrieval. Section 3 de-
scribes the video object retrieval mechanism. Experimental results are presented
in Section 4. Section 5 concludes the paper and outlines our plans for extending
the system’s capability and further refining the user-interface.

2 System Overview

Our system processes one object from each keyframe taken from each shot in the
video and stores these in the database to be used in the retrieval process during
an interactive search session (see Figure 1). We use keyframes automatically
extracted from the TRECVid 2003 [6] test corpus, as well as images from the
well known Corel test corpus.

For each keyframe, a semi-automatic object segmentation process was used
to accurately segment one main object in the image. The segmentation tool
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Fig. 2. User interface after two iterations of query composition using objects

used was previously reported in [7]. It allows fast and accurate automatic seg-
mentation based on a small amount of user interaction that is easy to perform.
The output can be iteratively refined in order to obtain very accurate object
segmentations.

Once segmented, each object is automatically indexed by colour, shape and
texture using the following well known MPEG-7 descriptors [8]: dominant colour
descriptor, the compactness moment of the shape and the texture browsing de-
scriptor. The motion feature as depicted in Figure 1 is not currently incorpo-
rated into the working system but the user-interface we have designed includes
all four features for smoother upgrading of the underlying system in the near
future. This completes the offline object segmentation and indexing process.
Determining similarity among objects for retrieval purposes is done during in-
teractive search without pre-computation as the system progressively receives
more information from the user.

Query formulation is the core user interaction required to achieve more accu-
rate search through iterative refinement of object modeling. Relevance feedback
occurs each time a user formulates a query to search for objects. Figure 2 shows
a screen from our interface after two iterations of query formulation and viewing
of search results.

In Figure 2, after selecting an object, the user can then specify which low-
level features (colour, shape or texture) of the specified object s/he is interested
in. Each of the feature buttons toggles between positive, negative or neutral
preferences for each feature.
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3 Retrieval Using User Query Formulation as Relevance
Feedback

The initial query composed by the user is analysed in terms of the three low-
level features (colour, shape and texture) and the degree of similarity between
the query object’s features and other objects in the database is computed. Dur-
ing interactive search, as more and more query formulation is conducted, the set
of objects making up the input query becomes quite complex as it contains many
objects, each of which represent positive or negative indications of the three fea-
tures of the object the user is searching for. We assume the positive samples to
be modeled by a mixture of Gaussian probability distribution functions (PDF)
at feature level. Accordingly, each feature distribution is independently mod-
eled as a Gaussian mixture, an assumption which is commonly used for image
retrieval [9]. The feature vectors are modeled as a mixture of Gaussian distribu-
tions of the form:

f(Xi|Φ) =
k∑

j=1

πjfj(Xi|θj) . (1)

where:

f(Xi|θj) =
1

(2π)
d
2 |
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j |
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2 (Xi−μj)T ∑−1

j (Xi−μj) . (2)

is the probability density function for cluster j, θj = (μj ,
∑

j) is the set of pa-
rameters for density function fj(Xi|θj), μj is the mean of cluster j, πj is the
mixing proportion of cluster j subject to the condition πj ≥ 0 and

∑k
j−1 πj = 1

where k is the number of components. Xi is the vector for either colour, shape
or texture, Φ = (π1, π2...πk, θ1, θ1...θk) is the set of all parameters. Here f(Xi|Φ)
is the probability density function given the colour, shape or texture, of the la-
belled object Xi for each of the three features of a query object labelled by the
user.

As the number of components in the mixture becomes larger, the model tends
to follow the real distribution of the positive samples’ features more accurately.
However, maintaining and operating using a large model is increasingly difficult
and therefore there is a need to restrain the model size. The model is built
on the sample objects indicated by the user and unlabeled data. A minimum
description length (MDL) constraint is used to ensure that the Gaussian mixture
has the minimum number of components that correctly classifies the labeled
(user indicated) set of objects without including a significant number of negative
samples (model outliers). The number of components in the mixture is increased,
when the user indicates new samples, only if the following expression is true:

α[log f(X |Φ)(t+1) − log f(X |Φ)(t)] > β(N (t) −N (t+1)) . (3)
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where t is the number of Gaussian components in the mixture, logf(X |Φ) is the
log-likelihood function and N is the number of negative samples (outliers) con-
tained within the modelled PDF. The α and β parameters are system weighting
factors currently set to: α = 0.23, β = 0.07.

The estimation-maximisation (EM) algorithm [10] is employed to estimate
the PDF in the feature space in connection with the MDL constraint given by
(3). The maximization is performed by the following iteration:

E[zij ] = p(zij = 1|X,Φ(t)) =
π

(t)
j pj(Xi|Φ(t)

j )∑k
s=1 ps(Xi|Φ(t)

s )π(t)
s

. (4)
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where E[zij ] is the expected value of the probability that the data belongs to
cluster j, and

∑N
i=1 E[zij is the estimated number of data points in class j. At

each iteration, the model parameters are re-estimated to maximize the model
log-likelihood, f(X |Φ), until convergence.

At each retrieval iteration, the Mahalanobis distance [11] from each Gaussian
feature cluster to the existing objects in the database is computed as a measure
of similarity (a minimum distance classifier) and the objects in the database
are presented to the user as a ranked list in descending order of the cumulative
similarity score S(x) where each feature is weighted in direct proportion to the
number of its positive samples indicated by the user. The Mahalanobis distance
is expressed as:

r2 = (x− μi)TΣ−1
i (x− μi) . (7)

where x is the vector for either colour, shape or texture, μi is the mean vector,
and Σ−1

i is the diagonal covariance matrix for each of the colour and shape
clusters. The weighting scheme favors the feature more often indicated as positive
because its repeated occurrence suggests a larger incidence of similar objects in
the database. The cumulative similarity score is expressed as:

S(x) = λcolourScolour(x) + λshapeSshape(x) + λtextureStexture(x) . (8)

where Sfeature is the Mahalanobis distance for the given feature, and λ is com-
puted as:

λk =
Pk

Pk + Pl + Pm
. (9)

with k, l,m being the features colour, shape and texture.
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4 Experimental Results

In order to evaluate the performance of the system we designed a retrieval exper-
iment using 12 classes of objects, each class containing 50 objects. The objects
classes used are: balloon, boat, butterfly, car, eagle, flower, horse, motorcycle,
people, plane, shark, tiger.

Experiments were performed with an expert user selecting an initial query
object and providing negative/positive feedback. For each query iteration a posi-
tive example was added in the query formulation, a negative example was added
every second iteration. The query session for each object class was conducted
for 5 iterations, therefore for each object class 5 positive examples and 2 nega-
tive examples were provided over 5 iterations. The mean precision-recall curves
obtained are shown in Figure 3. Since representing 12 curves on the same graph
becomes confusing, we present the precision-recall curves grouped on four sub-
images for every three classes taken in alphabetical order. In order to provide
a easy comparison between object classes, each sub-image contains the mean
precision versus recall curve computed by averaging the results over the entire
12 classes.

The precision-recall curves show a relatively slow decay with increasing re-
call. The optimal values seem to be located around values of recall of 15-25

Fig. 3. Mean precision vs recall curves for 12 object classes
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images/objects out of 50 objects per class, which seems to prove the effectiveness
of the presented system. However, it is premature to generalise before perform-
ing comparisons against other retrieval systems on a common test set and with
multiple users in the retrieval loop.

5 Conclusions and Future Work

In this paper we introduced an object-based video search system that features
interactive query formulation using colour, shape and texture of an object. It-
erative query/browsing incrementally improves object modelling in the data-
base. The actual segmentation of objects from keyframes was supervised in order
to provide accurate object sets and to better illustrate our retrieval approach
in which the matching among objects (i.e. relating all similar objects in the
database) can be helped using the user’s query formulation history as feedback.

In its present form our system may not to be suitable for a realistic context,
but the point of developing it was to demonstrate how an object-based query
formulation mechanism could be realised to help dynamically refine the object
model in the database and enhance retrieval.

We are working on several improvements including making object segmenta-
tion from each keyframe fully-automatic. Segmenting more than one object from
each keyframe is also targeted for future work. Currently, a keyframe from a shot
is used to segment objects: however, a more complete solution would be to use
all frames within the shot, which could further provide additional information
on the object based on its movement and trajectory.
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Abstract. In this paper, we propose a fast and effective pseudo-stereo conver-
sion algorithm to transform the conventional 2D videos into their stereo ver-
sions. As conventional 2D videos do not normally have sufficient true depth in-
formation for stereo conversion, we explore the principle of extracting the clos-
est disparity to reconstruct the stereo frame pair, where a simple content-based 
approach is followed. The proposed algorithm features in: (i) original 2D video 
frame is taken as the reference frame; (ii) closest disparity information is ex-
tracted by a texture-based matching inside a library of stereo image pairs; and 
(iii) the extracted disparity is then used to reconstruct the right video frame to 
complete the pseudo-stereo conversion. Our experiments show that certain level 
of stereo effect has been achieved, where all test video clips are publicly avail-
able on the Internet for the convenience of repetition of our proposed work. 

1   Introduction 

Along with series initiatives in high resolution digital TV, 3D TV has long been iden-
tified as a possible breakthrough for the next generation TV technologies. Research 
on stereoscopic video processing attracts considerable attention in the published lit-
erature [1~5]. A stereo pair of video sequences, recorded with a difference in the view 
angle, enables viewers to have 3D perception of the scene by exposing to each eye the 
respective image sequence. This creates an enhanced 3D feeling and increased 
‘telepresence’ in teleconferencing and several other applications, such as medical and 
digital entertainment. Several industrial companies have exhibited their 3D glass-free 
display systems, which provide significant help in terms of eliminating the burden of 
wearing glasses, and thus generate a potential for another wave of research and devel-
opment in 3D TV. The remaining bottleneck, however, is on the side of media content 
production, in which switching from 2D media production to 3D media production is 
implicated with both timing and costs. As a result, the success of the future 3D TV 
system will have to be dependent on the availability of sufficient 3D video materials, 
and the need for 3D content can only be partially satisfied with newly produced 3D 
recordings. To resolve this problem, one cost effective alternative is to develop new 
techniques to convert existing 2D video materials to their 3D versions, from which 
the work described in the paper is motivated. 

The 2D video material is not totally the same as the stereoscopes [15, 16], where 
stereo vision builds correspondence between a pair of images acquired from two well 
positioned cameras but the 2D video material is only captured by monocular camera. 
In [6~9], it has been reported that, the depth or disparity value can be estimated by 
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knowing the information such as the camera focal length and the direction of the 
moving objects, but these reported algorithms are not suitable for general video se-
quences which may lack such information. Here in this paper, we describe our recent 
work on algorithm development for creating a 3D effect for conventional 2D videos 
without any knowledge of focal length or the moving direction of the object. As the 
3D effect is created by estimation and inference on segmented video objects by the 
principle of extracting closest disparity, we coin such a 3D conversion as pseudo-
stereo to identify its feature that the stereo effect is created without any stereo infor-
mation. Therefore, there is no issue like whether the disparity retrieved is correct or 
not, as long as the added disparity enables construction of the right frame and provide 
users a convincing stereo viewing experience. Considering the fact that human visual 
perception is tolerant, there exists large scope for disparity estimation.  

The rest of the paper is organized in two further sections. Section 2 mainly de-
scribes the 3D conversion algorithm design, and Section 3 report experimental results 
to evaluate the proposed algorithm. Finally, some concluding remarks are also in-
cluded in the same section. 

2   Design of Pseudo-stereo Conversion Algorithm 

To explore the principle of extracting the closest disparity achieve the best possible 
3D effects for the proposed pseudo-stereo conversion of existing 2D videos, we de-
sign our algorithm to include: (i) pre-processing of stereo image pairs to establish a 
library of disparities; (ii) segment 2D videos into foreground objects and background 
regions; (iii) search the library for the best match of visual content to identify the 
closest disparity; (iv) reconstruct right video frame to create pseudo-stereo video 
frame pair and complete the proposed conversion. Detailed description of each ele-
ment inside our proposed system is organized into the following subsections. 

2.1   Disparity Extraction in Stereo Pairs 

With a set of stereo image pairs, we extract their disparity maps and segment them 
into a range of object regions corresponding to the disparity extracted. Such pre-
processing of stereo image pairs enables us to establish a library of disparity maps and 
their corresponding object regions. Depending on the specific application, the size of 
such library would require to cover as many textured regions as possible to cope with 
the encountered 2D videos. In our proposed system, we used about 500 stereo image 
pairs to establish such a library. The size of the library can be easily increased without 
affecting the processing speed since its establishment is mainly off-line and has no 
effect upon the process of pseudo-stereo conversion. 

To extract disparity maps from a given stereo image, we adopted one of the  most 
recent and powerful dense-stereo algorithms [1], where a dynamic programming algo-
rithm, minimizing a combined cost function for two corresponding lines of the stereo-
scopic image pair is used. Its specific implementation can be summarized as follows: 

Given a pair of stereo image, we take the left image as the reference, and search the 
right image for correspondence pixel-by-pixel and line-by-line. Due to the fact that 
we limit our pseudo-stereo conversion to those stereos with parallax geometry, the 
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search area for each left pixel pl=(iL, jL) in the right image can be constrained within 
the same line and the searching range can be determined by minimum and maximum 
allowed disparity. As a result, the coordinates along i for each pixel can be ignored in 
the search process. The following cumulative cost function is minimized while 
searching through the right image. 
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where C(.) stands for a cost function, which takes into consideration the displaced 
frame difference (DFD) and the smoothness of the resulting vector field, Pr is the 
pixel on the right image, and dPr=(il-ir, jl-jr) is the disparity value that produces the 
minimum cost at the position of jr. 

The cost function c(pr, dpr) is defined by  
),(),()(),( prprrpr dpSMFdpDFDpRdpc +=                                     (2) 

Where R(Pr) is a reliability function (weighting): in high texture and edge area, dp 
estimation is reliable R(p) should be larger, making DFD more influential. In homo-
geneous area dp estimation is not reliable, hence R(Pr) should be smaller, making 
SMF(p, d) more influential. To detect edges and high texture area, the technique simi-
lar to [8] is used, which is based on intensity variance or gradients. 

The second term of (2) is the absolute difference of two corresponding image in-
tensity blocks, which is defined as follows: 
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where β is a rectangular window with the size of (2N+1)*(2N+1) pixels.  
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where dn=1, 2, … N, are disparity vectors neighboring dpr. R(d) (reliability function) 
aims to attenuate the contribution of unreliable vectors to the smoothing function. 

After the disparity vectors are found, we also applied a consistence check to ensure 
that the disparity extracted represents the true disparity inside the stereo image pair. 
This is done by reversing the search direction, i.e., from right to left to see if the dis-
parity generates the minimum cost value inside left image. Specifically, the process 
consists of: (i) a set of points of interest is defined by selecting pixels with left or right 
image projections located on depth and luminance edges. That is, edge points and 
depth points are selected as the points of interests, in which the edge points are se-
lected by edge detection algorithm based on gradient, and the depth points are se-
lected by disparity estimation. Alternatively, we can also take every point for the 
consistence check, which takes longer time to complete the process. Since this opera-
tion is of the off-line nature, this alternative would not make any difference upon the 
overall system performance. (ii) For each of the point, the disparity estimation pro-
duces left-to-right (LR) disparity fields. They need to be checked (consistence) by a 
right-to-left matching process, which is essentially the following condition: 
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After the condition is satisfied, the correspondence between pr=(ir, jr) (the pixel in 
the right image) and pl=(il, jl) (the pixel in the left image) can be established. (iii) If 
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the consistence check fails, (i.e. the above condition is not satisfied), disparity estima-
tion needs to be corrected by a correction process as outlined below. 

For each pair of pixels satisfying: )()(
l

lr
lr pdpp += , the new corrected disparity 

should be calculated as follows: 
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and the corrected disparity error variance is given by: 
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where 2
lrσ and 2

rlσ are the variances of the disparity estimates )(lrd and )(rld respec-
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An illustration of such disparity extraction is shown in Figure-1 part (a) and (b). 

 
                           (a)                                    (b)                                        (c) 

Fig. 1. (a) The left image of ‘tsukuba’; (b) its disparity map; (c) its texture map 

2.2   Library of Disparity Maps 

By analyzing the stereo image pairs in terms of their disparity maps extracted from 
the previous section, it is discovered that each disparity region is generalized by an 
object region with similar texture characteristics. This leads to a further division of 
those disparity maps and the stereo image pairs into their object regions, where simi-
lar texture is illustrated. As a result, the library of disparity maps can be established in 
terms of object regions with consistent texture rather than the entire stereo image 
pairs. Note the object regions referred here are different from those semantic video 
objects as specified in MPEG-4. The major difference here is that our object regions 
may not necessarily coincide with those object perceived by human viewers. Rather, 
our object regions are derived by the criteria of texture smooth and consistency. 

As all the stereo image pairs have their disparity map or correspondence being es-
tablished, we can easily obtain the object segmentation based on the disparity values 
[2]. The results will be the object and background regions, respectively. In order not 
to accumulate the error into the next step, we further apply texture smooth check to 
derive regions, within which both disparity and texture are relatively smooth. And 
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then, a post-processing algorithm based on the size of the segmented regions will be 
applied here to improve the accuracy, the details will be discussed later. 

To examine the texture of the internal region, we adopted a simple binary texture 
representation technique [8]. This technique can be replaced by any other texture 
features such as those proposed in MPEG-7 etc. As a matter of fact, we are in the 
process of investigating other texture features including other content descriptors to 
see if any improvement can be achieved. 

Given a pixel x, the binary texture representation compares its value with its eight 
neighboring pixels and produces a texture indicator by the following equation: 
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where the eight bits b0…b7(one byte) formulates an indicator for the texture informa-
tion of the pixel x. 

If the object region has N pixels, we would have N texture indicators. By counting 
the occurrence of each byte value, which is within [0, 255], we can produce a histo-
gram for each segmented region, and this histogram can be used as a key to character-
ize the texture feature of the segmented region. This process also produces a texture 
map for the object and background region, respectively. Thus, the histogram and 
texture results will be stored in terms of object and background set in respect to the 
segmentation results. One example of such texture map is illustrated in Figure-1 (c). 

2.3   Disparity Estimation for 2D Video Frames 

As 2D videos do not normally have sufficient true depth information for stereo con-
version, it becomes extremely difficult to extract their disparity values to reconstruct 
their stereo version. However, there exist some possibilities to estimate their disparity 
via processing other cues such as motion, content features including color and shape 
of the moving objects etc. In our work, we focused on texture match with those inside 
the library of disparities to allocate the closest possible disparity to similar texture 
regions inside the 2D video frames and complete the conversion of 2D to 3D. 

To enable the search inside the library via texture features, we need to process the 
2D video frames and segment them into regions, where texture feature can be ex-
tracted with reasonable consistency. Among many reported segmentation techniques 
in the published literature [10,13, 14], the seeded region-growing technique (SRG) in 
[10] remains to be the most suitable candidate for our purposes since we are looking 
for not only object segmentation, but region segmentation where texture consistency 
is maintained. One of the results via such SRG is shown in Figure-2. 

Similar to the processing of those stereo image pairs in establishing the library of 
disparities, a texture map is constructed for each segmented region inside the 2D 
video frames, and the texture histogram is used as the indexing key to search for the 
best possible match of the segmented region inside the library of disparities. Given a 
set of texture histograms inside the library, { },..., 3
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for 2D video frames and the ith texture histogram inside the disparities library. 
To improve the accuracy of the matched disparity of the candidate region, one pos-

sible way is to put in a pre-processing algorithm before the matching algorithm above, 
which is the same as the one mentioned in section 2.1. As the different spatial posi-
tions of the object and background regions in the real world plane, the disparity char-
acteristics of them represented in the same image plane will be dissimilar, which 
makes the disparity value of the foreground object region is normally bigger than the 
background ones. We first distinguish the foreground object regions with the back-
ground in the segmentation results and store them into object group and background 
group, respectively. Secondly, considering the big objects may be matched with the 
small objects in the library, we decompose each group into three sub-groups based on 
their size, that is: 

                        1]3.0,0( group→  

=
frame

region

size

size         2]6.0,3.0( group→                                                                        (12) 

                        3]1,6.0( group→  

where sizeregion and sizeframe are the number of pixels in object region and the frame, 
respectively. The details will be discussed in the following section. This pre-
processing also needs to be added into the preprocessing of the stereo image pair part. 

Corresponding to Hmatch, its disparity map for the matched region inside the library 
can be retrieved. In principle, this retrieved disparity map can be allocated to the re-
gion of the 2D video frame. As the two matched regions may not have exactly the 
same size, further processing is required. To illustrate the concept, we use two ways 
to allocate the disparity values to the region inside the 2D video frame to complete its 
pseudo-stereo conversion. One is to simply use the average disparity values inside the 
matched region, and the other is to use the resized true disparity value. 

3   Experimental Results and Conclusions 

To evaluate the effectiveness of the proposed algorithm, we applied three publicly 
video clips to carry out the experiments. (The clips can be found though the web ad-
dress of http://www-2.cs.cmu.edu/~cil/v-images.html.) To enable stereo viewing and 
assessment of the stereo effect inside the converted video sequences, we take each 
original video frame as reference (left) frame, and reconstruct a right frame according 
to the disparity values estimated from previous section [2,11,12]. And then, a pseudo-
stereo frame will be created by writing the red component of the left frame and the 
green component of the right frame into its red and green layer, respectively. And the 
blue layer will be set as zeros. As a result, the final converted pseudo-stereo video can 
only be viewed with those red and green glasses. The disparity map is constituted by 
different intensity regions which represent the degree of the disparity between the left 
and right frame from the distance of the image reference plane to the world reference 
plane. Thus, the brighter the region is, the more it closes to the camera. The final 
results are illustrated in Figure-3, in which (b) uses the resized true disparity values to 
generate the final result (e), compared with (a, c) use the averaged disparity values. 
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(a)                                                  (b) 

Fig. 2. (a) Segmented object in ‘slient’; (b) Segmented object region in ‘Miss America’ 

 
                         (a)                                      (b)                                       (c) 

 
                       (d)                                     (e)                                        (f)  

Fig. 3. (a~c) Disparity map of three video frames. (d~f) Converted colorful pseudo-stereo 
frames for (a~c). 

    In this paper, we proposed a pseudo-stereo conversion algorithm to convert con-
ventional 2D videos into their stereo versions to explore the possibility of providing 
rich sources of 3D visual content out of conventional 2D videos. The work is impor-
tant in the sense that present visual content production is dominated by two dimen-
sional and 3D media production is very limited. While the proposed algorithm 
achieves certain level of stereo effect, there exist potential for further research and 
improvement, which can be identified as: (i) evaluation of all the available texture 
features is needed to ensure that the matched texture produces a matched disparity 
map; (ii) other cues need to be investigated and integrated into the process of disparity 
estimation for the 2D video conversion. In summary, our work described in the paper 
has initiated a new horizon for pseudo-stereo conversion of 2D videos along the direc-
tion of content-based approach, where promising results have been achieved and 
significant potential also exists for further research and development. 
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Abstract. This paper introduces an automated 3D face pose estimation method 
using the tetrahedral structure of a nose. This method is based on the feature 
points extracted from a face surface using curvature descriptors. A nose is the 
most protruding component in a 3D face image. A nose shape that is composed 
of the feature points such as a nasion, nose tip, nose base, and nose lobes, and is 
similar to a tetrahedron. Face pose can be estimated by fitting the tetrahedron to 
the coordinate axes. Each feature point can be localized by curvature descrip-
tors. This method can be established using nasion, nose tip, and nose base. It 
can be applied to face tracking and face recognition. 

1   Introduction 

The interests and expectations of biometric identification have been greatly increased 
recently as a more accurate identification system is required for various security mat-
ters. A face recognition system can be used without any physical contact not like 
other biometric recognition systems, for example, fingerprint or iris recognition  
therefore, people feel more comfortable when they use the face recognition system. 
So far, 2D-intensity face images have been mostly used for existing face recognition, 
but the images are too sensitive when illumination varies[1], which can affect the 
result of a recognition. For this reason, 3D face recognition[3-7] has been studied to 
overcome  the weakness of a 2D-based recognition system. 3D range images are less 
sensitive to illumination variance than 2D images. The accuracy of features extracted 
from face images directly affects the results of face recognition[2]. Facial pose also 
affects the result of the feature extraction and the face recognition process. This 
should be considered in the pre-processing stage. 

Many researchers use 2D intensity images and color images in pose estimation[8-
16]. They are based on color and template matching[8-9], pattern classifier based 
estimation[10], graph matching method[11-12], feature and template based match-
ing[13-15], and trained view based matching[16]. Eye parallel measure, or the geo-
metrical structure of eyes and nose, is often used to estimate the pose. But 2D-based 
pose estimation is affected by illumination. Some others have researched about pose 
with 3D images and features[4, 17, 18]. 3D-depth images can give more robust and 
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abundant information than intensity images for pose estimation. Lee et al.[4] calcu-
lated orientation angles using the similarity of the left and right sides of the nose tip 
and the modified centroid and moments. Morency et al.[18] created a face model from 
intensity images and depth images and estimated a pose based on the trained eigen-
space for every view. 

This paper proposes a simple feature-based facial pose estimation method. The 
nose is the most protruding component of a face. We hypothesize the human nose is a 
tetrahedral structure that is composed of five vertices: nasion, nose tip, left and right 
nose lobes, and nose base. It is also assumed that the nose base point is at the center 
of the two nose lobes. In Fig. 1, if 

bn NN  is not parallel to the y-axis or tb NN is not 

parallel to the z-axis, we assume that the tetrahedron is in an oriented state. 

  

Fig. 1. Tetrahedral structure of a nose(Nn: nasion, Nb: nose base, Nt: nose tip, Nl: nose lobes) 

Surface curvature is the most robust feature descriptor in a 3D surface image. 
Every vertex of the tetrahedron can be extracted after analyzing maximum, minimum, 
and Gaussian curvatures on a face surface. Among those feature points, only three 
points, nasion, nose tip, and nose base, are used in this face pose estimation.  

2   Data Acquisition 

The sample data were collected with 4DCulture’s 3D face scanner[19] which uses the 
laser triangulation principle. The laser triangulation method has higher precision than 
other 3D registration methods. This scanner has a profiler that projects a horizontal laser 
slit ray and moves it from the top of the head to the neck. At the same time, a CCD 
camera captures a three-second silhouette image that contains a laser profile.  The scan-
ner can only get a laser profile of the face by attaching an optical filter ahead of the 
CCD camera, and it removes noise and finds center profile from the input images.  Then 
it creates 3D range image by merging center profiles extracted from each frame. The 3D 
face image consists of 320 400 range data that are stored in 2 D. Robust and superior 
recognition could be possible using 3D features because 3D images that contain depth 
information are more invariant in different lighting conditions. 

x 

y 

z 

Nn

Nb Nt

Nl

face surface



278 I.-D. Kim, Y. Lee, and J.-C. Shim 

 

3   Nose Feature Extraction Using Surface Curvature 

In this section, we extract a nose and nose feature points around the nose. Original 3D 
face images have some noise because of laser speckle noise at the acquisition stage. 
We preprocessed the input image with a 5 5 average filter to remove the noise. If 
face surface is a polynomial-like equation (1), it can be solved from Sahota’s expan-
sion[20]. 

.),( 000110
2

0211
2

20 ayaxayaxyaxayxZ +++++=  (1) 

Sahota et al. calculated coefficients of (1) by least square error fit, and calculated 
maximum( 1κ ) and minimum( 2κ ) curvatures by defining the polynomial into the first 

and second differential forms. Gaussian curvature( 3κ ) is the product of maximum and 

minimum curvatures. After calculating the maximum curvature ( 1κ ), the binary im-

age of 1κ can be created by Eq. (2). After calculating the minimum curvature ( 2κ ), 

the binary image of 2κ can be created by Eq. (3).  

 ≥= .,0
1.0,255 1

1 otherwiseB κκ  (2) 

≥= .,0
1.0,255 2

2 otherwiseB κκ  (3) 

      ≤≤= .,0
0.103.0,255 3

3 otherwiseB κκ  (4) 

Generally, a human face has some intersecting points of 1κ and 2κ , especially in 

nasion, nose base, and nose lobes. We can extract the nose region, (d) in Fig. 2, by 
analyzing the blobs of the difference image (that is, the binary image of the 2κB  

image subtracted from the 1κB image based on the Table 1). Among them, the blob 

that meets the constraints is chosen as a nose. Fig. 3 presents the resulting image in 
every step for the nose blob extraction processes. 

                         Table 1. Constraints for a nose candidate blob      (unit : pixel) 

Features Value 
Width minimum(35) and maximum width(70) 
Height minimum(35) and maximum height(70) 

width+10 < height 
uw(width of upper side) < lw(width of lower side) Etc. 

4010 ≤−≤ lwuw  

Three feature points, nasion, nose tip and nose base, contribute to pose estimation 
and  are localized by analyzing Gaussian curvature based on Eq. (4) around the nose. 

The nose tip( tN ) is the CoG(Center of Gravity) of the largest Gaussian curvature 

area in the nose. The nasion( nN ) is the CoG of the nearest and largest Gaussian  
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curvature area from the nasion seed point( '
nN ) which is the center of the nose on the 

upper side. The nose base( bN ) is the CoG of the nearest and largest Gaussian curva-

ture area from the nose base seed point( '
bN ) which is the center of the nose on the 

lower side. 

(a) (b) (c) (d) 

Fig. 2. Nose localization (a) maximum curvature image(upper) and its binary image(lower), (b) 
minimum curvature image(upper) and its binary image(lower), (c) maximum curvature image 
overlapped by minimum curvature image(upper) and difference image of  the 2κB from the 

1κB (lower), (d) extracted nose region overlapped on 3D face image(upper) and binary nose 

region image(lower) 

(a) (b) (c) 

Fig. 3. Nose feature extraction (a) 3D rendering image of Gaussian curvature areas(black), (b) 
Binary image of  Gaussian curvature areas(white), (c) Nasal feature points around the nose 

4   Pose Estimation Using Tetrahedral Structure of a Nose 

Those three feature points which were extracted in section 3 are used to estimate a 
pose. The novel pose estimation method analyzes the geometrical orientation of the 
tetrahedral structure of a nose. The z-axis orientation is estimated first, and then the 
pose estimation of the y and x-axis are followed in sequence. 

nN

bN

'nN

tN

'bN
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4.1   Yaw (z-Axis) 

The orientation about z-axis can be estimated with nasion( nN ) and nose base( bN ) as 

shown in Fig. 4 (a). The angle of orientation, zθ , is calculated by Eq. (5). It is more 

reasonable than the Hesher’s[21] case that calculates angle using nasion and nose tip. 
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(5) 

'
nN is nasion on the input image and nN is nasion on the ideal image. The x and the 

y are coordinate values of each feature point. After calculating the zθ , face image 

can be compensated by inverse matrix transform for better pose estimation along the 

y- and x-axis. bdN  is the distance of the x  coordinates between 'bN  and bN . 

4.2   Pitch (y-Axis) 

The orientation about the y-axis can be estimated with nose base( bN ) and nose 

tip( tN ) as shown in Fig. 4 (b). The angle of orientation, yθ , is calculated by Eq. (6).  

'tN  is the nose tip on the input image and ztN '  is the foot of perpendicular from 'tN  

to nb NN . 
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(6) 

4.3   Roll (x-axis)  

The orientation about the x-axis can be estimated with nasion( nN ) and nose 

base( bN ) as shown in Fig. 4 (c). The angle of orientation, xθ , is calculated by  

Eq. (7).  
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(7) 
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(a) (b) (c) 

Fig. 4. Orientation calculation (a) Yaw(z-axis), (b) Pitch(y-axis), (c) Roll(x-axis) 

5   Experiments 

3D facial pose images for experiments were scanned by 4D Culture’s face scanner 
based on the laser triangulation principle. The proposed pose estimation method was 
tested about 41 orientated images. Yaw and Pitch angles have 7 poses from -30  to 
+30  in every 10 . And Roll has 5 poses from -20  to +20  in every 10 . The distance 
between face and camera was 1.0m. Face segmentation was not executed before fea-
ture extraction. The Fig. 5 (a) shows the input pose images and (b) presents the results 
of pose compensation images after pose estimation by the proposed algorithm.  

  Pitch Pitch 

  -30 -20 -10 0 +10 +20 +30 -30 -20 -10 0 +10 +20 +30 

+20 

+10 

0 

-10 

R
oll 

-20 

 Yaw Yaw 

 -30 -20 -10 0 +10 +20 +30 -30 -20 -10 0 +10 +20 +30 
 

 

 (a) (b) 

Fig. 5. The resulting images of the proposed pose estimation algorithm. (a) Before pose estima-
tion, (b) Pose compensation after pose estimation  

In most cases, proposed pose estimation and compensation were done successfully. 
But some cases were not, because of feature extraction errors.  
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The eigenface-based face recognition method was also studied. The 80 frontal 3D 
face images of the ANU3DFACE-1 database were chosen as sample data. From these,  
40 images were used as learning data; the other 40 were used as test data. Each image 
was normalized by nose size, and segmented into 80 80 new face image which had 
nose tip in center. We grouped the recognition result into four groups. The result are  
presented in Fig. 6. The Euclidian distances of face matching are sorted in ascending 
order. We ranked the result as Rank 2, 4, 6, and 8. After pose estimation and pose 
compensation, the classification result was improved. The experiment with Rank 6 
can classify about 93% correctness. 

2 4 6 8
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100
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)

Rank

 After
 Before

 
Fig. 6. The result of face recognition based on the eigenface method between before and after 
orientation compensation by the proposed algorithm 

6   Conclusion 

This paper proposed a new feature-based pose estimation method for robust 3D face 
recognition. Pose estimation must be preceded before matching, for better accuracy in 
face recognition. We hypothesized a nose, which is the most outstanding feature in 
3D face, as a tetrahedral structure. The structure, composed by feature points such as 
nasion, nose tip, nose base, and nose lobes, is similar to a tetrahedron. The three fea-
ture points, nasion, nose tip, and nose base, which contribute to pose estimation, were 
extracted by surface curvature descriptors such as maximum, minimum, and Gaussian 
curvatures. 

We calculated the orientation of the face by analyzing the geometrical feature vec-
tors composed by vertices of the tetrahedron against coordinate axes. We experi-
mented with this method below the orientation of 30 . Face pose can be estimated 
with only three feature points. This pose estimation method can be applied to face 
recognition and pose tracking systems. For further work, the method for the orienta-
tion above 30  is required to be studied. 
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Abstract. In this paper we present a bio-inspired connectionist model for vi-
sual perception of motion and its pursuit. It is organized in three stages: a causal
spatio-temporal filtering of Gabor-like type, an antagonist inhibition mechanism
and a densely interconnected neural population. These stages are inspired by the
neural treatment and the interactions of the primary visual cortex, middle tem-
poral area and superior visual areas. This model has been evaluated on natural
image sequences.

1 Introduction

The estimation of motion is a cognitive task enclosed in the perception-action loop of
autonomous systems interacting with dynamic real-world environments. In these sys-
tems, connectionist models bring their power of generalization and their robustness to
noise. Their intrinsic parallelism combined with local processings offer various areas
of research for the development of real-time embedded models of perception-action.

In the field of autonomous robotics, the pursuit of an object in a dynamic environ-
ment involves complex tasks and reduced computing times. Several bio-inspired models
exist to propose solutions to this problem by modelling the primary visual cortex (V1),
the middle temporal area (MT) [8] and the middle superior temporal area (MST) [5,12].
We propose here a bio-inspired connectionist model that integrates the inter- and intra-
interactions of the V1, MT, MST and superior visual areas for this cognitive task. Our
model is based on our motion perception model proposed in [2], as well as on the fo-
cus and attention model of [11,7] in which neural sub-populations emerge. Our global
model includes three modules: a spatio-temporal filtering based on Gabor spatial fil-
ters, a strongly localized inhibition mechanism based on antagonism criteria [2], and
the emergence of a single target in a dynamic environment through the evolution of a
densely interconnected neural population.

We first propose a rapid survey of the motion perception model we proposed in
[2] and of the attention model of [11,7]. We then present their coupling and finally we
describe the evaluation of this coupled model on several real image sequences.

2 A Connectionist Model for Motion Perception and Pursuit

Our neural model is based on the local and massively distributed processing defined
in [2], where we have proposed a retinotopically organized model of the following per-
ception principle: local motion informations of a retinal image are extracted by neurons

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 284–291, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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in the primary visual cortex, V1, with local receptive fields restricted to small spatial
interaction areas; these neurons are densely interconnected for excitatory-inhibitory in-
teractions.

In this paper we extend these two-modules of model by coupling it to a third module
based on a bio-inspired model of focus and attention also developed in our team.

(a) Global architecture (b) Excitatory-inhibitory interactions
(antagonist inhibition mechanism)

Fig. 1. General architecture of our model for motion perception [2]

The first two main stages of the model (see figure 1(a)) will be described in this
section: the causal spatio-temporal filtering and the antagonist inhibition mechanism.
The biological foundations and the mathematical details will not be discussed in this
paper (see [2]). The additional third module will be presented in subsection 2.4.

2.1 Causal Spatio-Temporal Filtering

The first stage of the model depicted in figure 1(a) performs a causal spatio-temporal
filtering. It models the magnocellular cells seen as motion sensors that depend on the
gradient of image intensity and on its temporal derivatives [6,4,3]. This filtering is per-
formed in two steps: a spatial filtering and a causal temporal processing [2,10].

For the spatial filtering, Gabor filters are implemented as image convolution kernels
in Θ different directions. It is represented in figure 1(a) for Θ = 4 orientations (though
we usually work with Θ = 8).

Then the causal temporal processing involves the computation of a temporal aver-
age of Gabor filters for each direction and for a set of search places that correspond to
V assumed different speeds of each pixel. In other words, for each given assumed di-
rection and speed, they reinforce the local motion with the average of the Gabor filters
applied to past images an assumed past places. This principle is valid under the strong
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hypothesis of a high enough sampling frequency to ensure a local motion detection and
an immediate constant local speed.

The computations described in this subsection have been parallelized and imple-
mented on FPGA circuits for real-time embedded motion perception [10].

2.2 Antagonist Inhibition Mechanism

The second stage of the model of [2] (figure 1(a)) emulates an antagonist inhibition
mechanism by means of excitatory-inhibitory local interactions in the different oriented
cortical columns of V1 [1] in order to strengthen the coherence of the motion areas.

In this mechanism each neuron receive both excitation and inhibition signals from
neurons in a neighborhood or influence range to regulate its activity. In figure 1(b) we
show the excitatory and inhibitory local interactions where neurons interact in a close
neighborhood centered around the neuron under consideration. The strong interactions
in this mechanism change the internal state of neurons and, consequently, their influence
range, which generates a dynamic adaptive process.

As in usual excitatory-inhibitory neural models, the weighted connections to and
from neurons have modulated strength according to the distance from one another. Nev-
ertheless, we call it an antagonist inhibition mechanism because the inhibitory connec-
tions among neurons regulate downwards the activity of opposing or antagonist neu-
rons, i.e. neurons that do not share a common or similar orientation and speed. On the
other hand, excitatory connections increase the neuron activity towards the emergence
of coherent responses, i.e. grouping neuron responses to similar orientations and speeds
through an interactive process.

Then, the updating of the internal state of a neuron is

η δH(x,y,T )
δT = −A ·H(x, y, T )

+(B −H(x, y, T )) ·Exc(x, y, T )
−(C +H(x, y, T )) · Inh(x, y, T )

(1)

where −A · H(·) is the passive decay, (B − H(·)) · Exc(·) the feedback excitation
and, (C +H(·)) · Inh(·) the feedback inhibition. Each feedback term includes a state-
dependent nonlinear signal (Exc(x, y, T ) and Inh(x, y, T )) and an automatic gain
control term (B − H(·) and C + H(·), respectively). H(x, y, T ) is the internal state
of the neuron localised in (x, y) at time T , Exc(x, y, T ) is the activity due to the con-
tribution of excitatory interactions in the neighborhood ΩΘE

(x,y) and Inh(x, y, T ) is the

activity due to the contribution of inhibitory interactions in the neighborhood ΩΘI

(x,y).
Both neighborhoods depend on the activity level of the chosen neuron in each direc-
tion. A, B and C are the real constant values and η is the learning rate. For more details
on the excitation and inhibition areas see [2].

Let ρ be the influence range of neuron (x, y) in this stage. This neuron receives at
most ρ2 excitatory connections from neurons with the same direction and speed and at
most (V ·Θ − 1) · ρ2 inhibitory connections from other close neurons.

At this level, each pixel corresponds to Θ · V different neurons that encode infor-
mations of directions and speeds. Their integration is performed in a intermediate stage
named velocity integration.



Dynamic Pursuit with a Bio-inspired Neural Model 287

2.3 Velocity Integration

In [2], the results of the antagonist inhibition mechanism are integrated thanks to a
winner-take-all process defined by

Ĥ(x, y, t) = maxv∈V

(∑
θ

H(θ,v)(x, y, T ) · ϑθ

)
(2)

where Ĥ(x, y, t) is the winner neuron and ϑθ is the unit vector in direction θ.
H(θ,v)(x, y, T ) is the final result of the antagonism mechanism in direction θ and for
a supposed speed v. Then we search the maximum of the vector sum on all directions
of each supposed speed. T and t are the epoch in the antagonism mechanism and the
time in the images sequence, respectively. This stage corresponds to both parts labeled
integration in figure 1(a).

Until there, the model keeps entirely local and distributed with motion areas being
relatively coherent in orientation and speed, but without a global response. Next subsec-
tions describe our coupled model that extracts a global response using the bio-inspired
attention model of [7,11].

2.4 Visual Attention

The third module of our model consists of a neural population which interactions target
the emergence of attention. The output of the second module (antagonist inhibition) is
coupled to the input of the attention module. Before describing this coupling, we will
present the main principles of the attention model. See [7,11] for the mathematical and
implementation details.

Distributed Model for Visual Attention. This bio-inspired model is based on the in-
teractions between the superior visual areas (V4, Inferotemporal -IT- and the Frontal
Eye Field -FEF-), and some other ones (superior colliculus, pulvinar nuclei and thala-
mus). The authors propose a model of interactions between eight different maps and
their interactions within each map with the application of the Continuum Neural Field
Theory 2D [9].

Figure 2 describes the eight maps of this model and the neuron required to switch
attention. Three processing levels may be found: in the first level (attention emergence)
only one activity bubble of close neurons may emerge in the neural population of the
input, visual and focus maps. In the second level (attention fixation) the FEF and mem-
ory maps sustain the bubble activity and localisation that can keep track of this stimulus
if another one takes back focus. In the last level (attention switching) the striatum, GPI,
thalamus and inhibition maps combined with the reward neuron make the necessary
interactions to switch attention (supervised mode).

Some of these maps use lateral interactions (see figure 2): each neuron is completely
connected to the other ones in the same map. The communication between different
maps of this model is based on the principle of local receptive field.

In the maps that use lateral interactions, the internal state of each neuron in a map
A with adjacent map Â is updated according to
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τ ∂u(x,y,t)
∂t = −u(x, y, t) +

∫
A wA((x, y) − (x̄, ȳ))f(u(x̄, ȳ, t))dxdy

+
∫

Â
s((x, y), (x̂, ŷ))I(x̂, ŷ, t)dx̂dŷ + h

(3)

where u(x, y, t) is the membrane potential of the neuron in position (x, y) at time t.
f(·) represents the mean firing rate, I(x̂, ŷ, t) is the neuron input (x̂, ŷ) at time t in map
Â. wA((x, y) − (x̄, ȳ)) is the lateral connection weight function in map A, given by

wA((x, y)− (x̄, ȳ)) = Bexp

(
|(x, y) − (x̄, ȳ)|2

b2

)
−Cexp

(
|(x, y) − (x̂, ŷ)|2

c2

)
(4)

and s((x, y), (x̂, ŷ)) is the adjacent connection weight function of neuron (x̂, ŷ) ∈ Â to
neuron (x, y) ∈ A defined by

s((x, y) − (x̂, ŷ)) = Bexp

(
|(x, y) − (x̂, ŷ)|2

b2

)
(5)

with B,C, b, c ∈ �∗
+.

In the maps without lateral interactions, the internal state of each neuron in a map
A with adjacent map Â is updated according to

τ
∂u(x, y, t)

∂t
= −u(x, y, t) +

∫
Â

s((x, y), (x̂, ŷ))I(x̂, ŷ, t)dx̂dŷ + h (6)

Each map send its results to the next maps applying equation 6 according to figure 2.
The free parameters have been chosen as reported [11].

Fig. 2. General architecture of the visual attention model [11]

Coupling of Both Models. The attention model recovers the most salient characteris-
tics in the image by means of the application of a Gaussian filter focused on a specific
colour, i.e. this model was designed to focus attention on objects with predefined colour
patterns. Then, this preprocessing step generates outputs in [-1,1] and it compresses the
image to 40× 40 pixels.
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But it is not always possible to search for a predefined color in real scenes to follow
an object. Our model supplies an instantaneous image of the moving objects without
any immobile object. Then coupling this attention model with our motion perception
model cancels the restriction of searching only for predefined color.

Following the architecture of figure 1(a), both stages labeled “integration” now use
a strong winner-take-all process defined by

H(x, y, t) =
1

ξCN · ηCN

∑
ξCN×ηCN

maxθ∈Θ,v∈V H(θ,v)(x, y, T ) (7)

where ξCN and ηCN define the receptive field size required to reduce the number of out-
puts of our antagonist inhibition module to a size that may be handled by the attention
module.

Next section illustrates the motion perception and pursuit performed by the whole
coupled model when applied to real image sequences.

3 Results

The free parameters of our model were set according to the suggestions in [2,11]. We
chose three real image sequences of video surveillance. They include various numbers
of RGB images, but all images are the same size: 384 × 288, and they are first grey-
scaled. Sequence ABrowse has 1043 images, AFight and BFight both have 551 images.

Figure 3 show four images of one chosen part for three different image sequences.
The pursuit results for each chosen part of each sequence are shown in the last column.

The first real image sequence, named “ABrowse”, may be split into four parts: (1)
two persons are walking; (2) only one person is walking; (3) there is no motion; (4) one
person is walking until the sequence is stopped. The first part is shown in the first row
of figure 3.

The second real image sequence, named “AFight”, may be split into five parts: (1)
three persons are walking; (2) two persons are walking; (3) only one person is walking;
(4) two persons are walking, approaching face to face, arguing and then striding towards
different directions; (5) three persons are moving at the bottom of the image. The fourth
part is very complex because two persons are arguing and the attention is always drawn
towards the first one. This fourth part is shown in the second row of figure 3.

Finally, the third real image sequence, named “BFight”, may be split into three
parts: (1) there are four persons but only one is walking; (2) one person is walking,
followed by another person coming from a different direction, then the second person
joins the first one and they argue; (3) both persons stride towards opposite directions,
and then join together a little further away. The second part is shown in the third row of
figure 3.

In the first part of sequence ABrowse two persons are walking: one makes the big
movements and remain in the center of the scene while the other one goes on walking.
Our system always pursuits the last one. In the fourth part of sequence AFight two per-
sons walk, argue and stride towards different directions but our system always pursuits
the first one. Finally, in the second part of sequence BFight two persons walk, join and
argue: even if the first one is smaller than the other one our system pursuits the first one.
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Fig. 3. Real image sequences used in this work: ABrowse, AFight and BFight, respectively in
each row, and, from left to right, four images of each sequence and their pursuit path

In the three cases our system always focuses on the first moving person that holds
attention of the memory map (to pursuit the other persons, one could use the supervised
attention switching system of the model).

4 Conclusion and Discussion

This work is based on a coupling of two bio-inspired models developed in our connec-
tionist research team: the first one performs motion perception, the second one makes
it possible to focus attention. The whole model is fully inspired by the visual cortex
system, the superior motor areas, and their relations.

Our model consists of three modules: a low-level analysis to detect local motions,
then to detect coherent moving areas, and a high-level analysis for the emergence of fo-
cused attention. These modules are gathered into a densely interconnected bio-inspired
model that uses weighted excitatory and inhibitory connections. Most excitatory in-
teractions correspond to feed-forward receptive fields, whereas most inhibitory ones
correspond to lateral interactions.

Our first experiments show that our model is able to detect moving persons or ob-
jects and to pursue them in an environment where other persons or objects move. The
system appears as robust enough to avoid the loss of the original target. It is able to
pursue objects in quite complex scenes without any predefined information. Neverthe-
less, in very complex scenes, this system may switch attention towards far more salient
targets. Our current works aim at strengthening the focus stability at two levels: in the
V1 model (including the antagonist inhibition mechanism) and in the superior cortical
model (attention mechanism).
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Other bio-inspired models perform object pursuit [5,8,12]. Our goal is to build a
whole model using only local, highly distributed, and densely interconnected excitatory
and inhibitory connections.

Our current works finalize our three-module model by introducing feedback con-
nections from the third module towards the antagonist inhibition process module.
Such backward interactions bring us closer to the cortex architecture, and it is able
to strengthen the emergence of a robust pursuit of a moving target in a dynamic envi-
ronment.

References

1. Frédéric Alexandre. Une modélisation fonctionnelle du cortex: la Colonne Cortical. Aspects
visuels et moteurs. PhD thesis, Henri Poincaré, Nancy, France, 1990.
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Abstract. Motion-compensated temporal filtering (MCTF) is a power-
ful technique entering scalable video coding schemes. However, its per-
formance decreases significantly if the video signal correlation is poor
and, in particular, when scene-cuts occur. In this paper we propose an
improved structure for MCTF by detecting and processing the scene-cuts
that may appear in video sequences. It significantly reduces the ghost-
ing artefacts in the temporal approximation subband frames, providing a
higher quality temporal scalability, and dramatically improves the global
coding efficiency when such abrupt transitions happen.

1 Introduction

The 3-D subband schemes (t+ 2D) exploit the temporal interframe redundancy
by applying an open-loop temporal wavelet transform over the frames of a video
sequence. Temporally filtered subband frames are further spatially decomposed
and can be encoded by different algorithms such as 3D-SPIHT [1] or MC-EZBC
[2].

A weakness of the existing t + 2D video codecs is related to the way the
temporal filtering behaves near scene changes. Usually, the input video signal is
partitioned into GOPs and temporally filtered without checking the correlation
between the GOP frames. Moreover, the sliding window implementation of the
temporal filtering is done using frames from adjacent GOPs in the processing of
the current GOP. When the input signal involves complex motion transitions,
and especially scene-cuts, this can translate into inefficient prediction/update
operations, leading to poor quality results and also to reduced temporal scala-
bility capabilities.

Several attempts to avoid the artefacts related to these abrupt changes have
already been proposed for hybrid coding, such as the scene-cut detection and
content-based sampling of video sequences [3] or video segmentation using en-
coding cost data [4], alleviating but not completely solving this problem.

In this paper we present a motion-compensated temporal transform coding
scheme, specifically adapted to the detection and processing of the uncorrelated
shots of the input video sequence. After the scene-cuts are detected, we encode
each set of frames between two consecutive scene-cuts separately, by adapting
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the temporal filtering to cope with arbitrary number of frames in a shot. An
advantage of our scheme is that scene-cuts once eliminated, MCTF efficiency is
maximal, as for highly-correlated video signals. The problem is related to border
effects, and therefore is much easier to cope with in case of Haar MCTF. However,
it has been shown [5,6,7] that the use of longer bidirectional filters, like the
5/3 filter bank, can take better advantage of the temporal redundancy between
frames. Existing methods for adaptive GOP structure in the MCTF framework
[8,9] basically detect changes and limit the number of temporal decomposition
levels based on a measure of unconnected pixel percentage. However, compared
with our approach, this technique does not make a strict correspondence between
the scene cut and the GOP boundary. Our proposed approach varies the GOP
size only on the frames previous to the transition, and these frames are encoded
in several GOPs of power of two sizes. In this way, the scene cut does not span any
GOP. We present therefore our scene-cut processing method in the framework
of 5/3 MCTF, but our proposal can be adapted to other temporal filters.

The paper is organized as follows: in the next section, we recall the classical
motion-compensated 5/3 temporal transform and present the method proposed
in this framework for scene-cuts detection and processing. Section 3 illustrates
by experimental results the coding performance of the proposed scheme. We
conclude in Section 4.

2 Scene-Cut Detection and Processing

The MCTF approach consists in a hierarchical open-loopsubband motion- com-
pensated decomposition. Let us denote by xt the original frames, t being the time
index, and by ht and lt the high-frequency (detail) and low-frequency (approx-
imation) subband frames, respectively. For the 5/3 filterbank implemented in
lifting form, the operators allowing to compute these subbands are bidirectional,
and the equations have the following form (see also Fig. 1):

x2t x2t+1 x2t+2

v−t−1

x2t−1

ht−1 lt lt+1ht

v+
t

v−t

Fig. 1. MCTF with bidirectional predict and update lifting steps
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⎧⎪⎨⎪⎩
ht = x2t+1 −

1
2
(
F(x2t,v

+
t ) + F(x2t+2,v

−
t )

)
lt = x2t +

1
4
(
F−1(ht−1,v

−
t−1) + F−1(ht,v

+
t )

) (1)

where F(xt,vt) is the motion prediction operator, compensating the frame xt

by projection in the direction of the motion vector field vt, and v+
t , v−

t are
the forward and backward motion vectors predicting x2t+1, respectively . The
notation F−1(ht,vt) corresponds to the compensation of the ht frame in the
opposite direction of the motion vector field vt. Indeed, in general the motion
prediction is not an invertible operator. Unconnected and multiple connected
pixels are processed as detailed in [10].

When the input sequence involves complex motion transitions, this can trans-
late to inefficient prediction/update operations, leading to poor quality results
and temporal scalability capabilities, as illustrated in Fig.2. One can remark in
particular the energy of the detail frames, which need to be encoded, and also
the poor visual quality of the approximation frame, very penalizing for temporal
scalability.

In the following, we suppose the scene-cuts have been detected, and we
present the algorithm used for change detection at the end of this section.

First, the temporal filtering needs to be changed in order not to filter over a
scene-cut. The second modification is related to the encoding of the last group
of frames (GOF) before the scene-cut.

To this end, both the predict and update steps have to be modified near
the end of the first scene, as illustrated in Fig. 3. For sequences processed ho-
mogeneously, the temporal subbands resulting from the MCTF are encoded by
GOFs of 2L frames, where L is the number of temporal decomposition levels that
were performed. When a scene-cut occurs in a sequence, the GOF just before
the change will have in general a different number of frames. If we denote its
number of frames by An and write this number as:

An = (a0a1 . . . aL−1)2 =
L−1∑
l=0

al2l,

then we shall decompose the GOF in smaller GOFs, in decreasing order of their
size: al 2l, l ∈ {0, . . . , L − 1}, al ∈ {0, 1}, which will be filtered and encoded
separately. This also corresponds to changing the number of temporal decompo-
sition levels and filtering operations for these sub-GOFs. Indeed, we can do only
l temporal decomposition levels for a sub-GOF of size 2l, l < L. Moreover, the
prediction across the scene-cut is inhibited, as well as the usage of the reverse
motion vector field over the same transition, during the update step. After the
scene-cut, the normal filtering with “sliding window” is started, the effect of the
scene cut being only a slight modification of the filters to take into account the
induced border effects.

Now that we have explained the modifications in filtering and coding in order
to take into account scene changes, we turn to the detection of such transitions.
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(a)

(b)

(c)

(d)

Fig. 2. Approximation (a) and detail (b) frames in a GOF without scene-cut. Ap-
proximation (c) and detail (d) frames when the GOF contains a scene-cut (first part:
“foreman” sequence, second part: “mobile” sequence).

Several criteria for scene-cut detection have been proposed in the literature,
like: the variation of the relative energy of the displaced frame difference (DFD)
along the sequence [11], the energy and angle distribution of the motion vector
fields in consecutive frames [12], by keeping track of the percentage of the un-
connected pixels, estimated after motion estimation [13] or using unsupervised
segmentation and object tracking [14].

For our simulation we have used, as detection criteria, the variation of the
relative energy of the DFD along the sequence. If the displaced frame difference
between two successive frames is computed as:

dt = DFD(xt, xt+1) = xt+1 −F(xt,vt) (2)

then the variation of the relative energy of the DFD is computed as:

Δ2t =
d2
2t

d2
2t−1

(3)
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Gop0 Gop1 Gop3

h h

lh hhl

ll ll

Scene-cut

h h h

Fig. 3. Scene-cut processing over two temporal levels for a 10-frames video shot

When the input signal is highly-correlated, the variation of the relative energy
of the DFD along the sequence is almost constant (i.e. Δ ≈ 1). We say a scene-
cut is detected when the variation of relative energy has a rapid change. For
appropriately chosen parameters τ1 and τ2, we say that the scene-cut occurs
after the frame x2t+1 when: {

|Δ2t − 1| < τ1

|Δ2t+1 − 1| > τ2
(4)

3 Experimental Results

For simulations, we considered a high-definition video sequence (HD format:
1920×1280, 60 fps) from the “Erin Brockovich” movie, containing 180 frames and
3 scene-cuts: after the 44th, the 80th and respectively, the 161th frame. Moreover,
in order to work on a representative set of test sequences, we also built several
test sequences obtained by concatenating parts of the standard CIF sequences
at 30 fps: Foreman and Mobile (i.e.: MF 18× 16 - video file containing the first
18 frames from Mobile and the next 16 frames from Foreman, FM 16×16 - with
the first 16 frames from Foreman, followed by the first 16 frames from Mobile).
The aim was to test all possible configurations for the number of frames in the
GOF previous to the scene-cut. In order to detect the abrupt scene transitions,
the values of τ1 and τ2 were empirically determined as being equal to 0.1 and
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0.4, respectively. These parameters ensured that all the scene-cuts were detected
and no false alarms appeared for the considered sequences. Sequences with fade
or dissolve transitions can be processed with the described MCTF scheme, but
the detection method should be replaced with an appropriate one, as described
in [15].

The target number of decomposition levels for motion-compensated 5/3 tem-
poral filtering is L = 4. The coding procedure is based on the MC-EZBC codec
and the used motion estimation algorithm is a Hierarchical Variable Size Block
Matching (HVSBM) one. The motion vectors have been estimated with 1/8th

pixel accuracy and the temporal subbands were spatially decomposed over 4 lev-
els with the biorthogonal 9/7 wavelet. The encoding of the entire YUV sequence
was performed, but the results are further expressed only in terms of average
YSNR.

Table 1. PSNR results of 5/3 MCTF with and without scene-cut processing for “Erin
Bronckovich” - (HD, 60fps, 180 frames)

YSNR (dB) 6000 kbs 8000 kbs 12000 kbs
SC-MCTF 36.4227 36.8639 37.6387
MCTF 34.9281 35.7519 36.5217

6000 7000 8000 9000 10000 11000 12000
35

35.5

36

36.5

37

37.5

Bitrate (kbps)

A
ve

ra
g

e
 P

S
N

R
 (

d
B

)

Erin Brockovich, 180 frames

MCTF−4 temp. levels
MCTF−3 temp. levels
SC−MCTF existent
SC−MCTF proposed

Fig. 4. Rate-distortion curves for 180-frames HD Erin Brockovich sequence

The importance of correctly processing the scene-cuts is illustrated in Fig. 4,
Fig. 5 , as well as in the Tables 1-2, where the rate-distortion performances for
5/3 MCTF with (denoted in these tables by SC-MCTF) and without (simply
denoted by MCTF) scene-cut processing are compared. It can be easily noticed
that in all the cases our scheme performs better, achieving a gain between 0.5
dB and 2.0 dB over a classical MCTF. Results in Fig. 4 indicate that reducing
the GOF size (from 16 to 8 frames) can alleviate the problem of scene-cuts
by decreasing their influence, but a correct processing of these zones allows us
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Table 2. PSNR results of 5/3 MCTF with and without scene-cut processing for the
“MF 18x16” and “FM 16x16” sequences

MF 18x16 sequence (30fps)
YSNR (dB) 512 kbs 768 kbs 1024 kbs 1536 kbs
SC-MCTF 30.1185 32.3141 33.7612 35.6489
MCTF 23.9811 28.5192 30.4135 32.8334

FM 16x16 sequence (30fps)
YSNR (dB) 512 kbs 768 kbs 1024 kbs 1536 kbs
SC-MCTF 30.3151 32.7043 34.1021 35.9510
MCTF 26.4706 30.3061 31.8275 33.8650

both to take advantage of the temporal correlation in homogeneous shots and to
increase the coding efficiency. It can also be observed that our proposed technique
outperforms the one described in [8,9].
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Fig. 5. PSNR for the “MF 18x16” (a) and “FM 16x16” (b) sequences, with and with-
out scene-cut processing. Scene-change after the 18th and respectively, 16th frame.

4 Conclusion and Future Work

In this paper, we proposed an improved version of the 5/3 MCTF coding scheme,
able to detect and process the scene-cuts appearing in video sequences. The lift-
ing structure of the filters has been modified such that the filtering does not
encompass the scene-cut. Moreover, the coding units were reduced to accommo-
date this change. As can be observed from the experimental results, our method
gives an average YSNR gain of about 1.5 dB on the tested video sequences and
higher for frames close to the scene-cut.

The presented method supposes the scene-change detection algorithm to be
applied before starting the encoding process. In future work, we will focus on
improvements allowing to process in one pass the video sequence, by performing
the scene-cut detection during the encoding process.
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Abstract. Content-based indexing and retrieval (CBIR) of still and mo-
tion picture databases is an area of ever increasing attention. In this pa-
per we present a method for still image information extraction, which in
itself provides a somewhat higher level of features and also can serve as
a basis for high level, i.e. semantic, image feature extraction and under-
standing. In our proposed method we use blind deconvolution for image
area classification by interest regions, which is a novel use of the tech-
nique. We prove its viability for such and similar use.

Keywords: indexing, blind deconvolution, focus map, CBIR.

1 Introduction

We present an image indexing method using regions of interest, i.e. focus maps,
in which we extract focused areas of images and use the such extracted areas for
image indexing. Then queries can be formulated, searching for images on which
specified areas are in focus, or there is an object in focus on a selected image
region. For the extraction of such areas we use blind deconvolution.

Blind deconvolution [1] is a well known method used in the field of linearly
degraded image reconstruction [2] when we lack the knowledge about the original
source image, the point spread function (PSF) - i.e. the blurring function - or
the additive noise superimposed. This is the case when the original - noise-free,
not blurred - image is not available, too hard to access, or even dangerous.
Blind deconvolution is able to estimate both the PSF and the original image.
Thus, in such cases blind deconvolution algorithms can be really useful and,
depending on the parameter estimation techniques used and on the quality of the
observed image, sometimes quite high quality restoration can be achieved. There
are numerous applications of blind deconvolution in the fields of microscopy,
astronomy, tomography [4,5,6,18], and in many other areas.

Reading the above, one could easily ask how could (blind) deconvolution be
used for image classification and indexing. What may sound at first peculiar,
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it may turn out to be quite the opposite. The estimation of possible blurring
functions over an image, or blocks of an image in our case, can yield the data we
need for focus map extraction. The main idea behind our approach is, that the
calculated PSFs over blocks of an image can give information about the local
blurriness or sharpness of the image, thus information about how important the
respective image area could be in the context of the entire image.

There are many ways to accentuate parts of an image. A most obvious one is
that if the focus of the image is centered on an object and the rest is out of focus
or blurred, the attention will concentrate on the object in focus. Another artistic
tool for object accentuation is when the photographer guides the attention by
light-shadow plays e.g. when an object is intentionally shot with more light on,
or the opposite, in shadows if wished to lower its importance. Usually being more
in focus, having more contrast, having more light are some tools of emphasizing
important objects/areas in a scene.

There exist approaches of determining depth maps and focused regions with
the use of multiple images shot with different camera focus settings, like in [3],
but in the area we target there are no such shots available but a single image.

In our approach, by performing localized blind deconvolution on arbitrary
images and classification of the obtained local PSFs we obtain such segmentation
images which we can use to extract the areas of interest. Then, we build a
database of images and their obtained segmentations, on which queries will be
made by two possible ways: by model images, where a model image is given
and its segmentation is used as a mask for the search, or by hand-drawn query
images, where one just draws blobs on a blank image to specify the places where
important areas should be searched over the database.

In the following we will present the method in detail, perform some com-
parisons with other similar techniques, detail the query and search and provide
results. We will also discuss possible applications of the technique. For example,
in video contents indexing, one of the most important task is to find the central
spot of an event, what is usually the best focused object. For example, with a
group of people, there could be several skin-colored areas and moving bodies,
but the central person can only be found by searching around the focus area
among moving head-type objects.

2 Method Overview

Previously we have been investigating alternative ways of image and video clas-
sification, indexing and retrieval, like motion-based methods [16], camera depth
maps with multifocus images [3] or painterly-rendering based strokes-series in-
dexing [17]. Here we will detail our novel blind deconvolution based classification
method and compare it to two other similar methods, classification based on au-
tocorrelation and on edge content. The goals of these techniques is similar to
what we wish to achieve, that is extract important image areas so as to be able
to perform higher order queries. Such queries would be like specifying that we
want to search for images on which the important areas are at places given
on the query. That can mean searching by a model image for finding similarly
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arranged compositions, or by drawing a binary query image to specify where we
want to see emphasized areas. Techniques for finding out whether an image or
parts of an image are out of focus have practical uses [10,11] in photography. An
overview of focus/sharpness methods is in [1,12]. However, we are dealing with
the possible uses of blind deconvolution for indexing/search/retrieval purposes,
where we do not have multifocus images at hand.

For our purpose, the basis of the region of interest extraction is locally per-
formed blind deconvolution. The type of the used deconvolution is irrelevant, as
long as it provides local PSF estimates. Thus, we chose the MATLAB imple-
mentation of the Lucy-Richardson [13,14] deconvolution for our tests.

2.1 Blind Deconvolution Based Classification

Blind deconvolution [1] is basically a blind image restoration method, where the
noise content is neglected. Let the model of a degraded image be

fO =
∫ +∞

−∞

∫ +∞

−∞
f(α, β) · h(x− α, y − β)dαdβ + n(x, y) (1)

where fO is the observed image, h is the impulse response of the linear degra-
dation system and n is the additive noise, with the simple form in discrete case
being

fO = f ∗ h+ n (2)

The function h is the so called point spread function (PSF) which can be con-
ceived as blurring a white point on a black background with the blurring function
of the channel (e.g. caused by the optics). The term is used to denote positive
valued blurring functions. If we neglect the noise content (as we do in our case
with the images in the database), blind deconvolution can be used to estimate
the PSF which caused the blurring in the observed image. And this is what we
use in out classification. Taking the logarithm of the degraded image Fourier
spectra

ln (FO) = ln (F ) + ln (H) (3)

we find the spectra of the original image (here unknown) and the PSF to be
separable. Thus statistical estimation methods can be applied that are used in
case of additive noise.

There exist quite a few methods for blind deconvolution calculation (see [1]).
We use the blind deconvolution algorithm in MATLAB in our proof of concept
code, which uses a maximum likelihood parameter estimation [7] process. Here,
one seeks to maximize the Bayesian probability

P {h ∗ f |g} =
P {g|h ∗ f} · P {f} · P {h}

P {g} (4)

which is equivalent to maximizing m = lnP {g|h ∗ f}+ lnP {f}+ lnP {h}.
The process of estimating the PSF of a degradation process is quite similar

to the methods used for system identification and system control in electrical en-
gineering tasks. Thus an analogy can be drawn between the two processes. The



Image Indexing by Focus Map 303

maximum likelihood estimation process is an approach to obtain the parameters
of an autoregressive moving average model, in which the original image is mod-
eled as a two dimensional autoregressive process, the PSF is a two dimensional
finite impulse response linear system, and the degraded image itself is taken as
an autoregressive moving average process. Thus, deconvolution is the parameter
identification process, where in the end we obtain an estimation of the PSF. So
as to reduce the complexity of the calculations, usually the estimation process
is fed with an initial guess regarding the PSF (h). Since the process is more
affected by the size of the initially guessed filter than it’s values, the initial PSF
is given as a two dimensional flat unit function.

The main steps of the classification process are as follows:

1. load image A
2. obtain local PSFs on image A in n× n blocks
3. for each obtained PSF calculate its distance from the average PSF of the

whole image
4. classify blocks of the image on the basis of their distance from the average

PSF

Block sizes are usually 32 × 32 or 16 × 16 pixels, distance calculation is done
with mean square error being MSE(A,B) = (1/n2) ·

∑n
i=1(Ai − Bi)2 and 3 to

10 classes are used.
The result of the above process is a mask image where important areas have

a higher class. Important in this case can mean a variety of things. For example
on an image where everything is blurred but the one object in focus, that object
will have a higher class. On an image where everything is in focus, areas with
better contrast or higher brightness will have a higher focus. In general, objects
and areas with important features will be extracted. For an example see Figure
1. The classification is momentarily far from being realtime, mainly because of
the unoptimized MATLAB code. The query performing program is written in
C++ and has running times of around 30 seconds for 400 images on a 2800+
Sempron processor.

We compared our region extraction approach with two similar techniques,
which are shortly described in the following.

Fig. 1. The Monarch image segmented with the blind deconvolution approach. Left:
original, middle: local PSFs, right: segmentation.



304 L. Kovács and T. Szirányi

Autocorrelation Based Classification. Autocorrelation based sharpness mea-
sures ([9,15]) are sometimes used in evaluating overall or local sharpness of an
image. Autocorrelation of a continuous function f is

Acf (τ) =
∫ +∞

−∞
f(t) · f(t− τ)dt (5)

which in the case of discrete space images is the convolution of an image (or
block of image in our case) with itself. and indicates how well neighboring pixels
correlate. Practically, in-focus images contain many small correlated areas, hav-
ing high central peaks (or one peak in case of full image autocorrelation). An
important property of autocorrelation calculation is that the Fourier transform
of autocorrelation is the energy of the signal itself, that is F (Acf ) = |F (f)|2,
which means we can use a fast, Fourier-space computation. In the end, areas
with higher autocorrelation responses will have a higher class.

EdgeContentBasedClassification. Edge content and/or gradient based sharp-
ness measures ([8,15]) are also used for local and global sharpness measures. These
are very fast, but not quite robust methods, and are based on the idea that image
edges (quite important structure features) are very sensitive to being out of focus
(i.e. blur). The measure of edge blurriness can thus be a measure of image or image
area sharpness. The technique we use here is an edge content based classification,
where blocks of an image are classified based on the edge count of the respective
block. The more edge content an area has, the higher its class will be.

2.2 Comparison

On Figure 2 comparisons of the above three approaches are presented (our
blind deconvolution based classification, autocorrelation based and edge content

Fig. 2. Comparisons of classifications with the autocorrelation (2nd column), edge
content (3rd column) and blind deconvolution (4th column) based methods.
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based) by example pairs of input images and their segmentations. The reason
why the blind deconvolution based classification is better is that it works quite
well with many types of images, be that focused with blurred background, fo-
cused on the whole image and so on, while depending on edge content can give
false results when the whole image is in focus, or when too much texture is on the
image. Depending on autocorrelation can also give false responses when there
are large homogeneous areas or lots of fine details.

3 Indexing, Search and Retrieval

As we described earlier, the result for the classification using blind deconvolution
is segmentation data containing class information for blocks of the images. These
segmentation data are stored along with the input images and later the queries
are performed on them. Currently we have gathered a dataset with 400 real life
images, different in size, type, contents, topic, containing images about nature,
people, streets, buildings, cityscapes, etc. First these images are processed for
classification. Then, queries can be performed. A query can be a model image
or a user-drawn query image.

We consider ”good” such answers to a query, which have a similar structure
of interest regions as the model image (or mask) had. Thus, e.g. in the topmost
query in Figure 3 the query image has a somewhat large query region in the upper
right corner, and response images also have similar regions in their middle-upper
right regions. In the second example, the same is true for middle-upper regions.

In the first case, a model image is given, its classification is obtained similarly
as on the database images, and the generated class mask is used as a query on
the database. If the query image differs in size from the actual image in the
database to which is currently compared to, then the database image’s class
mask is transformed in size to match the query mask (the other way around
was also tested, yielding the same results, so we sticked with this version). The
masks are compared using mean square error distance. At the end the results
are sorted in increasing of the obtained errors, and the first 10 images are given
as response. Trials show a high average good response.

In the second case, the user draws a binary mask (basically blobs) on a blank
image. The drawn image is taken as a query mask and will be compared to the
database’s masks in binary mode (if there are higher class areas where the user
has specified, a positive answer is given). The 10 most similar images are given
as responses.

Figure 3 presents queries-responses for both of the above query modes.

Notes, Conclusions. In the above, we have shown the viability of using local
blind deconvolution for local PSF estimation for image classification purposes.
The benefits of using this method over others for area of interest extraction
are that it provides a higher order image feature extraction than basic sharpness
measures, it gives good results in a broad spectrum of image types from partially
blurred to totally in focus. Our near future work concerns an implementation of
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Fig. 3. Three query-response examples (upper two: with model image, bottom: hand-
drawn mask). In each case the upper left is the query image and its segmentation, and
the first 7 responses (in the last case a binary hand-drawn mask is used, and all the
responses are given.

a localized deconvolution implementation with better convergence control. We
presented a feature extraction that is also crucial for video understanding. The
possible uses of this method are numerous, we are also working on some, which
involve higher order feature tracking in video based on the presented technique.
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Abstract. This article presents a nearest neighbor transform for gray-
level surfaces. It is based on the Distance Transform on Curved Space
(DTOCS) calculated using an efficient priority pixel queue algorithm. A
simple extension of the algorithm produces the nearest neighbor trans-
form simultaneously with the distance map. The transformations can be
applied for example to estimate surface roughness.

1 Introduction

Nearest neighbor, or nearest feature transforms, are closely related to distance
transforms, and should preferably be achieved using the same algorithm. In the
case of binary images, distance transforms can be derived from nearest neighbor
transforms, but not vice versa [8]. Distance transformations were among the
first image processing algorithms. Rosenfeld [10] presented a sequential local
transformation algorithm for calculating distances in binary images in 1966, and
similar chamfering techniques have been applied widely in the field, e.g., [1],
[9], [13]. The transformations propagate local distance values across the image
with a mask operation, which may have to be iterated several times to achieve
globally optimal distances for gray-level images.

Alternatives to chamfering include ordered and recursive propagation [9],
and pixel queue algorithms [11], [16]. The recursive propagation proceeds like
a depth first search, while ordered propagation and pixel queue algorithms are
applications of breadth first search. The efficiency of the depth first search is
highly dependent on the propagation order, and breadth first approaches elim-
inate some of the repetition of distance calculations caused by finding shorter
paths later on in the transformation. Gray-level distance transforms with varying
local distances can be calculated correctly with ordered or recursive propagation,
if neighbors of updated pixels are reprocessed. However, this is very inefficient
for gray-level distance transforms of complex surfaces with highly curved paths.
The ordered propagation seems to be more efficient in calculating the Distance
Transform on Curved Space (DTOCS) [13] than the chamfering approach, but
the priority pixel queue algorithm, which corresponds to a best first search,
clearly outperforms both in large complex images [4]. A priority pixel queue
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idea by Verwer [15] is implemented with bucket sorting, which is applicable
only with integer distances. Bucket sorting is also utilized in the transforma-
tion algorithm by Cuisenaire and Macq [3], where Euclidean distance values are
obtained by gradually increasing the propagation neighborhood. The priority
queue algorithm for calculating the geodesic time by Soille [12] also enumerates
all possible distance values. The priority value is increased with one when no pix-
els with the current priority value are found in the queue. As the geodesic time
sums gray-values along digital paths, the distance values can become very large,
which also means a lot of priority values must be tested. Our minimum heap
based transformation is applicable for any positive distances, including floating
point distance values, and processes only distance values, which are needed. The
priority queue approach enables easy implementation of the nearest neighbor
transform, which can be calculated simultaneously with the distance transform.
The unified distance transformation algorithm by Paglieroni [8] also calculates
the nearest neighbor and distance transformation simultaneously using horizon-
tal and vertical scans in a parallel architecture.

This article is organized as follows. The distance transforms are presented in
Section 2 and the pixel queue transformation algorithm in Section 3. Section 4
presents the nearest neighbor transform, and Sections 5 and 6 some application
ideas. Section 7 contains conclusions and discussion.

2 The Distance Transforms

The Distance Transform on Curved Space (DTOCS) calculates distances along
a gray-level surface, when gray-levels are understood as height values. Local dis-
tances, which are summed along digital paths to calculate the distance transform
values, are defined using gray-level differences:

d(pi, pi−1) = |G(pi) − G(pi−1)| + 1 (1)

where G(p) denotes the gray-value of pixel p, and pi−1 and pi are subsequent pix-
els on a path. The locally Euclidean Weighted DTOCS (WDTOCS) is calculated
from the height difference and the horizontal distance using Pythagoras:

d(pi, pi−1) =
{√

|G(pi) − G(pi−1)|2 + 1 , pi−1 ∈ N4(pi)√
|G(pi) − G(pi−1)|2 + 2 , pi−1 ∈ N8(pi) \N4(pi)

(2)

The diagonal neighbors of pixel p are denoted by N8(p) \ N4(p), where N8(p)
consists of all pixel neighbors in a square grid, and N4(p) of square neighbors.
More accurate global distances can be achieved by introducing weights, which
are proven to be optimal for binary distance transforms, to local distances in the
horizontal plane. The Optimal DTOCS is defined in [5] as

d(pi, pi−1) =

⎧⎨⎩
√
|G(pi) − G(pi−1)|2 + a2

opt , pi−1 ∈ N4(pi)√
|G(pi) − G(pi−1)|2 + b2opt , pi−1 ∈ N8(pi) \N4(pi)

(3)
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where aopt = (
√

2
√

2 − 2+1)/2 ≈ 0.95509 and bopt =
√

2+(
√

2
√

2 − 2−1)/2 ≈
1.36930 as derived by Borgefors [1] by minimizing the maximum difference from
the Euclidean distance that can occur between points on the binary image plane.

3 Pixel Queue Distance Transformation Algorithm

The DTOCS has previously been calculated with a mask operation, which has to
be iterated several times before the distance map converges [13]. The larger and
more complex the image surface is, the more iterations are needed, whereas the
pixel queue approach slows down only slightly with increased surface complexity
[4]. The efficient pixel queue algorithm eliminates repetition of local distance
calculations by using a priority queue implemented as a minimum heap:

1. Define binary image F(x) = 0 for each pixel x in feature set, and F(x) =
max for each non-feature x.

2. Put feature pixels to priority queue Q.
3. While Q not empty

p = dequeue(Q), Fq(p) was the smallest distance in Q.
If Fq(p) > F(p) (obsolete value), continue from step 3.
F(p) becomes F∗(p) (value is final).
For neighbors x of p with F(x) > F∗(p)

Compute local distance d(p, x) from original image G.
If F∗(p) + d(p, x) < F(x)

Set F(x) = F(p) + d(p, x)
enqueue(x)

end if
end for

end while

If the feature point sets are large and connected, it can be beneficial to
enqueue only the feature boundary pixels in step 2. of the algorithm, but the
same result is achieved as when enqueuing all feature pixels. The priority queue
approach for calculating distances ensures that distance values are final when
they are dequeued, and propagated further. Repeated enqueuings are possible if
a new shorter path is found, but previous instances of the pixel in the queue can
be eliminated based on obsolete distance values. The local distance calculation
between two pixels is never repeated, as only pixels with final distance values
can be source points, and pixel pairs, where the destination point already has a
smaller distance value than the source point are also eliminated. The complexity
of the pixel queue algorithm is in O(n log nq), where nq is the length of the
queue, which varies throughout the transformation. Typically, nq � n, so the
algorithm is in practise near-linear [4].

4 Nearest Neighbor Transform

The nearest neighbor transform can be viewed as a discretized version of the
Voronoi diagram dividing the image to polygons around the feature or site points,
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so that each pixel belongs to the region of the closest site. In fact, Voronoi dia-
grams can be used to calculate Euclidean distance transforms for binary images
[2], including voxel images in arbitrary dimensions [7]. The nearest neighbor
transform assigns to each pixel the identity of its nearest feature pixel. The
nearest site is here determined according to DTOCS distances, i.e. distances
along the varying height surface, but the same algorithm works for any distance
transforms with non-negative distance values. As local distances based on gray-
values can vary a lot, the nearest neighbor transform can result in any shapes
of regions around each site.

The nearest neighbor transformation produces a tesselation image, which is
initialized to zero at non-feature pixels, and to a unique seed value 1..nf at each
of the nf feature pixels. A simple extension of the priority pixel queue algorithm
calculates the nearest neighbor transform simultaneously with the distance trans-
form. When a pixel with a new distance value is enqueued, the corresponding
pixel in the tesselation image gets the seed value of the pixel from which the
distance value propagated. If the same pixel is enqueued repeatedly, the seed
value is replaced with the new one. The final seed value identifies the feature
pixel from which the propagation path of the final distance value originated.
Points equally distant from two or more seed points will end up in the region
from which the distance propagated first. A similar region growing algorithm
for Voronoi tesselation of 3D volumes resolves collisions of neighboring regions
using Euclidean distances [6], but in the DTOCS with curved paths, the Eu-
clidean distance between the pixels does not correspond to the real distance the
transformation approximates.

An example of a nearest neighbor transform can be seen in Fig. 1. The
familiar ’Lena’ image represents a varying height surface, and a nearest neighbor
transform using an evenly spaced grid of seed points is calculated. The original
image is shown with the seed points in Fig. 1 a), and the resulting nearest
neighbor transform is shown in Fig. 1 b) with seed values marked on each region.
As distances are calculated along the surface with the DTOCS, seed points in
areas with more variation are surrounded by small regions (e.g. seed value 23).
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a) Orig. with grid points b) Nearest Neighbor Transf. c) DTOCS roughness map

Fig. 1. Nearest neighbor transform and roughness map from an even grid of points
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In smooth areas distances can propagate further, covering more pixels. Region
borders are more likely to appear near locations, where there are abrupt changes
in gray-values, causing large local distances. This can be seen for example in
regions 21, 16 and particularly 11, where the brim of Lena’s hat is clearly visible.
This suggests that the nearest neighbor transform could be applied to segmenting
highly varying textures from smoother ones. The roughness map in Fig. 1 c) will
be explained in Section 6.

5 Propagation Visualization

The nearest neighbor transform can be used to visualize propagation of distance
values. The points in the feature set can be numbered as seed points for the
nearest neighbor transform, and when the distance values propagate, the seed
values propagate as well. When the distance map is final, the tesselation map
shows from which feature point each distance value has propagated. On a varying
image surface with several feature points, some feature seed values propagate
only in a small area, or not at all, if distance values spread fast from points in
the vicinity of the point. The order in which feature pixels are enqueued, and
in which neighbors of the dequeued pixel are processed, affect the propagation
order. Equal distances could be achieved along several different paths, but the
seed values indicate via which points the values have in practise propagated.

a) Original image b) DTOCS image c) Nearest neighbor transf.

Fig. 2. Example surface with its distance transform and propagation tesselation

Figure 2 shows a height map, its distance image and the propagation tes-
selation map, when the feature point set consists of all points in the leftmost
column. The color of an area in Fig. 2 c) identifies the feature point from which
the distance value has propagated. It can be seen that the number of different
seed values propagating decreases towards the end of the distance transforma-
tion, i.e. when the highest distance values towards the right edge of the image
are reached, only two different seed values are left of the original 128 feature
point values used in the 128 ∗ 128 surface image. The feature points with the
three furthest spread seed values are marked with ’x’ on the tesselation image.
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6 Roughness Measurement

The distance and nearest neighbor transforms can be combined into a method
estimating the roughness of a gray-level surface. Figure 1 c) shows an exam-
ple of a roughness map, where the values marked on each region of the nearest
neighbor transform indicate the average roughness of that region. The values are
calculated as the average of normalized distance values within each region. The
normalized values are obtained by dividing the curved DTOCS distances calcu-
lated from a grid of feature points with the corresponding straight distances. The
straight distance, or chessboard distance, is simply the larger of the coordinate
differences between the point in question and its nearest neighbor grid point.
The more variation there is around the grid point, the larger are the normalized
distances, and subsequently the roughness value of the region. An estimate of
the global roughness of the image surface can be calculated as the average of all
normalized distances. In future works, the method will be applied to measuring
roughness of paper from microscopic gray-level images.

7 Discussion

The main contribution of this paper is the new nearest neighbor transform algo-
rithm for gray-level surfaces based on the priority pixel queue distance transfor-
mation. The algorithm is very simple, and fast, as its complexity is near-linear.
The nearest neighbor transform is calculated simultaneously with the distance
transformation, and the value of a pixel is known to be final once it is dequeued.
This means that intermediate results can be used in time critical applications,
or if a complete distance transformation is not needed. For instance, if the dis-
tance transforms are used to find a route along a surface, as presented in [5],
the transformation starts from the source point, and can be interrupted once the
destination point is reached, that is, when the destination point is dequeued. Ob-
viously, the path of the shortest distance could be recorderd during the distance
transformation by storing the direction from which the distance propagates to
each pixel, but only a single path would be found, whereas the Route DTOCS
algorithm [5] finds points on any path. The nearest neighbor transform could
also be utilized in some shortest path problems. The actual path is not found,
but the nearest of several destinations can be selected by calculating the near-
est neighbor transform with the alternative destinations as features, and then
selecting the destination with the seed value, which the source point obtained in
the transformation.

An application idea of using the distance and nearest neighbor transforma-
tions for surface roughness evaluation was also presented. Generally, the DTOCS
is well suited for measuring the amount of variation in a gray-level image. The
first application of the DTOCS involved selecting control points for image com-
pression [14]. To store information from locations, where gray-levels change, the
control points were selected from boundaries, at which the curved DTOCS dis-
tances normalized with the corresponding chessboard distances exceed a given
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threshold. The priority queue approach could produce the boundary in a straight-
forward manner by not enqueuing pixels after reaching the threshold. The im-
plementation utilizing sequential DTOCS has to search for the boundary in the
transformed image. In general, equal distance curves can be found easily with
the priority queue approach, and also limiting the transformation to some maxi-
mum distance value is trivial, unlike in mask operations, where the whole image
must be processed to be sure distance values are globally optimal.

The curved DTOCS paths are similar to paths formed in constrained dis-
tance transforms, see for instance [9], and in fact, the DTOCS can be used as a
constrained distance transform. Constraint pixels are marked with values differ-
ing so much from other image areas, that paths to other pixels will generally not
cross them. The same idea can also be implemented by multiplying the gray-level
difference used in the local distance definition by a large factor. A maximum dis-
tance value can be set, so that the transformation finishes without calculating
the distances to the constraint pixels, which otherwise would get huge values.
The DTOCS can be applied in obstacle avoidance problems with several levels
of obstacles, for example areas that can be crossed with a higher cost in addition
to completely constrained areas. All accessible areas in an obstacle avoidance
setting could be found by using the DTOCS or the nearest neighbor transform
with a maximum allowed distance, and at the same time, the shortest path to
the destination could be found in a navigation application.
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Abstract. The paper proposes a novel tensor based diffusion filter, dedicated 
for filtering images composed of line like structures. We propose a linear ver-
sion of nonlinear diffusion partial derivative equation, previously presented in 
[5]. Instead of considering nonlinearity in the image evolution process we are 
only including it at the computation of the diffusion tensor. The unique tensor 
construction is based on an adaptive orientation estimation step and yields a 
significant reduction of the computational complexity. The properties of the fil-
ter are analyzed both theoretically and experimentally.  

1   Introduction 

In recent years a lot of work was devoted in proposing efficient partial derivative 
equations (PDE) based image-filtering techniques. Increased precision, directionality, 
nonlinearity leading to the coexistence of complex complementary processes of 
smoothing and enhancement, strong anisotropic behavior, are only some key factors 
that lead to the expansion of this research area. Major contributions are related to the 
seminal works of Perona and Malik or Catte et al. on anisotropic diffusion filtering, 
Alvarez et al. on mean curvature motion like filters, Osher and Rudin on PDE shock 
filters and Weickert on tensor-driven diffusion processes. For a review of the domain 
and of its applications [9], [6] and the references therein can be consulted.  

Within this framework the present paper proposes a new PDE dedicated for filter-
ing images composed of line like structures. The method is essentially a tensor-driven 
anisotropic diffusion linear filter; the evolution equation we propose is linear and it 
represents a generalization of an original, nonlinear filter, previously published in [5]. 
Nonlinearity is included in a unique orientation estimation step, optimized for reduc-
ing the noise influence in the estimation of the diffusion directions. Some partial, in-
termediate results of this research are presented in [7]. 

The paper is organized as follows. In Section 2 we briefly review some concepts 
related to tensor driven diffusion processes. Section 3 is devoted to our novel diffu-
sion equation. In Section 4, through a statistical approach, we prove the efficiency of 
our method, when compared with other anisotropic diffusion techniques.  



 Flow Coherence Diffusion. Linear and Nonlinear Case 317 

2   Tensor Driven Anisotropic Diffusion 

Anisotropic diffusion techniques are modeling the image filtering process through 
some divergence PDE that relates the time and spatial partial derivatives of a gray 
level intensity image U(x,y,t) [3]:  

,]),,,([ UtyxUcdiv
t

U ∇=
∂

∂  (1) 

The diffusivity function c(.)  controls the anisotropic smoothing process induced 
by the PDE. Although anisotropic behavior can be governed by scalar diffusivities, 
matrix like diffusion functions are allowing a more efficient and true separation of the 
filter behavior along distinct diffusion directions. 

Matrix or tensor- driven diffusion is closely related to the work of Weickert in 
scale space analysis [8], [9]. The basic idea behind this class of filters is to steer the 
diffusion process along the eigenvectors of some diffusion matrix (a 2 x 2 square ma-
trix for gray level images). Of particular interest for our work is the coherence-
enhancing filter (CED) [8]. Starting from the classical structure tensor [2], [4]: 
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obtained by a pointwise Gaussian convolution of the smoothed image derivatives, a 
diffusion tensor is built by using an eigenvector like decomposition: 
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Here 
→→

21,vv  are the eigenvectors of the structure tensor Jρ(∇Uσ) .  The two vectors 

are robust estimates of the mean orientation of the structures (
→

2v ) and of the or-

thogonal directions (
→

1v ), computed at a semi local scale ρ.  Strong anisotropic behav-

ior (e.g. smoothing action mainly only along edges) is achieved by imposing particu-
lar choices for the eigenvalues of (3).  The constant α  is typically chosen equal to 
0.001 whereas f(μ ) is a function of a coherence measure μ, defined to be the 
difference between the eigenvalues of (2) (λ1, λ2) :  
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In each pixel of the image the modified tensor steers an anisotropic diffusion  
process:  

].),,,([ UtyxUDdiv
t

U ∇=
∂

∂
σ

 (5) 

Another classical technique, proposed also by Weickert, is the edge enhancing dif-
fusion filter (EED). The filter uses matrix diffusivity with diffusion axes computed as 
the directions of the gradient vectors and the orthogonal ones, defined for a smoothed 

version of the processed image σUv ∇
→

||1
 and σUv ∇⊥

→

2
[9]. 

 In [5], [6] we proposed a method similar in spirit with the CED, but devoted for 
filtering images containing flow like structures that exhibit also numerous junctions 
and corners. When designing a specific filter one must take into account the topologi-
cal changes introduced on the output image by the filtering process. In proposing our 
flow coherence diffusion filter (FC) we addressed the lack of sensitivity of the CED’s 
coherence measure to abrupt orientation changes. The single parameter of the CED 
that can be used for this purpose is the constant C in equation (4). Nevertheless, since 
the CED’s coherence measure is contrast sensitive, increasing C in order to lower 
smoothing intensity in the neighborhood of corners can also produce less effective fil-
tering of low contrast oriented patterns. Based on these observations we proposed a 
coherence measure close to that used by Rao in orientation estimation [4]: 
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In (6) 
ji

U
,

∇ denotes the norm of the gradient vector in a pixel of coordinates 

(xi,yj), W(x0,y0) is a centered neighborhood of the pixel  (x0,y0) and 
ji yx ,θ  - the orienta-

tion of 
→

2v  - is the smoothed orientation computed in the same pixel.  

For unidirectional noisy patterns, provided that the influence of noise on the esti-
mated orientation can be eliminated, (6) is local contrast independent.  As far as junc-
tions and corners are concerned, in W(x0,y0) the dispersion of the smoothed    orienta-
tions around the orientation of the central pixel is nonzero and, thus, these regions 
correspond to local minima of (6).  Similarly to the CED we used a diffusion matrix 
to weight the smoothing intensity along the diffusion axes: 
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In the direction of structures the intensity of the process is modulated by a nonlin-
ear function that takes (6) as one of its parameters: 
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)(μτh  plays the role of a fuzzy corner and junction detector. Whereas regions exhibit-

ing coherence values below the threshold τ are smoothed in an isotropic manner with 
an intensity given by the small positive constant α , directional patterns are processed 
anisotropically since on these regions hτ(μ)  has values close to 1 [5]. The evolution 
equation for the flow coherence diffusion filter was nonlinear, taking the form of 
equation (5).  

3   Linear Flow Coherence Diffusion Filter 

Nonlinearity is a common concept for all the filters presented in the previous section. 
When dealing with image processing applications nonlinearity is of course desirable 
since it allows adaptive processing of various regions of interest of an image.  

However, from a computational point of view, for PDE based image processing 
nonlinearity is also the source of poor efficiency. The continuous models are trans-
posed into numerical models by means of finite time and space differencing. The so-
lution is then approximated using explicit or implicit schemes through time consum-
ing iterative processes. Tensor driven approaches are computationally intensive; both 
discussed models (CED and FC) need the estimation at each diffusion step of a struc-
ture tensor, computed according to (3) or (7). Although the problem can be somewhat 
solved by using elaborate implicit schemes we are adopting a different approach and 
we are proposing a linear flow coherence diffusion model (LFC): 

,])),(([ 0 UyxUDdiv
t

U ∇=
∂

∂  (9) 

that uses a unique diffusion tensor, computed on the original noisy image: 

.)0,,(),(0 yxUyxU =  (10) 

From a theoretical point of view it is clear that a linear diffusion filter based on the 
above two equations will lack the precision of a nonlinear filter and, consequently, 
nonlinearity must be included at some level of the design of the diffusion filter. In-
stead of using a nonlinear evolution model we are considering nonlinearity in the ori-
entation estimation step. We design the orientation estimation step to be scale adap-
tive using the coherence measure (6) as a decision criterion. The subsequent steps 
used for the orientations estimation step are summarized as follows: 

1) For each pixel we estimate the orientation θ of the eigenvector 
→

2v  that corresponds 

to the gradient autocorrelation matrix M, defined over a square rectangular window 
W(x,y) centered on the pixel under study: 
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2) For each scale N = card(W(x,y)) and for each pixel of coordinates (x0,y0) we com-
pute a  coherence measure based on (6) and defined over the support of M: 
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3) The scale Nopt  for which the coherence ),( 00 yxNμ  exhibits a maximum : 

.),(max),( 0000 yxyx N
NoptN μμ =  (13) 

is the optimal scale pixel of coordinates (x0,y0); the estimated orientation θ  of a struc-
ture that passes through (x0,y0) is the one computed in step 1 at a scale N=Nopt . 

We use the results of the adaptive orientation estimation step to assemble the diffu-

sion tensor according to (7) and considering tv )sin,(cos2 θθ=
→

: 

.
)()1(0

0
)|()),((

2

1
21

0

−+=
→

→
→→

T

T

optN
v

v
h

vvyxUD μαα
α

τ

 
(14) 

For unidirectional patterns affected by uncorrelated, zero mean additive noise, by 
maximizing the size of the support we approach the assumptions from [2]: zero values 
for the spatial means of partial derivatives, computed both for noise and for the noise-
signal products. As pointed out by Jahne in [2], under these conditions the orientation 
estimated using a structure tensor approach is highly robust with respect to noise and 
one is able to compute the orientation of the noise free image. The coherence measure 
will be close to 1 for these regions and, consequently, will induce efficient noise 
elimination through constant intensity unidirectional smoothing.  

In the vicinity of junctions an orientation estimation technique based on the struc-
ture tensor tends to produce false orientations. In these areas the same algorithm 
minimizes estimation errors by favoring choices of small support windows that are 
including only gradient vectors belonging to a single directional texture.  

4   Experimental Results 

Comparing PDE based filters is not an easy task. Most of the models have a large 
number of parameters and the quality of the filtered results depends strongly on their 
choice. Disposing of an original and of a degraded image we opted for a full parame-
ter search, trying to find a best filtered result that maximizes an objective measure. 
The experimental plan involves 15 synthetic images composed of directional patterns 
and degraded by Gaussian noise (Fig.1). As an objective measure we have chosen the 
classical PSNR since recent work in image quality assessment shows that it can be 
closely related to the subjective perception of the human visual system. The noise 
levels and the PSNR corresponding to the best result are shown on Table 1. 
     All the numerical filters were implemented using Weickert’s nonnegative numeri-
cal scheme [6]. Both our methods provided superior results to those of the coherence 
enhancing filter and of the edge enhancing filter. Instead, the results corresponding to 
the linear and nonlinear versions of the flow coherence are very close. In order to  



 Flow Coherence Diffusion. Linear and Nonlinear Case 321 

investigate if the results are due to the particular choice of the test images or if they 
are representative for the performances of each method, we performed a non-
parametric two-way rank analysis of variance (ANOVA) [1] (Table 2.) 

Table 1. Quantitative measures for the study including 15 synthetic images  

Best filtered results - PSNR[dB] Image  Noise levels 
  PSNR[dB] EED CED FC LFC 

1 16.66 24.662 25.67996 26.82621 26.9634
2 14.07 19.48746 20.81219 21.19285 21.16698
3 14.67 23.27541 23.49707 23.97254 24.24443
4 15.60 21.95431 22.65379 23.15798 23.16356
5 15.16 22.70581 22.64653 23.23814 23.25276
6 13.68 22.19151 22.50154 22.78201 22.75901
7 15.00 21.89273 23.74538 24.02237 24.42807
8 14.95 22.82565 22.96993 23.3488 22.937
9 14.64 23.89563 23.9439 24.46515 24.30819

10 14.39 21.39066 22.2376 22.79918 22.94494
11 14.85 23.0874 23.3992 23.9798 23.9383
12 16.10 24.0483 24.3268 24.6058 24.5806
13 13.27 20.027 21.0839 21.5093 21.4642
14 16.65 24.7 24.6496 25.0269 25.18447
15 14.14 23.5511 23.2455 23.5412 23.6359

 

Table 2. Two-way ANOVA results for the experimental plan  

Source of variance Sum of 
squares 

Degrees of 
freedom 

Mean square F p 

Total 17995.00 59 305.00  
Between images 16351.53 14 1145.83  
Between methods 1289.27 3 388.91 20.76 2.09⋅10-8 

Residual  786.67 42 18.73  
 

As the results from Table 2 are showing, more that 95 % of the variability between 
the obtained results is due to the processing methods and to the nature of the images. 
The two-way ANOVA design allows us to isolate and investigate only the method ef-
fect. The extremely low probability (p=2.09⋅10-8) associated to a Fisher-Snédécour 
test (F=20.76) allows us to conclude that the processing method has a significant in-
fluence over the quality of the processed result.  

We are also interested of building a hierarchy for the analyzed methods. The mean 
ranks, computed for each method over the 60 measurements from Table 1, are: 
REED=24.4, RCED=28.3, RFC=34.73, RLFC=36.7. For comparing the three values we use 
the classical Student-Newman-Keuls post-hoc test [1]. Its critical values, computed 
for a 5% risk, are: 3.18 for comparing two consecutive ranks, 3.85 for three ranks and 
4.24 for comparisons spanning four ranks. We conclude that both LFC and   FC  are  
better  that  the  CED  but no distinction can be done statistically between their per-
formances. CED proves to be, globally, better than EED. 
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In terms of visual results we first show in Fig.1 the filtered results computed on a 
synthetic image processed by the analyzed methods (image number 14).  

          
 

     

Fig. 1. Degraded image and filtered results. From top to bottom and left to right: degraded  
image, EED result, CED result, FC result, LFC result. 

The behavior of the analyzed diffusion filters can be observed on the presented re-
sults. The edges are irregular and slightly blurred in the EED processed result; the ef-
fect is due to the less robust estimation of the diffusion axes. The CED best result is 
inferior with close to 0.5dB with respect to FC and LFC. The lower quality of the re-
sult is explainable by the fact that the CED’s coherence measure is local contrast de-
pendent and, consequently, the smoothing process intensity is lowered on large, re-
gion like images. Reduced sensitivity to semi-local contrast variations allows both FC 
and LFC to produce better results. In terms of complexity, the computational time was 
0.6s/iteration for FC and of 0.07s/iteration for FCL (orientation estimation step in-
cluded). The results are given for a 128x128 pixels image and were implemented on a 
Pentium 4, 1.5MHz processor PC. 

Basically the same behavior can be observed when processing real images. We 
show such an image in Fig.2. The CED result is characterized by strong fluctuations 
on the oriented part of the image. The fluctuations cannot be eliminated since, in or-
der to avoid geometric distortions, the filter must be stopped relatively quickly. The 
results between FC and LFC are different. We judge as the best result the one issued 
by processing the input image with the LFC filter since it exhibits a better homogene-
ity of the oriented background. The adaptive orientation step diminishes the sensibil-
ity of the filter with respect to the local signal energy and produces a more efficient 
smoothing. In terms of computational complexity the results are corresponding to 
8s/iteration for FC and to 1.2s/iteration for LFC on  a 429x319 pixels image. 
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Fig. 2. Results on a real image. From top to bottom and left to right: original image, CED result 
FC and LFC results. 
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Abstract. In this paper, we suggest an automatic approach based on
photogrammetry and computer vision techniques to build and update
geospatial database more effectively. Stereo image or video is spotlighted
as a useful media for constructing and representing geospatial database.
We can acquire coordinates of geospatial objects appearing in image
frames captured by camera with mobile mapping system, but quite a lot
of manual input are required. We suggest a change detection method for
geospatial objects in video frames by combining computer vision tech-
nique and photogrammetry. With the suggested scheme, we can make
the construction and update process more efficient and reduce the up-
date cost of geospatial database.

1 Introduction

As the advent of newest application fields of information technology such as
telematics or Location-Based Service(LBS), geospatial database becomes more
and more important. The geospatial database usually has large volume and
requires frequent update. Therefore, efficient construction and update method is
an important issue in geospatial database. Recently, stereo image or video has
been introduced as a construction tool for geospatial database. Because video is
more perceptible than conventional ”map”, it is spotlighted as a useful media
for constructing, representing, and visualizing geospatial database[1].

The video-based Geographic Information System(GIS) researched so far has
been mainly realized by mobile mapping system that is a platform with S/W,
H/W, and sensors such as cameras, Global Positioning System(GPS), and In-
ertial Navigation System(INS) integrated. Many mobile mapping systems are
developed, usually in the form of sensor-equipped vehicle, and used till now [2].
It can acquire coordinate of geospatial objects (such as roads and buildings)
appearing in images captured by camera, with photogrammetry used. With the
stereo image and accurate position/attitude of camera, we can calculate 3-d
coordinate of an object therein by pointing the object in two images.

However, when the mobile mapping system constructs coordinates of objects
with video, it suffers from two problems: sensor inaccuracy and quite a lot of

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 324–331, 2005.
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manual input required. Enhancing accuracy of sensors is beyond the scope of
this paper, and we will discuss about reducing manual input in this paper. To
reduce the manual input time when we get objects’ coordinates from images, we
need automatic or semi-automatic recognition of objects from images.

In the previous researches about object detection from images captured by
mobile mapping system or running vehicle along the roads, usually road lanes,
road signs, or roadside facilities are handled. This is because there are many ob-
jects in such images, and because they have different characteristics and require
different approaches for detection. The examples of researches are found in [3]
where automatic extraction and identification of road sign is used for driver-
assistance system, and in [4] for positioning road facilities. Other papers focus
on the automatic road lane extraction that is used for automatic driving.

To detect objects from the image captured by mobile mapping systems, we
consider (1)complicated recognition method is required because the images have
many exceptive conditions that may bring actual problems in the recognition
process; (2)recognition process cannot be entirely done by vision, but together
with location information, sensor data, and photogrammetric calculation; and
(3)the recognition process can be done in an automatic fashion.

In this paper, we suggest a method for constructing and updating geospatial
objects based on photogrammetry and computer vision techniques, which is used
together with a mobile mapping system to enhance the efficiency of the works.

2 Data Construction by Mobile Mapping System

Mobile mapping systems collect stereo video and position/attitude of cameras
synchronized to each frame, from which we can calculate 3-d coordinate of object
appearing in images by picking a pair of corresponding point in the images. We
have developed a mobile mapping system called 4S-Van[5], which we use as a
platform for our suggestions. It is equipped by sensors such as GPS, INS, and
cameras, as shown in Fig.1. The camera can capture stereo video of 640 × 480
resolution in 15 frame/sec frame rate.

The photogrammetry is a technology that can be applied to stereo image
collected by mobile mapping system[6]. With position/attitude data for each

Fig. 1. 4S-Van: a mobile mapping system
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frame accurately synchronized to time, pixel coordinates of a point(both left and
right) can be converted into world coordinates. Conversely, world coordinates
of a point can be converted to pixel coordinates of any frame. Details of two
conversion functions are presented in [6], and abstractly expressed as

P = Intersection(pl, pr, Cl, Cr, Al, Ar) (1)

pl = Resection(P,Cl, Cr, Al, Ar) (2)

where P is 3-dimensional world coordinates, p is pixel coordinates (each left and
right frame; pl and pr), C is camera position(each left and right camera; Cl and
Cr), and A is attitude of camera(each left and right camera; Al and Ar). With
the two functions, world coordinates of geospatial object can be obtained from
a given pair of pixel coordinates, and vice versa.

3 Automatic Construction and Update of Geospatial
Database

Our basic approach is to apply object detection as a complimentary method for
selecting a frame per object among all frames where input or update process
should be done. The roles of detection method are (1)when we initially build
geospatial database, it helps selecting frames where the manual input should
be done; (2)when we update geospatial database, it detects only the changed
road signs for which necessary actions are required. The detailed descriptions of
processes for two cases will be shown in Sec.3.2 and Sec.3.3, respectively. The
concept of the suggested system is illustrated in Fig.2.

Fig. 2. The overview of the system
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3.1 Detection Method

In this section, we present the detection method for road signs, which is used
for construction and update of road signs. Processing the following steps, we
automatically detect road signs that appear in stereo video frames.

Clipping. We assume that the road signs appear the upper half of image be-
cause the 4S-Van keeps to the right when running and the cameras look
downward. So, in our experimental environment and camera configuration,
the road sign seldom appear in the lower half of images. Therefore we clip
the image from original 640× 480 to 640× 240 by clipping off the lower side
of image.

Resizing. We down-sample the clipped image from 640× 240 to 320× 120 size
for more efficient computations and reduction of noises of original image.

Reducing ROI. Because the entropy of region for road sign is higher than other
regions, we exclude the low-entropy regions from Region Of Interest(ROI).
First, image is converted to luminance image L(x, y) as

L(x, y) = 0.3×R(x, y) + 0.6×G(x, y) + 0.1×B(x, y) (3)

where R(x, y), G(x, y), B(x, y) are three color components of the image.
Next, L(x, y) image is divided into fixed size(16 × 16) blocks. And for each
block, an entropy is derived and quantified by using Picture Information
Measure(PIM), which is defined as

PIM =
255∑
i=0

h(i) −max (h(i)) (4)

where i is gray value(0∼255) of each pixel and h(i) is histogram of the gray
value with regard to given block[7]. The PIM value for each image block is
used as a indicative information about the image block. That is, busy and
uniformly distributed image block has a large PIM value, while simple and
non-uniformly distributed image block has low value. Because image block
that corresponds to region of road sign has large PIM value, we can exclude
blocks of small PIM value from ROI.

Finding Candidate Regions. To find candidate regions for road signs from
the chosen ROIs, we calculate chromatic image. As the gray color has a low
chromatic value while the others a high value, the chromatic image represents
the inside part of the sign that has high color. The normalized errors for each
color component with regard to (3) are defined as

eR(x, y) =
|L(x, y) −R(x, y)|

L(x, y)
, (5)

eG(x, y) =
|L(x, y) −G(x, y)|

L(x, y)
, (6)

eB(x, y) =
|L(x, y) −B(x, y)|

L(x, y)
. (7)
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The values of (5), (6), (7) would be close to zero if the color is close to gray.
Finally, the chromatic image A(x, y) represents the maximum error, and is
defined as

A(x, y) = max(eR(x, y), eG(x, y), eB(x, y)) (8)

which is used to choose ROIs with a given threshold[3].
HSI Thresholding. After extracting regions with high color, we convert RGB

image to HSI image. Then we process filtering for image by

P (x, y) =

⎧⎨⎩
Red if (H(x, y) < Rl or H(x, y) > Ru) and S(x, y) > TS

Blue if Bl < H(x, y) < Bu and S(x, y) > TS

0 otherwise
(9)

where H(x, y) is hue value (0∼360 degree) and S(x, y) is saturation value
(0∼1). The threshold values for (9) are determined by measuring hue and
saturation values of road signs in our dataset. With (9) we can extract regions
with colors that are similar to color of road sign.

Labelling and Detection. With the result image of HSI thresholding, we ex-
ecute labelling process with flood-fill algorithm, to extract regions for road
signs. With the assumption that the Minimum Bounding Rectangles(MBR)
of target road signs have height/width ratio close to 1, we regard only the re-
gions with 0.8∼1.2 ratio as regions for road sign. If there are multiple regions
detected, we select the region whose MBR is the largest.

Classification. To classify the labelled regions, we use a simple neural network,
because of the types of target road sign is limited. The processing result is
passed through neural network for learning the type of road sign[8]. Used
neural network is Back Propagation Network with 1 hidden layer, 24 feature
vectors, and 24 outputs.

3.2 Construction of Road Sign Database

Because an object appears in several frames in most cases, we should consider
avoiding duplicative input for the same object during scanning the frames. We
should select a frame where the coordinate of an object will be actually calcu-
lated. This process needs an assumption that the calculation accuracy is higher
when the object appears larger, which is from the experiments and accuracy test
of 4S-Van data[5]. Another assumption is that the road signs are not so close to
each other. That is, we ignore the case that two road signs appear closely in the
same frame. With these assumptions, we select the target frame for manual in-
put of each road sign and construct its coordinate. The whole process is done by
scanning all frames and processing following steps for each frame. Note that we
scan the frames reversely with regard to time, in order that the object appears
larger in earlier frames, which is more convenient to process.

1. detect all road signs
2. select the road sign whose region(MBR) is the largest
3. pick a pair of feature point of road sign
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4. calculate approximated 3-d coordinate
5. if the coordinate is near to one of the already constructed road

sign (within the predefined threshold), discard it
6. else select it as target for input; process manual input

Once a frame for each road sign is selected(step 6), we should pick a pair
of feature point manually to calculate accurate 3-d coordinate of the road sign.
The calculation is done by photogrammetric operation (1), and our experiments
with 4S-Van data shows that 3-d coordinate error of (1) is under 30cm. Though
picking a feature point of the road sign as input point can be done automatically,
it is likely to bring erroneous result because determination of feature point is
more inaccurate compared to manual input, unless it is an ideal condition. When
the coordinate of each object is stored, necessary attributes such as kind of sign is
also stored. In this stage, information for type of road sign can be automatically
determined because the road sign is already classified from the image(Sec.3.1).

3.3 Update of Road Sign Database

Assuming that all coordinates of road signs have been already constructed, the
database should be updated periodically to reflect the changes of road signs. It is
obvious that most of road signs remain unchanged if the update period is short.
So we detect changed objects and add/modify/delete them while take no action
about unchanged objects, which means minimal manual operation. To do such
job, we scan all frames and process following steps for each frame.

1. uncheck the flags of all road signs in database
2. for each frame of newly captured video,

(a) detect all road signs
(b) select the road sign whose region(MBR) is the largest
(c) pick a pair of feature point of road sign
(d) calculate approximated 3-d coordinate
(e) if the coordinate is near to any road sign in database (within

the predefined threshold), check the flag for the road sign
(f) else select it as target for addition; process manual input

3. delete data of each road sign whose flag is unchecked

If the comparison (step 2e) succeeds, the object is regarded as unchanged, so
there needs no update process about this object. Otherwise, it means the object
detection and/or coordinate calculation yields too large error or the object is
newly built. For both cases, user is required to recalculate and correct (or add)
the coordinate of the object by manual process. The user should pick a pair of
conjugate point from each of two images, which is because the accurate picking
is important for accurate coordinate calculation. After processing all frames,
we can also conclude that unchecked objects in the database no more exist; we
simply remove the objects in the database.

However, there is always chance for misjudgement because of the unclarity
and uncertainty of images, positioning accuracy, and threshold value. So, we
should monitor and adapt the threshold value while processing video frames.
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4 Result

We have implemented and tested the suggested method with the video frames
captured by 4S-Van. The video has been captured for about 10km of road in-
terval, with 640 × 480 resolution and 15 frame/sec frame rate. The detection
method has detected predefined road signs successfully. The observed error of
3-d coordinate without manual input is about ≤ 5m in our experimental envi-
ronment. As expected, the error is larger than the error of manually calculated
coordinate (≤ 30cm). Though the error is too large to calculate the coordinate
where high accuracy is required, we can say that it is small enough to detect
changed road signs and compare them with existing database.

Fig.3(a) shows an intermediate image for a frame where the region with (8)
value ≤ 0.4 is removed. The regions with high color component are extracted,
such as red-colored road sign and yellow-colored road lanes. Fig.3(b) shows re-
sult of HIS thresholding where all colors other than red and blue is removed.
Fig.3(c) shows the result of labelling where the candidate regions of road sign
are extracted; a labelled region is zoomed at lower-left corner.

(a) Chromatic image (b) Result of HIS thresholding

(c) Result of labelling

Fig. 3. Result images

5 Conclusion

In this paper, we suggest an automatic approach based on photogrammetry and
computer vision techniques to build and update geospatial database more effec-
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tively. Though we can construct geospatial database by processing video frames
captured by mobile mapping system, the cost of construction or update is still
high because of large volume of video and required manual input. So we suggest
a scheme of automatic change detection for geospatial database(road signs in
this paper) to reduce manual process and make the construction/update pro-
cess more efficient. To detect the road signs in image frames, image processing,
computer vision technologies, and photogrammetry are combined and applied.
With the suggested scheme, we can make the construction and update process
more efficient and reduce the update cost of geospatial database.

The suggested approach suffers from the error come from synchronization
of 4S-Van sensor and the unclarity and uncertainty of images. Methods for ob-
taining more exact sensor data and clear image will improve the performance of
suggested method. Further, because only limited kinds of geospatial objects are
handled by our suggestion, we should research about similar schemes for other
types of geospatial objects as the future studies.
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Abstract. This paper describes a novel method for extracting affine in-
variant regions from images, based on an intuitive notion of symmetry.
We define a local affine-invariant symmetry measure and derive a tech-
nique for obtaining symmetry regions. Compared to previous approaches
the regions obtained are considered to be salient regions, of the image. We
apply the symmetry-based technique to obtain affine-invariant regions in
images with large-scale difference and demonstrate superior performance
compared to existing methods.

1 Introduction

Content-based recognition of images from different imaging conditions is a dif-
ficult problem. An efficient solution will have several applications in Intelligent
Content Based Retrieval (ICBR) systems. Local image features are shown to be
useful in this venue, as they are robust to partial visibility and clutter. How-
ever, obtaining a limited number of regions to uniquely represent an image is
not trivial. Two important points should be considered while obtaining these
regions. The first one is that these regions should be invariant to different imag-
ing conditions. A certain number of selected regions should be same in different
images for good matching performance. Secondly, the chosen regions should be
representative of the image in that they should come from visually important
parts of the region.

Since the advent of the influential paper of Schimid and Mohr [13], many
local region selection algorithms were published. Mikolajczyk and Schmid ex-
tended the earlier work of Schmid and Mohr into a scale invariant approach
[6] and then to a fully affine invariant [7] region selection. They used Harris
corner detector to select the regions in multi-scaled Gaussian smoothed images.
However, the use of corners to find interest points may lead to the selection
of non-planar regions affecting the affine invariance assumption of the region
selection algorithms. Tuytelaars and Van Gool [16]used image edge and corner
features to select affine-invariant regions. They used Harris corner detector and
Canny edge detector to find corners and edges. Edge detection part reduces the
stability of their algorithm as there is no perfect method for detecting same edges
in different images. Later, they also selected regions with large intensity gradi-
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ents along the boundaries [15]. They used the local intensity extrema points as
the initial points, which sometimes reduces the performance of their algorithm.

Kadir and Brady [1] select scale invariant regions in images, based on en-
tropy and later extended the approach to handle affine invariant regions [2].
Nonetheless, entropy calculation over regions is computationally intensive and it
has been shown that the entropy based selection is not entirely robust to imaging
conditions [9]. A fast and efficient algorithm is proposed by Matas [5][10] where
grey scale image is iteratively thresholded until maximally stable regions are
obtained. Lowe [3] searches in ”scale-space” to extract interest regions and then
uses the Scale Invariant Feature Transformation (SIFT) algorithm to obtain a
robust scale-invariant descriptor of the selected regions. While his scale-space
interest region selection method fails when there is a large affine transformation,
the SIFT descriptor is widely used to describe the interest regions in many other
region selection methods [9].

Symmetric regions are descriptor rich and can be highly discriminative. Near
symmetric regions are common in natural images. Humans have strong sense of
symmetry and symmetric regions make up a large number of ”pop-up” areas of
an image. Reisfeld [11] used generalised symmetry transform to obtain symmet-
ric regions in natural and artificial images. He used a step by step multi-scale
search approach. Resifeld and Yeshurun [12] applied the symmetry transform
to obtain robust face features. Thomas Zielke and Brauckmann [17] applied a
vertical symmetry detection algorithm in a car-following application. They used
an intensity based method to find the vertical symmetry axis and then used
directional filters to obtain edge symmetry. In a recent work, Loy and Zelinsky
[4] used a fast radial algorithm to detect symmetric interest points. Shen [14]
used the generalised complex moments to detect symmetry. But his approach is
limited to isolated objects.

In this paper, we propose an interest point detection scheme where a number
of near symmetric regions are chosen to represent the image. A selected region of
high symmetry is approximated by an ellipse whose major axis or minor axis is
the axis of symmetry. The selected regions are naturally salient parts in an image
and the results show a superior performance compared to existing methods. The
algorithm for finding symmetric regions is described in section 2. In section
3, we explain the experiments carried out to demonstrate the performance of
symmetry regions in content-based image retrieval and compare the results to
other interest point methods and conclusions are presented in section 4.

2 Proposed Approach

We define a measure of symmetry, based on the generalised symmetry transform
of Resifeld [11]. This measure is used to find symmetry points, given a symmetry
axis. Symmetry regions are obtained by fitting ellipses to the chosen symmetry
points, as elliptical regions remain elliptical(with possibly different major, minor
axis and eccentric angle) with affine transformation.
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2.1 Symmetry Measure

Let pi = (xi, yi) and pj = (xj , yj) be two points which lie in equal distance from
a symmetric axis (left hand figure in figure 1). The intensity gradient at point pi

is given by gi = { ∂
∂xI(pi),

∂
∂y I(pi)}. Here, I(pi) is the image pixel value at point

pi. The log-magnitude (ri) and the orientation (θi) are defined at the point pi

as

ri = log(1 + ‖gi‖) (1)

θi = arctan(
∂
∂xI(pi)
∂
∂y I(pi)

) (2)

Let the line passing through the points pi and pj makes an angle αij with
the horizontal line. This is shown in figure 1. The Symmetry measure C(i, j)
between points pi and pj is defined as follows

P (i, j) = (1 − cos(θi + θj − 2αij))cos(θi − θj) (3)
C(i, j) = P (i, j)rirj (4)

The phase weight function P (i, j) measures the symmetry between the two
points. The first term,(1 − cos(θi + θj − 2αij)) will reach its maximum value 2
when maximum symmetry is achieved (θi − αij + θj − αij = π) . This happens
when the gradients at pi and pj are oriented in the same direction towards each
other or against each other. Both of these situations are consistent with the
intuitive notion of symmetry. The second term in the phase weight function is
introduced to prevent high symmetry measure on straight edges. The gradient
magnitude part (rirj) is used to prevent high symmetry in smooth regions and
the logarithm of the magnitude is used to prevent the edge influence biasing the
symmetry influence. Therefore high symmetric measure will be obtained in any
symmetric points with high gradient value (symmetric edge points).

2.2 Symmetry Regions

Given a symmetric axis and a location in an image, we search for symmetric
points (at equal perpendicular distance from the symmetry line) along the sym-
metry line. Candidate pair of points, with a symmetric measure that is above
a threshold value and a local maximum compared to its neighboring pairs of
points, are chosen (figure 1). The local maximum symmetry pair selection en-
sures the affine invariance. We searched up to a defined number (70 is used for
all the experiments in this paper) of pixel distances from the symmetry line.

Once the symmetric points are chosen for a particular symmetric axis at a
given location, we try to fit ellipses of different sizes and eccentricities whose
major or minor axis lies in the symmetry axis such that it approximates the
chosen symmetry points (right hand figure in figure 1).

In this work we have searched symmetry regions at 40 different orientations.
At each orientation corresponding symmetry lines are placed in parallel( at a
perpendicular distance of 1 pixel ) and possible symmetry regions are searched.
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Fig. 1. Symmetry measure and symmetry regions.The left hand figure explains the
terms used in the calculation of the symmetry measure of points pi and pj . The right
hand figure illustrates the process of obtaining a symmetry region given a set of sym-
metry points and the corresponding symmetry axis, AB. Here, CD is one of the search
line, perpendicular to the symmetry axis and pi and pj are the pair of symmetry points
found on that line.

When an elliptic symmetry region undergoes an affine transformation, it will
become another elliptic region with possibly, a different symmetric axis. As we
are searching with 40 possible symmetric axis, our approach can handle large
affine variations.

3 Results

The region selection algorithms needs to be robust against varying image condi-
tions and affine variations. Their performance can be evaluated using two differ-
ent criteria: repeatability of same regions in different images and the consistency
of the region descriptors for matching.

We evaluate the performance of the symmetry-based region selection algo-
rithm firstly on images transformed by scale and rotation and secondly for full
affine deformation using the above two criteria. The performance is compared
with two commonly used region selection algorithms proposed by Mikolajczyk
and Schmid [7] and Matas [5]. The test image sets and the ground truth homogra-
phy between them was obtained from www.robots.ox.ac.uk/ vgg/research/affine.

The symmetry-based elliptical regions are first chosen from images indepen-
dently. The repeatability of same regions between two images is calculated by
first mapping regions from one image to another using the provided homography
and then estimating the error in the overlap. If the error is less than 40% the re-
gion is deemed as repeating in both images. The total repeatability between two
images is calculated as the ratio of the number of repeated regions between the
two images and minimum of the two total number of selected regions from the
two images. More detailed explanation of these measures can be found in [7][9].
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Fig. 2. Repeatability with scale variation. The left hand figure shows the repeatability
of the regions with increasing scale factor. The right hand figure shows the consis-
tency of the SIFT descriptor with increasing scale factor (The results in this figure are
obtained by using the sample image set given in Fig 6).
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Fig. 3. Repeatability with scale variation. The left hand figure shows the repeatability
of the regions with increasing scale factor. The right hand figure shoes the consistency
of the SIFT descriptor with increasing scale factor. (The results in this figure are
obtained by using the sample image set given in Fig 5).

Even though the repeatability criteria is useful in evaluating the performance
of the region selection algorithm, a more practical measure, from the image
matching algorithm’s point of view, is the consistency of image descriptors of
the same regions detected in different images. This is the second criteria we used
to evaluate our algorithm. Scale Invariant Feature Transform (SIFT)[3] is used
to obtain the region descriptors in our experiments, as SIFT is proved to be
more robust than any other type of region descriptor [8].

The results are given in figures 2,3 and 4. In Figure 2, the variation of the
repeatability is shown with the increasing scale factor between the two images.
The images used in this test were taken at the same scene with a still camera, but
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Fig. 4. Repeatability with viewpoint angle variation. The left hand figure shows the
repeatability of the regions with increasing viewpoint angle. The right hand figure
shows the consistency of the SIFT descriptor with increasing view point angle.

Fig. 5. Some of the repeated regions in two images taken in different zoom position
and rotational angle

using different zooming positions. The first image is taken as the reference image
and all other images varies by scale factors ranging from 0.2 to 4, compared to the
first image. Figure 2(left hand) shows the repeatability of the regions and Figure
2(right hand) shows the consistency of the descriptors. It is clear from these
results that the repeatability between the regions is good enough to identify the
match of the images (taken at the same scene) even at a scale factor difference
of 4. The results obtained using MSER and Harris Affine algorithms are also
given for comparison. It is clear from Figure 2 that our algorithm outperforms
the other two methods in large zoom conditions. The sample images used in this
test are given in Figure 5 with some of the matched regions.

Figure 3 again shows the variation of the repeatability with increasing scale
factor, but with different set of images. The sample images used in this experi-
ment are given in Figure 6. Again the results show the superior performance of
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Fig. 6. Some of the repeated regions in two images taken in different zooming position
and rotational angle

our algorithm compared to existing methods. Figure 4 shows the performance of
the algorithm with increasing viewing angle. The images used in this test were
taken at the same scene using different camera viewing angles. Again the first
image is taken as the reference image and all other images have viewing angle dif-
ference ranging from 10 to 60 degrees compared to the first image. Figure 4(left
hand) shows the the repeatability of the regions and Figure 4(right hand) shows
the consistency of the descriptors. The results obtained using MSER and Har-
ris Affine algoritmhs are also given in the figure. Though the MSER algorithm
gives better results in high view angle variation, our algorithm gives equally good
results as the Harris Affine region detector.

4 Conclusion

A novel method for affine invariant region selection, based on a measure of sym-
metry, is proposed. The selected regions are nearly symmetric and obtained from
visually important parts of the image. The proposed method is compared with
some of the existing techniques for interest region selection. The results demon-
strate that the symmetry based interest regions provide significantly improved
performance, especially when there is large scale and rotational variations in the
images. Future work will consider methods for improving the symmetry-based
region selection technique to handle large view-angle changes.
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Abstract. This paper proposes a hybrid foreground object detection
method suitable for the marine surveillance applications. Our approach
combines an existing foreground object detection method with an im-
age color segmentation technique to improve accuracy. The foreground
segmentation method employs a Bayesian decision framework, while the
color segmentation part is graph-based and relies on the local variation
of edges. We also establish the set of requirements any practical marine
surveillance algorithm should fulfill, and show that our method conforms
to these requirements. Experiments show good results in the domain of
marine surveillance sequences.

1 Introduction

Automatic detection of semantic visual objects within a digital image or video
stream still represents one of the great challenges in computer vision. Although
the problem of object detection within a video sequence (foreground object de-
tection) is often treated separately from the image segmentation problem (color-
texture segmentation), the two problems exhibit a strong conceptual similarity.
In this paper, we present a framework that combines a foreground object de-
tection approach and an image color segmentation technique in order to achieve
better detection of semantic objects within a video sequence.

Common solutions to foreground object detection from a digital video are
based on some form of background subtraction or background suppression [4,5].
These approaches work well when the camera is in a fixed position, and when
there is no background movement (e.g., a footage taken by a stationary camera
filming a highway toll plaza on a bright, sunny day). However, if the camera
moves, or if the scene contains a complex moving background, the object detec-
tion and tracking becomes more difficult. In many real-world applications, such
as marine surveillance, a scene can potentially contain both types of background:
moving and stationary.

Object detection plays a crucial role in most surveillance applications. With-
out a good object detection method in place, the subsequent actions such as
object classification and tracking would be infeasible. Our main goal was to ob-
tain a robust marine surveillance object detection method that can successfully
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overcome obstacles inferred by the presence of the complex, moving background.
In our view, such algorithm should have the following properties in order to be
of practical use:

1. Determine potentially threatening objects within a scene containing a com-
plex, moving background. In marine surveillance applications, it is essential
that the algorithm can deal with moving background such as flickering water
surfaces and moving clouds, and still detect potential objects of interest.

2. Produce no false negatives and a minimal number of false positives. A surveil-
lance application in general prefers no false negatives so that no potential
threat is ever overlooked. On the other hand, having too many false positives
would make potential postprocessing activities, such as object classification,
highly impractical.

3. Be fast and highly efficient, operating at a reasonable frame rate. The object
that poses a potential threat must be detected fast so that the appropriate
preventive action can be taken in a timely manner. Furthermore, if the algo-
rithm operates at an extremely small frame rate due to its inefficiency, some
potential objects of interest could be overlooked.

4. Use a minimal number of scene-related assumptions. When designing an
object detection method for marine surveillance, making the algorithm de-
pendent upon too many assumptions regarding a scene setting would likely
make the algorithm fail as soon as some of the assumptions do not hold.

To our knowledge, the existing literature does not offer an approach that
exhibits all of the aforementioned properties. In this paper, we establish a hy-
brid method that essentially has such properties. We have slightly modified and
extended two previously proposed general-purpose approaches, one for color-
texture image segmentation and one for a foreground video object detection,
and merged them into a hybrid method that is suitable for practical marine
surveillance applications.

The paper is organized as follows. Section 2 briefly introduces related work,
including the two methods used in our hybrid approach. The framework of our
proposed algorithm is described in Section 3, with its experimental results given
in Section 4. The last section concludes this paper.

2 Related Work

Some of the early methods for dealing with the instances of non-stationary back-
ground were based on smoothing the color of a background pixel over time using
different filtering techniques such as Kalman filters [7,9], or Gabor filters [6].
However, these methods are not particularly effective for sequences with high-
frequency background changes. Slightly better results were reported for tech-
niques that rely on a Gaussian function whose parameters are recursively up-
dated in order to follow gradual background changes within the video sequence
[1]. More recently, this model was significantly improved by employing a Mixture
of Gaussians (MoG), where the values of the pixels from background objects are
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described by multiple Gaussian distributions [2,12,15]. This model was consid-
ered promising since it showed good foreground object segmentation results for
many outdoor sequences. However, weaker results were reported [8] for video
sequences containing non-periodical background changes. This is the case for
most of the marine sequences, which exhibit frequent background changes due
to waves and water surface illumination, cloud shadows, and similar phenomena.

Voles et al. proposed a method suitable for object detection in maritime
scenes based on anisotropic diffusion [14]. Unlike Gaussian filtering, anisotropic
diffusion preserves well-defined edges and large homogeneous regions over poorly
defined edges and small inhomogeneous regions. This approach performs well for
horizontal and vertical edges, but it fails for other directions. In addition, unless
simplified at the expense of performance, anisotropic diffusion is iterative and
time consuming.

In 2003, Li et al. proposed a method for foreground object detection employ-
ing aBayes decision framework [8]. The method has shownpromising experimental
object segmentation results even for the sequences containing complex variations
and non-periodical movements in the background. In addition to the generic na-
ture of the algorithm where no a priori assumptions about the scene are necessary,
the authors claim that their algorithm can handle a throughput of about 15 fps for
CIF video resolution, which is a reasonable frame rate for our purposes. Moreover,
the algorithm is parallelizable at the pixel level, so that even better frame rates
could be achieved if parallelization can be afforded. However, when we applied the
algorithm to marine sequences, the object boundaries were not particularly accu-
rate, and the segmented frames contained too many noise-related and scattered
pixels. Furthermore, the adaptive threshold mechanism from [10] that was origi-
nally used by Li at al. performed poorly when fast large objects suddenly entered
a scene. As a consequence, the algorithm produced instant flashing frames where
most of the pixels were mistakenly classified as a foreground.

For removing these scattered noise pixels, Li et al. suggested applying mor-
phological open and close operations [8]. Unfortunately, in doing so, small objects
of interest could be lost or the boundaries of larger objects could be degraded and
chopped, which could potentially change the outcome of the threat classification
postprocess.

In general, the idea of combining the motion-related and texture-related in-
formation to improve the segmentation output is not new. In [11], Ross presented
a method in which a duality of color segmentation and optical flow motion in-
formation was exploited. As a result, a better image segmentation is reported
for a variety of natural images (frames) [11]. Ross also presented a compara-
tive study of some of the relevant color-texture segmentation methods suitable
for algorithmic synergy with the motion-related information. Among the can-
didates, the Felzenszwalb-Huttenlocher (F-H) [3] image segmentation algorithm
was outstanding for its speed, its clear theoretical formulation, and its perfor-
mance on natural images. The overview of F-H approach is presented in the
following section.
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3 Description of the Proposed Algorithm

The proposed hybrid background segmentation method has two distinct phases:
(i) primary foreground segmentation based on background modeling; and (ii)
post-processing based on color segmentation. A block diagram of the system is
shown in Fig. 1.

Fig. 1. Block diagram of the proposed foreground segmentation system

Primary foreground segmentation is based on a partial probabilistic model of
the background in conjunction with a more classical low-pass filtered background
image and a Bayesian decision framework for change classification proposed in
[8]. The approach relies on the assumption that for a scene obtained from a static
camera, there exist features, which can be used to discern whether a certain
pixel belongs to a background or a foreground object and on the idea that the
background can be modeled by probabilities of a certain feature value occurring
at a specific pixel. Furthermore the background is viewed as consisting of objects
that may be moving to an extent but are stationary in general, making it possible
to model it by a small number of feature values that occur at a specific pixel with
significant probability. This assumption is ground for computational feasibility
of the proposed approach.

The used Bayesian classifier is general in terms of allowing for the use of
different features to describe the stationary and movement characteristics of
the background [8]. The specific features employed in this project are the color
descriptors (RGB values) for the stationary background model and the color co-
occurrence descriptors (RGB values the pixel takes in two consecutive frames)
to describe the background movement.

The foreground segmentation algorithm (Fig. 1) has four main steps: change
detection, change classification, foreground segmentation and background model
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learning and maintenance. The last step is addressed by two modules concerned
with two distinct parts of the background model, as indicated in Fig. 1.

The initial stage of the algorithm is concerned with detecting the differences
between the current frame and the background reference image kept (to detect
the “stationary” differences) as well as the differences between two consecutive
frames of the video sequence (to detect the movement). Once the differences are
identified, they are used to determine whether the change is something consistent
with the background or something that should be deemed foreground, based
on the learned probabilistic model of the background. This is followed by a
post-processing step used to enhance the effects of foreground segmentation by
combining them with the results of color-based segmentation. The final step
of the algorithm is the one in which background statistics are learned and the
background image updated. In it, the information of how the pixels have been
classified is used to gradually change the probabilities of significant feature values
encountered to be able to accurately classify changes in the future. In addition
to the probability learning process, knowledge of the background is stored by
maintaining a reference background image updated through Infinite Impulse
Response (IIR) filtering.

The Bayesian decision framework forms the change classification and part of
the background model learning and maintenance step. The probabilistic model
is used as the sole model for the movement of the background, however, it is
only an extension of a more traditional IIR filter model. Therefore, for change
detection, the post-processing in the third step and the background image fil-
tering an arbitrary approach could be used. The original approach used auto-
matic thresholding based on noise intensity estimation approach proposed in
[10] for change detection while morphological open and close operations were
used to enhance the foreground segmentation results. Our hybrid approach uses
the original Bayesian classifier and the IIR filter based background image main-
tenance. However we found that automatic thresholding based on a Poisson
distribution model for the spatial distribution of the noise [10] leads to better
results in our application domain (the noise appeared more distinguished from
the signal). In addition, we choose to enhance the results of the foreground seg-
mentation based on color-based image segmentation algorithm, which, unlike
the morphological operations, provides additional information. The authors of
the original approach used feature binding to enhance the performance of the
algorithm. We have not followed this practice, fearing reduced accuracy of seg-
mentation.

The F-H algorithm [3], indicated by the top box in Fig. 1, uses a simple
graph theoretic model that allows for the segmentation in O(n log n) time,
n being the number of image pixels. The F-H algorithm is based on a lo-
cal variation (the intensity differences between neighboring pixels). Image seg-
mentation was treated as a graph partitioning problem where for each given
image, a graph G = (V,E) is defined such that each vertex from V corre-
sponds to an image pixel, and each edge from E corresponds to a connection
between two neighboring pixels. Any given edge in E carries a weight given
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by the intensity difference between pixels it connects. In such setting, image
segmentation is equivalent to obtaining a partition of the graph G into dis-
joint connected components. Given a measure of variation between two dis-
joint components (called external variation) and a measure of the inner vari-
ation of a single component (called internal variation) it is possible to eval-
uate a given segmented image, or equivalently a given graph partition. More
precisely, a graph partition is over-segmented with too many components if
the variation between two disjoint components is small relative to the inter-
nal variation of both components. On the other hand, a partition is under-
segmented (not enough components) if there is a way to split some of its com-
ponents and produce a partition which is still not over-segmented. The F-H
algorithm essentially generates a partition that is optimal in the sense that it
is neither over-segmented nor under-segmented. In this model, internal vari-
ation of a component is the maximum edge weight in any minimum span-
ning tree of that component, and the external variation between two com-
ponents is the lowest edge weight connecting them. The threshold function
τ(C) = k/|C| of a component C controls the degree to which the external vari-
ation can be larger than the internal variations, and still have the components
be considered similar. In our experiments, we have selected the input parameter
k = 100.

The segment postprocessing for minimizing the number of segments by
blindly merging the small segments with the larger neighboring ones, which was
proposed by the authors [3], is far too dangerous to apply in marine surveillance
applications since the small objects could disappear in the process. For that rea-
son, we modified the postprocessing mechanism to work on a more sophisticated
level. Namely, our modified postprocessing was based on the segment features
consisting of the first and the second order color moments [13], calculated per
each RGB channel. In many instances, better results were obtained when the
features also included several bins counting very small vertical, horizontal, and
diagonal edge weights within a segment.

4 Experimental Results

To test the approach a number of sequences extracted from a marine surveillance
video has been used. The data used is real and pertinent to our problem domain.
Frames include water-surface, sky, parts of solid ground and were captured by a
stationary camera. The camera was occasionally moved slightly by wind.

Fig. 2 illustrates the enhanced performance of our approach in the case of a
frame on which both algorithms perform comparably well. Better results were
achieved through the use of color-based segmentation over those achieved by
employing morphological operations. Primary motivation for the use of different
thresholding approach was the inability of the original approach to adequately
select the threshold in a number of specific frames, specifically when an object
first enters the scene and when the camera is slightly moved by the wind. Fig.
3 illustrates the performance of the original thresholding approach for these
two cases.
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(a) (b) (c)

(d) (e)

Fig. 2. The experiment performed on a video containing typical marine surveillance
footage: (a) the original frame, (b) color segmentation results, (c) foreground obtained
using the model described in [8] where morphological operators were used, (d) fore-
ground obtained using new Poisson spatial noise distribution model-based threshold-
ing without enhancement of the background segmentation results, and (e) with color
segmentation-based enhancement

(a)

(b)

Fig. 3. Results obtained for representative frames: (a) a frame where an object first
enters the scene (original frame and foreground obtained with the original and new
approach, from left to right), (b) a frame where there a slight movement of the camera
occurred (same layout as previous)
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5 Conclusions

Object segmentation in the domain of marine surveillance is faced with the task
of distinguishing between object of interest and complex moving background. We
presented a hybrid method combining color-based single frame segmentation and
change detection and classification based foreground segmentation. We evaluated
the performance of the proposed method on a set of real marine surveillance
sequences and presented a number of representative result frames.
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Abstract. In this work we introduce a new technique for a frequently encoun-
tered problem in computer vision: image registration. The registration is com-
puted by matching features, points and lines, in the reference image to their
corresponding features in the test image among many candidate matches. Con-
vex polygons are used to captivate the uncertainty of the transformation from
the reference features to uncertainty regions in the test image in which candidate
matches are to be found. We present a simple and robust method to check the
consistency of the uncertainty transformation for all possible matches and con-
struct a consistency graph. The distinction between the good matches and the rest
can be computed from the information of the consistency graph. Once the good
matches are determined, the registration transformation can be easily computed.

1 Introduction

Image registration is an important step in many computer vision applications [5]: visual
inspection, medical imaging, video processing, remote sensing. Area-based registration
methods, e.g. correlation-like methods, are among the most used techniques for regis-
tration, but also have several disadvantages, the inherent limitation to suit only local
translation transformations, a high computational load when generalized to full rotation
and scaling, and their sensitivity to intensity changes. There are also many feature-based
registration methods: a first group uses invariant descriptors to match the most similar
features; a second group exploits the spatial relationship between features, e.g. by graph
matching or clustering. Our method performs feature matching by considering the con-
sistency of spatial relations between features, i.e. by considering consistent uncertainty
transformations, without using any local image information during the matching step.

The uncertainty transformations can cover affine transformations [4], but in this
work the transformations are limited to translation and anisotropic scaling, as only these
are necessary in the application described below. We use lines, next to points, as fea-
tures, because lines offer the advantage of a more stable and repeatable detection under
different circumstances. We propose a new and simple method to distinguish the best
matching feature pairs and compute the parameters of the registration transformation.
Our method differs from other techniques by its use of uncertainty polytopes and con-
sistency graphs, based on principles and methods of digital geometry. To be precise, the
uncertainty of the transformation parameters is modeled by polytopes. Furthermore,
after computing the uncertainty transformation from one reference to one test image
feature, we map all reference features into uncertainty regions according to the com-
puted transformation. All candidate matches lying in the mapped uncertainty regions
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give rise to consistent uncertainty transformations. All the consistent transformations
are then gathered in a consistency graph. The best matches can be distinguished by com-
puting the maximum clique of the consistency graph and can then be used to compute
the image transformation. Checking the consistency of the uncertainty transformations
by looking for a maximum clique in a consistency graph proves to be a fast and very
robust method for feature matching.

Our registration method will be illustrated by an application in visual inspection.
A camera system takes pictures of a sequence of objects and compares each picture
to a reference image. Due to the mechanics of the camera and the lens system, the
transformation of the real objects is not precisely known, and it is our job to recover
the transformation from the reference image to each of the pictures of the sequence.
We assume that the transformation is composed of translation and anisotropic scaling.
Bounds on the maximal values of translation and scaling parameters can be deducted
from the mechanics of the system. There is no a-priori knowledge about the contents
of the pictures or their statistical properties, but we assume there is a sufficiently large
number of detectable features available in the pictures.

The next section describes the feature detection problem in more detail. Our fea-
ture matching method, based on the consistency of uncertainty transformations, is pre-
sented in Section 3. The registration transformation can then be computed from the best
matches as explained in Section 4. Finally we conclude in Section 5.

2 Feature Detection

Features are characteristic objects in an image, distinguishable from other, possibly sim-
ilar, objects. Mostly single points are used, characterized by strong intensity or bright-
ness changes. But points are often not that reliable as features in image sequences:
a point present in one image, may be occluded in the next image, and illumination
changes between subsequent images may cause a shift in the position of a feature point.
In this work we apply two techniques to cope with these problems. First, we will not
only use points but also line features as lines are expected to be more stable, as they
are less affected by illumination changes and occlusion. Second, slight positional vari-
ations caused by the feature point detector can be accounted for by using uncertainty
transformations: feature points are located in an a-priori determined region of interest,
the uncertainty region.

Gray level corners are used as feature points, where a corner is defined as a junction
point of two or more straight edges, i.e. L-corners and T-, Y- and X-junctions. Among
the available corner detectors, we chose the Noble variant [2] of the Harris detector [1],
because of its remarkable characteristics concerning accuracy and stability. Straight
lines are used as a second feature. In this work, we only use horizontal and vertical line
segments, because they nicely fit in the matching method discussed in the next section.
We use a simplified Radon-method to extract straight lines from edge information.

The feature detection step is first performed on the reference image. A subset of typ-
ically 20 − 30 features, containing a subset of the detected lines and/or feature points,
is used in the remainder of our method. For each feature of the reference image, pos-
sible candidate matches are selected in a region of interest in the test image. Size and
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position of this region can be defined by predicting the location of the feature in the test
image, e.g. depending on the movement of an object, and choosing maximum bounds
on the parameters of the expected transformation. This is an important advantage of the
proposed method: by considering only a subset of the features in the test image as valid
candidate matches, a lot of computation time can be saved.

Figure 1 illustrates the feature detection step for the example application in visual
inspection: a camera system compares a sequence of images during processing, e.g.
Figure 1(b), to a reference image taken in advance (Figure 1(a)). The detected features
in the reference image are shown in Figure 1(c). In this application, features are ex-
pected to appear in more or less the same position, so we expect a unity transformation,
i.e. the position of the center of the rectangular region of interest for candidate fea-
ture points in the test image is the same as the position of the features in the reference
image. Lines must meet two criteria to be accepted as candidate matches. First, candi-
date matching lines must be located in an interval, centered on the position of lines in
the reference image, and second, lines in the reference and the test image must mutu-
ally overlap for a certain percentage (e.g. 50%); this implicitly assumes that lines must
also be situated in an interval along the lines direction. The maximal deviation possible

(a) (b)

(c) (d)

Fig. 1. Reference image (a) and test image from the sequence during visual inspection processing
(b). The features in the reference image (c) are detected before processing. The features in the
sequence test image (d) are then detected in a region of interest (dashed lines), the location of
which is determined by the position of a selected subset of reference features.
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within the region of interest is defined by the expected maximal value of translation and
scaling parameters, determined by the mechanics of the system. Figure 1(d) shows the
candidate matching line and point features for the selected subset of features (indicated
by a star(*) in (c)). The regions of interest are indicated by a dashed line (for the line
intervals only a few examples are shown for clarity).

3 Feature Matching

To register two different images, each of the detected features in one image must be
matched with its corresponding feature in the other image, i.e. corresponding features
must indicate the same object in each image. Our matching method is based on the
theory of uncertainty transformations. We first discuss uncertainty transformations in
more detail before continuing with the actual matching method.

3.1 Definition of an Uncertainty Transformation

Suppose an object can be mapped onto another object according to a certain transfor-
mation. In standard geometry this requires one-to-one relationships between a set of
points on the first object (the source) and a set of points on the second object (the im-
age). But what can be done if there is no exact knowledge about the correct location of
an image point? The uncertainty about the position of the image point can be modeled
by defining a set of possible image points, the uncertainty region in which the point
must lie, without knowing its exact position.

In general, if p is a point in R
2, andR a subset of R2, then we let T (p,R) denote the

set of all transformations T that map p into R. To model the uncertainty of the image
(x′, y′) of a point p = (x, y), we define the uncertainty region R as a convex polygon
bounded by n halfplanes. In this work the following assumptions are made:

– The uncertainty regions R are rectangles in the x′y′-plane, which are represented
as the Cartesian product of two intervals: R = Ir × Is, with Ir and Is:

r1 ≤ x′ ≤ r2

s1 ≤ y′ ≤ s2. (1)

– Transformations are composed of translations and anisotropic scaling in 2D:

x′ = ax+ e

y′ = dy + f (2)

with a, d, e and f the four parameters defining the transformation.

The uncertainty transformation T (p,R) is then described by two separate transfor-
mations mapping a coordinate into an interval, T x = T (x, Ir) and T y = T (y, Is),
which are found by substituting Eqs. (2) in (1), yielding for T x and T y respectively:

r1 ≤ ax+ e ≤ r2

s1 ≤ dy + f ≤ s2. (3)
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Fig. 2. The uncertainty transformation T (p, R) for a point p to an uncertainty region R. A hori-
zontal and vertical line and their uncertainty intervals.

This framework can easily incorporate horizontal and vertical lines, y = h and x = v,
with h and v constants. The images of lines after transformation (2) are again horizontal
or vertical lines, h′ and v′, expected to be situated in an uncertainty interval Ih, t1 ≤
h′ ≤ t2 or Iv, u1 ≤ v′ ≤ u2, leading to the uncertainty transformations T v and T h:

t1 ≤ dh + f ≤ t2

u1 ≤ av + e ≤ u2. (4)

This notion of an uncertainty transformation can be extended to sets of points and lines.
Consider the points pi = (xi, yi) in R2, the uncertainty regions Ri ⊆ R2 defined as the
Cartesian product of two intervalsRi = Ir

i ×Is
i , the vertical and horizontal lines vi and

hi and the uncertainty intervals for the horizontal and vertical lines Ih
i and Iv

i . Let Sx

be a finite set of elements sx
i , in which sx

i is either a point coordinate xi or a vertical
line vi. Let Ir = ∪iI

r
i , Iv = ∪iI

v
i , Ix = Ir ∪Iv , and let fx be a mapping that assigns

each element sx
i of Sx to its corresponding interval Ix

i in the set Ix. Clearly, we have
T x = T (Sx, Ix, fx) = ∩iT (sx

i , I
x
i ). T x can be represented as a convex polygon in a

two dimensional space, one dimension for each transformation parameter. Similar defi-
nitions can be given for the uncertainty transformation T y = T (Sy, Iy, fy). Including
rotations in the uncertainty transformations requires six parameters instead of four in
(2), so the uncertainty transformation can then be represented as two convex polytopes
in two 3D parameter spaces.

Suppose we consider another coordinate sx
k not in Sx. One can show that once a

transformation polygon T x is known, we can easily determine the uncertainty interval
Ix
k into which sx

k will be projected [3]. To be precise, let sx
k be a coordinate, and let

T x be a given polygon, then we let I(sx
k , T x) denote the uncertainty interval resulting

from mapping sx
k by all transformations in T x; that is, I(sx

k, T x) = {q ∈ R : q =
T (sx

k) for some T ∈ Tx}. Moreover, one can show that I(sx
k, T x) is the convex hull of

the points T x
v (sx

k) where the transformation T x
v denote the vertices of the polygon T x.

3.2 Matching Problem

The feature matching problem consists of the selection of feature pairs corresponding
to the same feature in both images among many candidate features. To match features
we use the concept of uncertainty transformations.
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Fig. 3. The global transformation polygon (a) is the intersection of all transformation polygons.
The local transformation polygon in the ae-space (b) for the lowest candidate matching feature
point qlow in the test image (see image (c)). All reference feature points are transformed accord-
ing to the vertices of the transformation polygon in (b), resulting in small projected uncertainty
regions (c) inside the regions of interest, indicated by dashed rectangles (the projected intervals
for lines are left out for clarity). All candidate features lying in the uncertainty region will pro-
duce consistent transformations: the vertex in graph G corresponding to qlow will be connected
with the vertices corresponding to the ’in-lying’ feature points. The graph G is obtained once the
same steps are performed for all candidate feature points. By computing the maximum clique in
G, the best matching pairs are obtained. The reference features of the matches are shown in (e),
and the best matches in the test image are indicated in (f) by stars and solid lines (the position
of reference line features is indicated by dashed lines).
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First, the global transformationT = T (S,R, f), composed of T x = T (Sx, Ix, fx)
and T y = T (Sy, Iy, fy), can be computed for the selected subset of features. The
transformation uncertainty polygon T x maps each feature sx

i ∈ Sx in the reference
image into the uncertainty interval Ix

i ∈ Ix in the test image, in which Ix
i is assigned

as the interval of interest for the reference feature sx
i by the mapping fx. T x is the

intersection of all T x
i = T (sx

i , I
x
i ) as can be seen in Figure 3(a). Similar definitions

can be given for T y .
Next a consistency graph G is constructed. G is an r-partite graph in which the r

parts correspond to r uncertainty regions assigned to the reference features. The vertices
qij in each part of the graph are the candidate matches for the reference feature si,
found in the uncertainty region Ri(Ix

i , I
y
i ). Each pair of candidate features in different

parts is joined by an edge in G provided their respective transformations are consistent.
Although consistency can be checked by computing whether the intersection of each
pair of uncertainty polygons is non-empty [4], here we present a computationally more
efficient method. The algorithm to construct the consistency graph G for all uncertainty
transformations proceeds as follows:

For all candidate features qij,

compute T x
ij = T (sx

i , Ix
ij) and T y

ij = T (sy
i , Iy

ij)

For all reference features sk with k �= i,

compute Ix
kij = I(sx

k, T x
ij) and Iy

kij = I(sy
k, T y

ij) with Ix
kij ⊆ Ix

k ,Iy
kij ⊆ Iy

k

For all candidate features qkl with k �= i,

If qx
kl ∈ Ix

kij and qy
kl ∈ Iy

kij,

Tkl = T (qkl, Ik) is consistent with Tij

⇒ join the vertices (qij , qkl) by an edge in G

end

end

end

end

For all candidate features, the local transformation Tij is computed for a reference
feature si mapped into a small region Rij(Ix

ij , I
y
ij) around qij . An example is given in

Figure 3(c), where the local transformation is computed for the lowest candidate match
in the image, leading to the transformation polygon presented in Figure 3(b). All other
reference features sk,k �=i are then mapped according to this local transformation Tij ,
resulting in smaller uncertainty regions Rkij ⊆ Rk, as can been seen in Figure 3(c).
Transformations consistent with the used transformation can then be computed for each
candidate qkl located in one of the regions Rkij . So each ’in-lying’ candidate qkl is
connected to qij in the graph G. The final graph G is shown in Figure 3(d).

Each vertex in the consistency graph represents the uncertainty transformation from
a reference to a test feature. For each transformation the graph shows which other trans-
formations are consistent with it. The consistency checks for all the uncertainty trans-
formations result in a very robust feature matching method. The best matching feature
pairs can then be selected by looking for the maximum clique in the consistency graph,
because the vertices within the maximum clique will be consistent with most other pos-
sible transformations. Figures 3(e) and (f) show the best matching reference and test
features.
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4 Computation of the Registration Transformation

The final step in registering the test image with the reference image requires the com-
putation of the registration transformation: one transformation mapping each reference
feature as well as possible upon the best matching test image feature. Each uncer-
tainty transformation can be represented as two polygons, one in the ae-, and one in
the df -space. We recall that the global transformation polygon for a set of features is
represented as the intersection of all polygons: T (Sx, Ix, fx) = ∩iT (sx

i , I
x
i ). Then

the minimal size of the intervals Ix
i in Ix can be computed for which transformations

T (sx
i , I

x
i ) exist such that the intersection T (Sx, Ix, fx) is non-empty and contains at

least one transformation [4]. Moreover, the intersection will contain exactly one point,
i.e. the polygons will have one point in common, being a vertex of one of the polygons.
To find the registration transformation it suffices to first compute the minimal size for
the intervals. Then we look for the vertex lying in all polygons, which are computed
for the intervals of the minimal size. If these computations are done in both parameter
spaces (ae and df ), the transformations parameters a, e, d and f , as defined in (2), for
the registration transformation are obtained.

5 Conclusion

We presented a simple, fast and robust method for image registration. The registration
transformation is based on a set of corresponding features in a reference and test image.
To obtain more stable features, points as well as lines are used. Features in the reference
image will typically have zero, one or many possible corresponding features in the test
image, so for each reference feature the best corresponding candidate must be distin-
guished. Using only the features in uncertainty regions as possible candidates offers a
gain in computation time, where the use of the consistency graph for uncertainty trans-
formations proves to be a very robust method for feature matching. Our method seems
to be fairly independent of the statistics of the image, i.e. the percentage of false posi-
tives and negatives and the positional error made by the feature detector. This statistical
dependence, however, has not yet been examined in full detail and remains a subject
for future research. All our experiments on real data, however, show that the correct
transformation can be computed efficiently and robustly, even when the percentage of
false negatives (e.g. 30%) or positives is very large (e.g. 300%).
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Abstract. Binary and grayscale mathematical morphology have many
applications in different area. On the other hand, colour morphology is
not widespread. The reason is the lack of a unique ordering of colour
that makes the extension of grayscale morphology to colour images not
straightforward. We will introduce a new majority sorting scheme that
can be applied on binary, grayscale and colour images. It is based on
the area of each colour or grayscale present in the image, and has the
advantage of being independent of the values of the colours or grayvalues.
We will take a closer look at the morphological pattern spectrum and
will show the possible differences of the morphological pattern spectrum
on colour images with the grayscale image pattern spectrum.

1 Introduction

1.1 Binary Morphology

Mathematical morphology [1] [2] is based on set theory. The shapes of objects
in a binary image are represented by object membership sets. Object pixels
have value 1, the background pixels have value 0. Morphological operations can
simplify image data, preserving the objects’ essential shape characteristics, and
can eliminate irrelevant objects.

Binary mathematical morphology is based on two basic operations, defined
in terms of a structuring element (short: strel), a small window that scans the
image and alters the pixels in function of its window content: a dilation of set
A with strel B (A⊕B) enlarges the object (more 1-pixels will be present in the
image), an erosion (A � B) lets it shrink (the number of 1-pixels in the image
diminishes) (see figure 1).

Mathematically, the basic operators are defined as:

dilation : A⊕B =
⋃

b∈B Tb(A)
erosion : A�B =

⋂
b∈B T−b(A) (1)

with Tb(A) the translation of set A over vector b. This formulation can be rewrit-
ten as equation 2, used for grayscale morphology.

Other operations, like the opening (an erosion followed by a dilation) and the
closing (a dilation followed by an erosion), are derived from the basic operators.
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Fig. 1. The basic morphological operators. Solid line: original object; Dashed line:
result object; Circle: structuring element. Left: dilation; Right: erosion.

1.2 Grayscale Morphology

The morphological theory can be extended to grayscale images with the threshold
approach or with the umbra approach [2]. The latter permits the use of grayscale
structuring elements but the resulting grayvalues after a morphological operation
can be outside the original range. We will use the threshold approach.

For binary images, the union and intersection operation are used for the
dilation and erosion, respectively. In the case of grayscale images (sets become
functions), the union and intersection of sets are replaced by the maximum and
minimum of grayvalues. For the dilation and erosion we now get:

dilation : (f ⊕ g)(a) = max{f(b) | a− b ∈ g, b ∈ f}
erosion : (f � g)(a) = min{f(b) | b − a ∈ g, b ∈ f} (2)

where f is the function representing the grayscale image and g is the structuring
element.

1.3 Colour Morphology

A colour image is represented in some colour space. The colours in such a colour
space can be interpreted as vectors.

A frequently used space is the RGB space, used in computer systems. There
are three colour bands (red, green and blue) that together represent the colours
of the pixels in the image in the RGB-space.

There is no absolute ordering of the colour vectors, so the max- and min-
operation can’t be extended easily to vectors and therefore an extension to colour
morphology is not straightforward. In order to be able to extent the principles
of grayscale morphology to colour images, the colours in a colour image have to
be ordered in some way [3] [4]. A way of doing this is to transform the vectors
into scalars with a lexicographical ordering scheme, further explained in section
2.1. We also present a new technique (section 2.3) that not only can be applied
to colour images, but also to binary and grayscale images.

1.4 The Pattern Spectrum

If we take a strel and use it to perform an opening on a binary image, some
objects will disappear. If we take a bigger strel, then more elements in the image
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will vanish. In this way we can determine how the number of eliminated objects
increases when the image is morphologically opened using strels nB = B ⊕
B ⊕ . . .⊕ B (n times) of increasing size n. The resulting plot of the number of
eliminated pixels versus the strel size n is called the pattern spectrum (PS) [5].

The pattern spectrum is a histogram of the distribution of the sizes of various
objects displayed in an image. Formally, it is defined as follows:

PS(A;B)(n) = �[(A ◦ nB) − (A ◦ (n + 1)B)], n ≥ 0 (3)

where ◦ is the opening symbol and � is the count of pixels. Note that 0B = {0}.
Notice that a different strel results in different pattern spectra, and thus in

other values for the parameters.
The same equation can be used for grayscale images. The difference with

the binary case is the count of pixels that is replaced by a count of decrease in
grayvalues.

2 Methodology

2.1 Colour Morphology

First, we transform the RGB image into an HSL image. In the HSL space the
colour channels are the luminance (the intensity), the saturation (the purity),
and the hue (the primary colour).

We will use the double-cone HSL representation. The luminance L has values
between 0 and 1, the hue H lies between 0◦ and 360◦. The saturation S has values
between 0 and 1 for L = 1

2 and the maximum S decreases linearly as L goes to
0 or 1. At L = 0 and L = 1 the saturation can only be 0.

The ordering of the colours is done with a lexicographical ordering rule on
the HSL-vector [4]. Putting L as a criterion on the first line in the lexicographical
ordering (L-ordering) gives a different ordering than using S or H on that line.
In this paper we will use the lexicographical rules from [4] (the H-ordering uses
a saturation-weighted hue).

The comparison of the hue values is the comparison between the acute angles
of the hue values with a reference hue H0. The choice of H0 can be arbitrary or
calculated in function of the image content (section 2.1).

Vector Ordering. According to [4], a morphological operation can be per-
formed on an a colour image (in HSL space) by comparing the current pixel
with the other pixels in the window of the structuring element. This operation
can be quite intensive because a lot of comparisons have to be made. To avoid
the recalculations of the order of one pixel compared to another, it is better
to transform the HSL image into a scalar image, based on the lexicographical
ordering.

A 24 bits RGB image will then be transformed into a 24 bits “grayscale”
image. The most important rule in the lexicographical ordering occupies the
highest 8 bits, the least important rule the lowest 8 bits. Each pixel gets some
value between 0 and 224 − 1. As a result, equation 3 can be used.
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Origin of Hue. A possible value for H0 could be the hue that appears the most
in the image. If the background is the most present in the image, then all hue
values are referenced to the hue of the background.

We can also take the hue value of the average chromaticity vector as H0

(also in [6]). To calculate this average, we transform each hue value, represented
as a point on a circle with an angle θ and with radius r = 1, in its Cartesian
coordinates. Then we average the vectors and transform this average vector back
to polar coordinates. This gives us H0: it is the average angle θ̄.

An alternative way to calculate the average hue value is to take the histogram
of the hue in the image and then give the radius r the value of the number of
pixels with a certain hue. This approach is less accurate because the histogram
consists of a certain number of bins, thus introducing a limited number of possible
hue values, while the hue originally could have any value in its domain. This is
not really a problem because for the vector ordering (section 2.1) the hue was
also made discrete.

A less elegant method for the definition of the average hue is to perform a
number of shifts of the hue histogram with a number of bins, because of the
periodic character of the hue domain. The introduced shift is needed because,
for example, a hue of 10◦ and 350◦ would give an average of 180◦, while we
would expect 0◦. If it is shifted with 10◦, then the hue angles will be 20◦ and
0◦, so the average hue is 10◦ and minus the shift this would give us the correct
result. We calculate the variance of every shifted spectrum, and finally calculate
the average hue (using the same formulation as for the mean object size for the
pattern spectrum (section 2.2)) from the histogram with the smallest variance.
In the example, the variance of this shifted spectrum is smaller than the variance
of the original.

2.2 The Pattern Spectrum

In the binary case, the pattern spectrum is a graph of how many pixels were
removed because of the opening of the image with the increasing strel (n+ 1)B.

By extension, the pattern spectrum of a grayscale image tells how many of
grayscale intensity disappeared. This is the sum of the decrease in grayvalue for
each pixel. The number of graylevels gives an indication how dark the resultant
image becomes after an opening.

In the case of colour images, the interpretation is more abstract. The principle
is the same as the one for grayscale images, but we could now speak of a decrease
in colour intensity. The pattern spectrum gives an indication of the change in
colour after an opening. This change depends on the ordering used. For example,
in the case of an ordering with saturation in the first ordering rule, the pattern
spectrum values indicate how the saturation decreases.

From the pattern spectrum we can extract different parameters [5], [7] that
provide statistical information about the content of the image:

– Mean object size: the mean strel size or mean area;
– Average roughness: the entropy, a quantification of the shape-size com-

plexity;
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– Normalised average roughness: the entropy divided by log2(Nmax + 1);
– B-shapiness: a quantitative measure of the resemblance of the objects to

the strel shape;
– Maximal n (Nmax): the last bin (the highest n-value, when all image objects

are sieved out) of the pattern spectrum histogram.

2.3 Majority Ordering by Total Area

In this section we propose a new type of sorting of the pixels, the majority
sorting scheme (MSS). Instead of using the grayvalues or ordered colours, we
count the number of pixels present in the image for each colour. All morphological
operations are then performed on the newly obtained image, as if it is a grayscale
image. See figure 2 for a visual example.

Fig. 2. Left: colour image; Right: MSS ordering map

The motivation comes from the fact that in general the background is most
present in the image, that important colours (objects) are highly present and
that details or noise are rare colours. These assumptions are at the same time
the restrictions of this technique.

Colours with the same number of pixels will be treated equally, but it is
possible to steer the area values by adding a constant to it, for example if a
specific background colour has to be chosen. For the pattern spectrum we will
treat such colours equally.

With the MSS, the pattern spectrum gives an indication of the change in
colour (or grayvalue), where the least dominant colours disappear first.

A technical difficulty is the fact that quantisation of the number of colours or
grayvalues is necessary. If too many different colours are present, then too many
equal small areas will be detected, which cancels the effect of the area ordering.
Therefore, in most cases a quantisation will have to be done, but not too drastic
so that the useful colour differences in the image would be retained.

A suggested quantisation is to reduce the number of colours (for example
using peer group filtering [8]) until this number is the same as (or a certain
percentage of) the number of different levels in the majority sorted image.

Notice that the background has the biggest area, so the erosion and dilation
operations should be switched, or the values of the areas must be switched.
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This technique has several advantages:

– The technique can be used for binary, grayscale and colour images; also an
extension to multispectral images is possible with the same majority ordering
scheme;

– Colour images with only two colours will be treated as if it were binary
images;

– The technique doesn’t expect a specific colour space to work with;
– We don’t have to define a value H0 [6];
– The technique is quasi invariant for colour and grayscale transformations

(e.g. γ-compensation); when all colours change in a new map of unique
colours (the transformation is bijective), then there is no difference in the
majority ordering;

– Using only one RGB colour band of a grayscale image will give the same
results as the grayscale image itself.

3 Experimental

3.1 Objects of One Colour

If all objects in the image have the same colour, then the image can be seen
as a binary image. Morphological operations will produce the results we expect
with the majority sorting scheme and the lexicographical orderings. The pattern
spectra are the same shape, so the spectral parameters will be identical.

(a) Original image
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Fig. 3. Different pattern spectra for an artificial colour image
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There are some exceptions, though. In the case of the S- and H-ordering, the
comparison of the luminances (see [4]) is referenced to L = 1

2 , which means that
there is no difference between colours with L lying the same distance from L = 1

2 .
Another effect can occur with the H-ordering: the ranking of the background
colour can be higher than that of the object colour. The object on a background
is then regarded as a hole in an object. The choice of H0 is important in this
case. These effects are not present in the case of the pattern spectrum of the
majority ordered image.

3.2 Objects of More Colours

Figure 3 shows two objects with a small edge. This could be the effect of blurring
of the image.

The majority sorted spectrum shows a peak at a lower bin, which indicates
pixels that don’t specifically belong to a big object. In this case these are the
pixels from the blurring ring.

(a) Original (b) MSS ordered map
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Fig. 4. Different pattern spectra for a colour image
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The L-ordered spectrum shows pixels that disappear after an opening with a
13×13 square strel. These are the values between the edges. This kind of feature
can make the interpretation of the pattern spectrum difficult.

3.3 Real Images

Figure 4(a) shows a medical image. The pattern spectrum of the majority sorted
image shows the most realistic graph (figure 4(c)). There are no objects 160
times the strel (a square with side 3) present, so the L-ordering doesn’t produce
a useful spectrum. The same problem is present with the other lexicographical
orderings.

4 Conclusion

Grayscale morphology can be used on colour images, if the colours are ordered
in some way. The use of the morphological pattern spectrum for colour images
can be a big advantage in situations where important colour information is lost
when the colour image is transformed to grayscale.

This ordering can be done with a lexicographical rule. But we also proposed a
majority sorting scheme that orders the colours according to the count of pixels
of that colour present in the image. This method has some advantages over the
lexicographical ordering scheme.
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Abstract. Currently, the growing of digital video delivery leads to compress at 
high ratio, the video sequences. Different coding algorithms like MPEG-4 in-
troduce different artifacts (blocking, blurring, ringing) degrading the perceptual 
video quality. Such impairments are generally exploited by the No-Reference 
quality assessment. In this paper, we propose to use the principal distortions in-
troduced by MPEG-4 coding to design a new reference free metric. Using the 
frequency and space features of each image, a distortion measure for blocking, 
blurring and ringing effects is computed respectively. On the one hand, the 
blocking measure and on the other hand, a joint measure of blurring and ringing 
effects are perceptually validated, which assures the relevance of distortion 
measures. To produce the final quality score, a new pooling model is also pro-
posed. High correlation between the objective scores of the proposed metric and 
the subjective assessment ratings has been achieved. 

1   Introduction 

The field of digital video services has been quickly developed in the last few years, 
based on the advances and progresses in digital signal compression technology. The 
emergence of new technologies such as digital video broadcasting or streaming is the 
perfect example of this current trend. However, these applications necessitate the use 
of video sequences with high compression ratios and hence, the use of efficient cod-
ing algorithms. The different coding techniques like MPEG-1/2/4 introduce impair-
ments producing an embarrassment for a human observer. To maximize the benefit 
brought by an efficient compression technique, new techniques for assessing video 
quality must be developed in parallel.  
    Subjective experiments represent the ideal approach for assessing video quality. 
Organizations like the International Telecommunication (ITU) or the Video Quality 
Expert Group (VQEG) propose some recommendations [1, 2], specifying the condi-
tions of observations, the choice of observers, the test material, etc. However, these 
subjective tests are very long, expensive and difficult to practice. The quality metrics 
represent an alternative. Most of proposed video quality assessment approaches re-
quire the original video sequence as a reference. The most widely used objective 
image quality metrics is Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error 
(MSE). However, the predicted scores do not obtain a good correlation with subjec-
tive ratings: MSE and PSNR do not support fully the visual perception of a human 
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observer. Moreover, for many applications such as digital video broadcasting or 
streaming, the technical constraints (reception/transmission capacity) prohibit the 
exploitation of a reference video. The end user judges the video quality without com-
paring to the original video sequence. Therefore, the ability for assessing video qual-
ity using only the sequence, without a reference, turns out to be an important chal-
lenge for these applications. 
    A No-Reference (NR) approach generally seeks to assign quality scores, which are 
consistent with human perception using a prior knowledge about the types of video 
coding impairments. Considering the MPEG coded videos, the problem is simplified 
because there are a limited number of artifacts, which introduce an embarrassment for 
a human observer. The three most annoying distortions are the blocking, blurring and 
ringing effects. In [3], the authors propose a new distortion measure for each previ-
ously cited impairment. The pooling model is based on a linear combination of the 
three distortion measures and an additional feature, the bit rate. In [4], Caviedes et al. 
use three artifact measures, i.e. blocking, ringing and corner outlining (missing pixels 
belong  to natural edges with strong contrast) measures. The three artifact measures 
are first normalized individually, then combined using Euclidean norm to form the 
reference free objective quality measure.  
    In this paper, the proposed method is to design separate models specifically tuned 
to certain type of distortion (blocking, blurring, ringing), and combine their results 
according to the impact of each type of impairment on the video quality. In the cases 
of ringing and blurring effects, two distinct measures are proposed: for the blurring 
effect, the distortion measure depends on all spatial information contained in each 
image of video sequence, while, for the ringing effect, only the local information is 
exploited. A joint measure of both of these distortions has been perceptually vali-
dated, using a database of JPEG-2000 compressed images. The same perceptual vali-
dation has been followed in the case of blocking effects. The difference comes from 
the nature of the image coder: only JPEG compressed images have been used. This 
step of the proposed metric demonstrates the efficiency of prediction of each distor-
tion measure. A new pooling model is used in order to predict quality score. The per-
formance of the proposed metric is evaluated using selected MPEG compressed video 
sequences in terms of different statistical coefficients with regard to subjective test 
data. The paper is organized as follows: section 2 describes the structure of the pro-
posed quality assessment metric. Its performance evaluations are presented in Section 
3 and conclusions are given in Section 4. 

2   No-Reference Quality Metric 

As mentioned in introduction section, at low bit rate, MPEG coding introduces visual 
impairments such as the blocking, blurring and ringing effects. Taking into account 
these observations, the proposed video quality metric (figure 1) is designed as fol-
lows: after a conversion in a perceptual color space of each image of the video se-
quence, the three distinct distortion measures of blocking (BlMi), blurring (BMi) and 
ringing (RMi) effects are computed.  Then, for each impairment, a temporal pooling is 
performed and at the last stage, a quality score is computed. 
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Fig. 1. Block diagram of the proposed NR quality metric 

2.1   Color Space Conversion 

In input of the proposed metric, the file format of the MPEG coded video is AVI 
RGB. Digital images coded in RGB color space cannot be used directly within a vi-
sion model, because the perception of color differences is highly no uniform. So, the 
first stage of the metric performs the conversion from RGB color space of each image 
of the MPEG compressed video to an opponent color space. This color space is in-
spired by the processing taking place in the human visual system, which presumably 
uses separate channels for black-white, red-green and blue-yellow information.  
    An image presented to the retina is sampled by cone photoreceptors maximally 
sensitive to Long (L cones), Middle (M cones), or Short (S cones) wavelengths. The 
RGB values are converted in LMS values by using transformations given in [5, 6]. 
Several opponent color spaces exist. In our lab, the Krauskopf color space [7] has 
been validated [8]. In this space, the decomposition into three components, called A, 
Cr1 and Cr2, corresponds to the three separate channels of the human visual system. 
Only the achromatic component (Ai) of each image of the video sequence is consid-
ered in this paper. 

2.2   No-Reference Blocking Artifact Measure 

Blocking effect is visually defined by a block structure in the video sequence, caused 
by the separated quantization of DCT coefficients of each block. In the literature, 
many algorithms measuring the blocking effect are proposed. A recent comparative 
study [9] has shown that the different approaches have the same performance. Hence, 
we have chosen a method, the Wang’s metric [10] and we have tested its performance 
during a perceptual validation (see section 2.5). The key idea of Wang et al. is to 
model the blocky image as a non-blocky image interfered with a pure blocky signal. 
The blocking measure (BlMi) is computed detecting and evaluating the power of the 
blocky signal. 
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2.3   No-Reference Blurring Artifact Measure 

Blur in an image is due to the attenuation of the high spatial frequency coefficients, 
which occurs during the compression stage. Visually, the blurring effects correspond 
to a total distortion on the whole image, characterized by an increase of the spread of 
edges and spatial details. The structure of the NR blurring artifact measure is given by 
the figure 2. 
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Fig. 2. NR blurring artifact measure 

    We measure the blurring artifact using spatial information and pixel activity. Let 
IA(i,j) the pixel (i,j) intensity of Ai component of size MxN pixels. The blurring meas-
ure (BMi) is defined by (1):  
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Where AEdge is the binary image resulting from A edge detection. A’Edge is the AEdge  
opposite binary image. N(AEdge ) (respectively N(A’Edge )) is the number of non-null 
pixel values of AEdge (respectively A’Edge).  
    The BMi formula is composed of two terms. The first one is defined by the ratio of 
activities between the areas of middle/low and high frequencies. The second one cor-
responds to the ratio of the occurrence probabilities of each area. The blurring meas-
ure follows the human visual perception: blurrier the image appears, bigger the blur-
ring measure is. 

2.4   No-Reference Ringing Artifact Measure 

Ringing effect is caused by the quantization or truncation of the high frequency coef-
ficients resulting from a coding based on DCT or Wavelet transform. This is also 
known as the Gibbs phenomenon. In the spatial domain, the ringing effect locally 
produces haloes and/or rings near sharp object edges in the picture. Before measuring 
this distortion, the areas around edges, called “ringing regions”, must be identified. 
These are computed by using a binary “ringing mask” on the current image, resulting 
from the detection and the dilatation of strong edges (figure 3). The “ringing region” 
image (ARinging Mask) is computed by using a binary “ringing mask” on the current im-
age. Then, a measure of ringing artifact is computed, defined by the ratio of regions 
activities of middle low and middle high frequencies, localized in these “ringing re-
gions”. Let IARM(i,j) the pixel (i,j) intensity of ARinging Mask image of size MxN pixels.  
The ringing measure (RMi) is defined by (2): 



368 R. Barland and A. Saadane 

)(
)(
)(
)'(

.
),().,(

),().,('

2

11

2

11

MaskRinging

EdgeRM

MaskRinging

EdgeRM

RMAEdgeRM

N

j

M

i

RMAEdgeRM

N

j

M

i
i

N
AN

N
AN

jiIjiA

jiIjiA
RM

==

===  
(2) 

Where ARM Edge is the binary image resulting from  ARinging Mask  image edge detection. 
A’RM Edge is the combination (XOR operator) of ARM Edge opposite binary image and 
Ringing Mask binary image. N(ARM Edge) (respectively N(A’RM Edge) or N(Ringing 
Mask)) is the number of non-null pixel values of ARM Edge  (respectively  A’RM Edge  or 
Ringing Mask) binary image. 
    The RMi formula looks like the BMi definition. However, only the information 
localized in ringing regions is exploited. Moreover, instead of considering the regions 
of low and high frequencies, only the areas of middle low and middle high frequen-
cies are used for defining and computing the RMi formula terms. 
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Fig. 3. NR ringing artifact measure 

2.5   Perceptual Validation 

Before optimizing the pooling model, the distortion measures must be tested. This 
perceptual validation consists in assessing the performance of each algorithm on an 
image database. Blocking effect is the most annoying distortion of JPEG coding, 
while, ringing and blurring are the two most notorious impairments of JPEG-2000 
coding. Hence, in the experiments, we use two different image databases [11], which 
consist of 29 original high-resolution 24-bits/pixel RGB color images (typically 
768x512) and their compressed versions with different compression ratios (227 im-
ages in each database). The bit rates used for compression are in the range of 0.03 to 
3.2 bits per pixel, chosen such that the resulting distribution of quality scores is 
roughly uniform over the entire range. Each database is divided randomly into two 
sets: 14 training images and 15 testing images, together with their compressed  
versions.  
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    In order to quantify the performance of a quality metric, VQEG propose some 
statistical tools [2]: the Pearson linear correlation for the accuracy, the Spearman rank 
order correlation for the monotonicity, the outliers percentage for the consistency and 
the Kappa coefficient for the agreement. The Table 1 illustrates the results of these 
performance tests for the blocking measure on the one hand and a joint measure of 
ringing and blurring effects [12], on the other hand. 

Table 1. Perceptual validation of NR blocking, blurring and ringing measures 

 Pearson  
 correlation 

Spearman  
Correlation 

Outlier ratio Kappa coeffi-
cient 

Blocking measure 0.96369 0.92908 3.43% 0.72206 
Joint measure of ringing 

and blurring effects 
0.89637 0.8716 6.20% 0.47957 

    Accuracy is the ability of a metric to predict subjective scores with a minimum 
average error. The two obtained linear correlations between subjective and objective 
scores justify this prediction accuracy. Monotonicity is another important attribute. 
Spearman rand order correlations test for agreement between the rank orders of MOS 
and model predictions. This correlation method only assumes a monotonic relation-
ship between the two quantities. With Spearman rank-order correlation coefficients 
equal to 0.8716 and 0.92908, the degree of monotonicity of each distortion measure 
can be considered as good. The outlier analysis evaluates an objective model’s ability 
to provide consistently accurate predictions for all types of compressed images and 
not fail excessively for a subset of images, i.e., prediction consistency. The two image 
quality metrics obtain a small outlier percentage (6.2% and 3.43%), which means that 
the two prediction models are consistent. The Kappa coefficient is a measure of 
agreement. Usually, a Kappa coefficient superior to 0.4 is a good value; so the two 
metrics obtain a good agreement between subjective and predicted scores. All per-
formance tests proposed by VQEG are satisfied, which demonstrates the efficiency of 
each distortion measure. 

2.6   Pooling 

The proposed pooling model is composed of two parts: the first one consists of a 
temporal pooling for each artifact, while, the second one defines an inter distortion 
pooling.  For each artifact, the temporal pooling of blocking (BlM), blurring (BM) 
and ringing (RM), respectively are computed by Minkowski summation. Then, the 
final predicted quality score for an entire video sequence can be obtained by a linear 
combination of temporal distortion measures: 

RMBMaBMBlMaRMaBMaBlMaPQ ....... 54321 ++++=  (3) 

Where ai, i=1..5 are the weights to be optimized. The three first terms of the final 
pooling model correspond to the distortion caused by each artifact, while the others 
define the combined actions of blocking/blurring and blurring/ringing effects. 
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3   Experiments and Results 

The proposed video quality metric is tested using a video database. This set consists 
of 35 video sequences derived from 7 original scenes. These clips contain a wide 
range of entertainment content from TV news to sport event. Each original video 
sequence is compressed using XVID coder (a free MPEG-4 coder) at five different bit 
rates ranging from 1.6Mbps to 5 Mbps. Subjective ratings of the compressed videos 
are obtained using psychophysical experiment and following the recommendation 
ITU-T BT.500.10 [13]. In our experiment, the database is divided randomly into two 
sets: 4 training videos and 3 testing videos, together with their compressed versions.  
    The weights ai of the pooling model are estimated from training videos using mini-
mal mean squared error estimate between quality predictions and subjective scores. 
Then, the proposed trained quality metric is validated on the test database. The quality 
predictions resulting from this assessment are compared with human scores. The 
performance of the proposed metric is assessed using the statistical tools recom-
mended by VQEG (table2). 

Table 2. Performance measures of the reference free video quality metric 

 Pearson correlation Spearman Correlation Outlier ratio Kappa coefficient 
Proposed metric 0.8931 0.89996 8.429% 0.42117 

 

    In spite of the simplicity of the proposed algorithm, the proposed metric demon-
strates its efficiency in the video quality prediction. The different performance metrics 
of VQEG recommendations are satisfied. Moreover, this quality metric is only based 
on research of distortions resulting from the achromatic component of each image of a 
video sequence. So, if the impairments of two chromatic components were consid-
ered, the performances of quality prediction would be improved. 

4   Conclusions 

In this paper, we have presented a new reference free quality metric for assessing the 
quality of MPEG compressed video sequences. The proposed method is based on the 
exploitation of separate models specifically tuned to certain type of distortion (block-
ing, blurring, ringing). Each algorithm of impairment measure is previously validated 
with subjective ratings, which assures the efficiency of the proposed approach. Our 
future works aim to improve the prediction performance exploiting some properties of 
the human visual system. 
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Abstract. The Full Search Block-Matching Motion Estimation (FSBME) algo-
rithm is often employed in video coding for its regular dataflow and straight-
forward architectures. By iterating over all candidates in a defined Search Area 
of the reference frame, a motion vector is determined for each current frame 
macroblock by minimizing the Sum of Absolute Differences (SAD) metric. 
However, the complexity of the method is prohibitively high, amounting to 60-
80% of the encoder’s computational burden, and making it unsuitable for many 
real-time video applications. One means of alleviating the problem is to calcu-
late SAD values using fewer bits (Reduced-Bit SAD), however the reduced  
dynamic range may compromise picture quality. The current work presents an 
algorithm, which corrects the RBSAD to full resolution under appropriate con-
ditions. Our results demonstrate that the optimal conditions for correction in-
clude a knowledge of the motion vectors of neighboring blocks in space and/or 
time. 

1 Introduction 

In order to meet power consumption requirements for battery powered (or hand-held) 
real-time visual communication applications, Motion Estimation (ME) algorithms  
[1, 2] are generally implemented at a coding stage. The notion behind the approach is 
that temporal redundancy in a video sequence may be used to compress the video 
data. The prevailing methods over recent years use block-matching algorithms [3], 
which compute motion vectors on a block-by-block basis, and generally out-perform 
other alternatives, such as the pel-recursive algorithm [4].  

The block-matching algorithm divides the current frame Fc into non-overlapping 
square blocks, of N × N pixels, which are matched to blocks of the same size within a 
pre-defined Search Area of a reference frame Fr. For most ME algorithms, the Search 
Area is taken to be a square of size (N+2p)2 centered around the block of interest. All 
pixels within the same current frame macroblock are assigned the same motion vector 
mv. N is most commonly taken equal to 16, while the value of p is generally fixed by 
whatever processing power is available. A wide variety of Motion Estimation  
algorithms have been proposed, however the gold standard is the Full Search Block-
Matching Motion Estimation (FSBME) algorithm. The Full-Search algorithm com-
pares a current frame macroblock with all similar sized blocks in the Search  
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Area of the reference frame. As a result it will always find the best fit, and the most  
appropriate motion vector, for a given value of p. Additionally the dataflow is regular 
and the silicon architectures are relatively straightforward. However, in order to en-
code, say, a CIF-sized video at 30 fps, billions of arithmetic operations per second are 
required together with a memory bandwidth of the order of GByte/s [5, 6]. Conse-
quently, if the Search Area (effectively the value of p) is large, it is not feasible to use 
the FSBME algorithm and meet the low power constraints of today's processor tech-
nologies [7].  

Fast Motion Estimation algorithms can give reduced computational complexity, as 
well as advantages for VLSI design in area and power consumption [e.g. 5, 6 and ref-
erences therein]. However, the reduced computational complexity has often to be off-
set by losses in visual quality and/or by irregularities in dataflow, making it difficult 
to achieve efficient VLSI implementations [5, 6]. The result is that most hardware 
designs attempt to develop faster or lower power strategies while still employing the 
Full Search method. Such, also, is the aim of this paper.  

The figure of merit which is used to determine the ‘best match’ between blocks in 
the current and reference frames is usually a distance metric, and is typically the Sum 
of Absolute Difference (SAD) value, between the pixel values of the current frame 
macroblock (MB) and those of the candidate MBs in the Search Area of the reference 
frame. Taking the reference frame as the immediately preceding frame, we have 
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Occasionally this sum is termed the Mean Absolute Difference (or MAD) value.  
For a 16 × 16 macroblock, SAD values are calculated over the ranges  –p ≤ m ≤ p – 

1 and  –p ≤ n ≤  p–1. The motion vector for the block is determined as that pair of 
(m,n) values which produce the lowest SAD. In eqn. (1), s(i,j,k) is the (8-bit lumi-
nance) pixel value at (i,j) in frame k. With the FSBME method, all 16 × 16 macrob-
locks in the Search Area are candidates [3], making the search for the best fit natu-
rally computationally burdensome. Even with p as small as to 8 this still corresponds 
to 256 candidates, while, in general, larger p values are required to increase the 
PSNR.  

One means of reducing the computation is to use one of the Fast Motion Estimation 
algorithms such as the Three Step Search [8, 9], or one of the many other ‘fast’ meth-
ods which may be found, for example, in reference [5, 6 and 10] and references 
therein. These methods base the definition of the candidate set on current results, 
which increases the design complexity, disturbs the dataflow and makes dedicated 
hardware implementations very difficult [5, 6].  

The standard means of assessing the accuracy of these algorithms is through the use 
of the Peak-Signal to Noise Ratio (PSNR), usually defined as the fractional RMS er-
ror between the predicted and true frames, expressed on a dB scale. To be considered 
realistic, fast algorithms really need to be within a fraction of a dB of the FSBME 
value. In order to preserve dataflow regularity, and at the same time to reduce compu-
tational complexity, we have recently employed a full-search algorithm using Bit 
Truncation, which uses eqn. (1) based on a reduced number of bits [11, 12], and pro-
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vides an RBSAD (Reduced-Bit Sum of Absolute Difference) metric [13, 14]. The 
downside of the method is the reduced dynamic range it imposes. With an 8-bit SAD, 
the pixel luminance values occupy the entire integer range [0, 255] while, with a 4-bit 
RBSAD, the resolution in these values is naturally reduced, since the step-size is in-
creased from one to 16. Potentially this leads to an increased error matrix and conse-
quently a lower bit-rate, or a higher quantization error, and a reduction of visual qual-
ity. In practice, however, PSNR values for the two methods are very close for many 
real sequences, as may be seen in Table 1. which shows the maximum difference be-
tween PSNR values at full resolution (FSBME) and with RBSAD, for a variety of 
sequences. Indeed, the only case studied in which the maximum and/or average PSNR 
values are significantly worse using a 4-bit RBSAD is the ‘Claire’ sequence for which 
the average PSNR values (with full and reduced resolution) are both already large.  

It is possible to correct the RBASD value to full resolution by adding the term [12] 
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Here the subscript 3:0  refers to the lower four bits of the pixel values, and εi,j(m,n) is 
the sign of s(i,j,k) 7:4 −s(i+m,j+n,k-1) 7:4 , unless it is zero, when εi,j(m,n) defaults to the 
sign of s(i,j,k) 3:0 −s(i+m,j+n,k-1) 3:0 . To implement this correction consequently re-
quires the signs of the absolute difference values at the base of the adder tree, and 
their zero flag output, to be saved. This corresponds to a slight increase in  the, gener-
ally large, on-chip memory requirement for the processing elements which perform 
the Motion Estimation. There is also a slight overhead in the overall size of the adder 
tree. An adder tree required to calculate an 8-bit SAD, is generally slightly smaller 
than the sum of that required for a 4-bit (RB)SAD and that required to calculate the 
correction term, eqn. (2). However it is clear that the power savings can be signifi-
cant. The main question for investigation, and the focus of this work, is:- Under what 
conditions should this correction (to full resolution) be applied to obtain the best  
results? 

2 Corrected-RBSAD Algorithm 

We restrict our study to those cases in which the RBSAD is poor. We wish to gener-
ate an algorithm which maintains the advantages of reduced bits (power and speed) 
but avoids some of the disadvantages. This means that our study will necessarily re-
volve around the ‘Claire’ sequence. The difference between the average PSNR for the 
full resolution and with reduced bits (using 4-bits) is around 1.5dB for the sequence, 
with a maximum value of 2.86dB. This difference is plotted for the first one-hundred 
frames of the sequence in Fig.1., and is clearly too large for the RBSAD method to be 
considered as an alternative to the FSBME in this case. The problem relates to the fact 
that ‘Claire’ is a head and shoulders sequence, with little motion for many MBs. Con-
sequently there can be several good matches and the RBSAD method naturally can 
have difficulty in selecting the best [12]. Indeed the RBSAD calculation will not be 
able to distinguish between any candidate blocks for which, for example, the RBSAD 
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calculation is equal to zero, and this still leaves a wide range of possible SAD values. 
However any lack of motion may be tested for, through the temporal and/or spatial 
correlation of motion vectors between and within frames. In order to determine when 
the RBSAD metric should be used and when correction to full resolution should be 
applied, we consider the following seven algorithms which implement these notions: 
 
I. if  (RBSAD = 0) then apply correction 
II. if  (mvT = 0) then apply correction in range of mv’s given by = [-1,1] × [-

1,1] 
III. if  (mvS = 0) then apply correction in range =   [-1,1] × [-1,1] 
IV. if  (mvS = 0 or mvT = 0) then apply correction in range = [-1,1] × [-1,1] 
V. if (RBSAD = 0) then apply correction 

and if (mvS = 0) then apply correction in range = [-1,1] × [-1,1] 
VI. if (RBSAD = 0) then apply correction 

and if (mvT = 0) then apply correction in range = [-1,1] × [-1,1] 
VII. if (RBSAD = 0) then apply correction  

and if (mvT = 0 or mvS = 0) then  apply correction in range = [-1,1] × [-1,1]. 

Table 1. Maximum PSNR values corresponding to full and reduced resolution 

Sequence   Mom Foreman Fog Snow Fall SnowLane Claire 

FSBME 35.86 28.46 32.28 26.82 30.16 46.15 

RBSAD 35.58 28.37 31.76 26.70 30.09 43.29 

Table 2. Average corrected-PSNR values, % corrected calculations and % power saving 

  
Algorithm 

Average 
PSNR 

Average %  
corrections 

% Power 
saving 

    FSMBE 41.49 100 00.0 

RBSAD 40.27   0 50.0 

    I 40.61  23 38.5 

   II 41.11    3 48.5 

   III 41.27    3 48.5 

       IV 41.47    3 48.5 

    V 41.37  25 37.5 

   VI 41.27  25 37.5 

   VII  41.47  25 37.5 
 

Under Algorithm I, the correction to the full resolution metric is applied whenever 
the RBSAD is equal to zero [11]. Our results show that RBSAD metric performs less 
well for head-and-shoulder sequences like ‘Claire’ which are mostly reasonably static. 
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However, such sequences have high spatial and temporal correlation which can be 
used to generate potential conditions for the application of the correction.  

Algorithm II makes use of the temporal correlation between frames. Here mvT is 
the motion vector of the corresponding macroblock in the previous frame (i.e. in the 
same position). The notion is that if the block did not move in the previous frame then 
it is unlikely to move far in the current frame so that the correction should be applied 
in the nine cases m = -1, 0, +1 and n = -1, 0, +1 (although this could be extended to –
2, -1, 0, +1, +2, etc.). Algorithm III assumes that a degree of spatial correlation exists, 
where mvS is the motion vector of the macroblock to the left (or above, if no such MB 
exists) of the current macroblock in the same frame. Algorithm IV utilizes both spa-
tial and temporal correlation, and is a simple hybrid of Algorithms II and III. Like-
wise Algorithm V is a hybrid of Algorithms I and III, Algorithm VI is hybrid of Algo-
rithms I and II and Algorithm VII is hybrid of Algorithms I and IV. 

The average corrected-PSNR values obtained as a result of application of these al-
gorithms on the ‘Claire’ sequence (using the first 100 frames), along with the average 
percentage of cases for which corrections are applied, are given in Table II. It is clear 
that, for this sequence, those algorithms that involve a correction criterion based on 
the spatial and/or temporal redundancy in the video clip offer the best power savings 
and require the lowest number of corrections. The power saving calculation is a rela-
tively simplified version. Assuming a fraction (1 – α) of full resolution calculations 
are performed at full power P, and the remainder, a fraction α, are calculated at power 
P/2 (i.e. 4-bits), then the fractional power dissipated relative to FSBME is (1 + α)/2. 
In truth a full SAD calculation, in the current model, requires slightly more  
than P, say P(1 + β), where β is small but may be readily calculated for any given  
architecture. 

 
Fig. 1. PSNR differences for Claire sequence 

Fig. 1. shows PSNR differences for the ‘Claire’ sequence. The solid curve repre-
sents the difference between FSBME and RBSAD, whereas the squares indicate the 
difference between FSBME and the corrected-RBSAD using Algorithm IV. Note that 
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the maximum PSNR difference has fallen from 2.86 dB to around 0.35 dB. While 
Algorithm IV generates the best results for the ‘Claire’ sequence there will be occa-
sions when reducing the SAD calculation to the ranges m = -1, 0, +1 and  n =  -1, 0, 
+1 will be too restrictive, as a result it is recommended that Algorithm VII, which also 
calculates SAD values for those cases in which RBSAD = 0, should be applied in 
general. Alternatively the range {-1, 0,+1} could be widened to, for example, {–2,–1, 
0, 1, +2}. 

3 General Form of Hardware 

Motion Estimation hardware is generally designed around the concept of the process-
ing element (PE), a number of which work in parallel to perform the calculations. The 
RBSAD calculation for a MB is done on a row by row basis, taking one row of 16 (4-
bit) pixel values from each of the current and reference frames. The general form of 
the processing element (PE) envisaged here is depicted in Fig. 2., along with the 
memory used in the hardware architecture for the motion estimation process. The PE 
is divided into two blocks; the left-hand block (as depicted here) contains an absolute 
difference unit (AD), with 16 carry trees to calculate signs and 16 × four-bit sub-
tracters, and an adder tree containing fast adders. As the tree requires only small ad-
ders (16 × 4-bit adders, 8 × 5-bit adders, 4 × 6-bit adders, 2 × 7-bit adders and 1 × 8-
bit adder) simple ripple adders can be used, which are as fast as other choices, for 
such small bit numbers [15], but consume less power and occupy a smaller silicon 
area.  

 
Fig. 2. A general form of processing element 

The right-hand block in Fig. 2., which will calculate the correction term for the 
SAD value due to the lower four bits, i.e. λ(m,n), is very similar to left-hand block, 
the major difference being the addition of a condition unit, so that the adders and sub-
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tracters will only be enabled when the appropriate algorithmic condition is met. Under 
Algorithm I, and any hybrids containing it, the left-hand block and right-hand (or λ-) 
block will run in a pipelined fashion, the λ-block running if the RBSAD has been 
calculated to zero, while under other algorithms the blocks may run in parallel as the 
truth of the condition is known before the start of the calculation. An SAD metric will 
then take sixteen clock cycles to be executed, using a single row of sixteen pixels at a 
time. Using the FSBME method, or the corrected-RBSAD method, the best match of 
a current frame macroblock to a similar macroblock in a search area of 16 × 16 mac-
roblocks, will take 16 × 16 × 16 clock cycles. 

The hardware implementation for Algorithm I, i.e. the condition RBSAD(7:4) = 0, 
was considered in ref [11]. The other algorithmic conditions (mvT =0 and mvS = 0) 
are equally simple, but require registers at the output of each processing element to 
store the zero condition of the spatial and/or temporal motion vectors. These algo-
rithms also require a number of memory locations within the processing element to 
store the sign and zero information required by the λ-block. The functional block 
which calculates λ(m,n) is almost identical to that which calculates RBSAD, one dif-
ference being in the selection of the inputs in the absolute difference unit, which only 
depends upon the sign of s(i,j,k)<7:4> – s(i,j,k-1)<7:4> in the RBSAD calculation but is 
slightly more complicated for the correction term λ(m,n). The power implications for 
such a scheme are obvious as whenever the algorithmic condition is not met, the λ-
block is disabled. 

A second, but not inconsiderable, power saving, which results from this architec-
ture, is through memory reads from on-chip memory. If the data is stored in two sepa-
rate memory blocks as it is written to the on-chip memory, with the upper four bits in 
one block and the lower four bits in another, then most calculations will only require 
reads from the upper block. Only when the algorithmic condition is met, will reads 
from both memory blocks will be necessary. The purpose of this paper is to investi-
gate what are the most appropriate conditions to apply correction.  

    We have considered a number of test sequences, Table I. These involve most 
types of motion seen in typical sequences and so are representative of what might be 
expected in real video clips. The hardware essentially executes the code as follows: 

If(condition) then Output := SAD(7:0) 
else if(not(correcting)) Output := RBSAD(7:4) 
 else Output := xFFFF; 
 end; 
end;          

where we have used the notation that RBSAD(7:4) is an SAD calculation based on us-
ing the top four bits (7:4) of the luminance pixel values. Note that if the ‘correcting’ flag 
is set the RBSAD minimization is halted and only correct SAD values are used to calcu-
late the motion vectors. Note also that, for those sequences for which the RBSAD calcu-
lation produces an accurate PSNR value, almost no corrections are applied. 
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4 Conclusions 

In this paper we have considered an alternative implementation to the conventional 
Full Search Block-Matching Motion Estimation (FSBME) method for the estimation 
of Motion Vectors for video encoding [11, 12]. The present method is based around 
the general good performance of the method of Bit Truncation in which (typically) the 
upper four bits are used in the Sum of Absolute Difference calculation [13, 14]. It is 
clear that, if the method can be applied without loss in picture quality, there is signifi-
cant room for improvement in power performance. Here we have considered various 
combinations of conditions under which the RBSAD value could be corrected to the 
full resolution. The sequence requiring correction is the standard ‘Claire’ sequence, 
for which uncorrected bit-truncation of the SAD calculation performs significantly 
less well than full resolution FSBME. 

The best performing algorithms are those retaining some temporal memory (the 
zero condition for the motion vector of the same MB in the reference frame) and/or 
spatial memory (the zero condition for the motion vector of neighboring current  
frame MBs). Using both spatial and temporal correlation, Algorithm IV has the addi-
tional advantage that it can handle sudden scene changes, which destroy temporal  
correlation.    

The majority of standard architectures, based on a bit slice design and a single 
processing element per current frame MB, can easily be adapted to implemented these 
algorithms. The algorithms show a significant improvement in accuracy towards the 
FSBME method but with most of the power and time savings of the Reduced-Bit 
SAD method. While Algorithm IV is best for the ‘Claire’ sequence it is likely that 
Algorithm VII, which generates a super-set of Algorithm IV, should be applied in 
general. 

References 

[1] ISO/IEC JTC1/SC29/WG11-1313-1, Coding moving pictures and associated audio, 1994. 
[2] CCITT SG XV, Recommendation H.261 – Video codec for audiovisual services, 1990. 
[3] J R Jain and A K Jain, Displacement measurement and its application in interframe image   

coding, IEEE Trans Commun, COM-29 1799-1808 (1981). 
[4] A Netravali and J D Robbins, Motion compensated television coding: Part I, Bell Syst. 

Tech J., 58 (1979) 629-668. 
[5] P M Kuhn, Fast MPEG-4 Motion Estimation: Processor based and flexible VLSI imple-

mentation, J. VLSI Signal Processing 23 (1999) 67-92. 
[6] P M Kuhn, G Diebel, S Herman, A Keil, H Mooshofer, A Karp, R Mayer and W Stechele, 

Complexity and PSNR-comparison of several fast Motion Estimation algorithms for 
MPEG-4, SPIE 3460, Applications of Digital Image Processing XXI, San Diego, USA, 
(1998) 486 – 499. 

[7] V G Moshnyaga, A new computationally adaptive formulation of block-matching Motion 
Estimation, IEEE Trans. Cir. Sys.  Video Technol. 11, (2001) 118-124. 

[8] T Koga, K Lumina, A Hirano, Y Lijima and T Ishiguro, Motion compensated interframe 
coding for video conferencing, Proc NTC 1981, G5.3.1-5. 



380 V.M. Dwyer, S. Agha, and V.A. Chouliaras 

[9] H Jong, L Chen and T Chieuh, Accuracy improvement and cost reduction of three-step 
search block matching algorithm for video coding, IEEE Trans. Cir. Sys. Video Tec. 4, 
(1994) 88-91. 

[10] R Srinivasan and K Rao, Predictive coding based on efficient Motion Estimation, IEEE 
Trans. Commun., 38 (1990) 950-953. 

[11] V M Dwyer, S Agha and V Chouliaras, Low power full search block matching using re-
duced bit sad values for early termination, Mirage 2005, Versailles, France, March 2-3, 
2005.  

[12] S Agha, V M Dwyer and V Chouliaras, Motion Estimation with Low Resolution Distor-
tion Metric, submitted Elec Letters, 2005.  

[13] Y Baek, H S Oh and H K Lee, An efficient block-matching criterion for motion estima-
tion and its VLSI implementation, IEEE Trans Cons Electr., 42 (1996) 885-892. 

[14] S Lee, J-M Kim and S-I Chae, New Motion Estimation algorithm using an adaptively 
quantized low bit-resolution image and its VLSI architecture for MPEG2 video encoding, 
IEEE Trans. Cir. Sys. Video Tec.8, (1998) 734-744. 

[15] A.Th. Schwarzbacher, J.P. Silvennoinen and J.T.Timoney, Benchmarking CMOS Adder 
Structures, Irish Systems and Signals Conference, Cork, Ireland, pp 231-234, June 2002. 



J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 381 – 386, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Lossy Compression of Images with Additive Noise 

Nikolay Ponomarenko1, Vladimir Lukin1, Mikhail Zriakhov1,  
Karen Egiazarian2, and Jaakko Astola2 

1 Dept of Receivers, Transmitters and Signal Processing, National Aerospace University,  
17 Chkalova St, 61070 Kharkov, Ukraine 

lukin@xai.kharkov.ua  
2 Institute of Signal Processing, Tampere University of Technology,  

FIN-33101,  Tampere, Finland 
{karen, jta}@cs.tut.fi 

Abstract. Lossy compression of noise-free and noisy images differs from each 
other. While in the first case image quality is decreasing with an increase of 
compression ratio, in the second case coding image quality evaluated with re-
spect to a noise-free image can be improved for some range of compression ra-
tios. This paper is devoted to the problem of lossy compression of noisy images 
that can take place, e.g., in compression of remote sensing data. The efficiency 
of several approaches to this problem is studied. Image pre-filtering is shown to 
be expedient for coded image quality improvement and/or increase of compres-
sion ratio. Some recommendations on how to set the compression ratio to  
provide quasioptimal quality of coded images are given. A novel DCT-based 
image compression method is briefly described and its performance is com-
pared to JPEG and JPEG2000 with application to lossy noisy image coding. 

1   Introduction 

Image compression nowadays is an area of very intensive investigations. Basically, 
most efforts are spent on design and implementation of techniques and algorithms for 
compression of noise-free images [1]. However, compression of noisy images is also 
an important subject, especially for such applications as data coding in remote sensing 
[2,3], monitoring systems [4,5], medical imaging [6], etc. Lossless image compres-
sion for the considered applications is usually unable to satisfy practical needs due to 
noise presence and other reasons. The achievable compression ratio (CR) is com-
monly only slightly larger than unity. This makes lossy compression the basic tool in 
noisy image coding.  
    Furthermore, lossy compression being applied to noisy images provides one more 
benefit. Simultaneously with decreasing a compressed image size with respect to 
original image, lossy compression performs noise reduction [2-9]. This effect is useful 
since noise in images does not contain any valuable information about sensed terrain 
or imaged scene. Thus, noise retaining while compressing an image is absolutely 
unnecessary. Moreover, in performance analysis of techniques for noisy image lossy 
compression it is common to use image compression quality criteria that “compare” a 
compressed image not to original noisy one but to a noise-free image [4-8]. The most 
often used quantitative criterion derived in aforementioned way is peak signal-to-



382 N. Ponomarenko et al. 

noise ratio (PSNR) (although some other criteria can be also taken into account 
[3,10]). However, such PSNR can be obtained for only test, artificially noised images 
when one has the corresponding noise-free images (let us further denote it as PSNRnf). 
And for real life noisy images, PSNR for compressed data can be calculated only with 
respect to original noisy images (such PSNR is denoted below as PSNRor).  
    Note that different methods can be used as a basis for noisy image lossy compres-
sion, namely, DCT-based [4-7], wavelet-based [2,3,8,9], vector quantization [10] and 
fractal ones [11]. Moreover, special additional means can be applied for improving 
coder efficiency like noisy image pre-filtering [8] or pre-processing [6], de-
compressed image restoration or post-processing [4,7], etc. Depending upon this, 
different techniques can provide the best performance. Dependence of coder perform-
ance on image properties, noise type and statistical characteristics should be men-
tioned as well. Thus, our first goal was to carry out a brief analysis of performance for 
few compression techniques for images corrupted by additive Gaussian noise. In 
particular, a technique recently proposed by us [12] has been considered.                      

Another problem analyzed below is how to reach a quasi-optimal quality of com-
pressed noisy image. JPEG2000 coder is designed in a way to provide required CR 
and, thus, it is well suited for communication and multimedia applications. But in 
remote sensing applications, the main requirement is to provide the quality of com-
pressed image appropriate for further interpretation, whereas the requirement to en-
sure maximally reachable CR is of less importance. The authors of [4] have shown the 
existence of such point of dependence of PSNRnf on CR for which PSNRnf is maximal 
(called “the optimal operation point”) but they have not given strict recommendations 
how to reach it. In Section 3 we are addressing to this problem.  

2   Performance Analysis of the Considered Techniques 

Commonly wavelet and DCT based image compression techniques provide better 
trade-off between PSNR and CR than fractal and vector quantization methods [1]. 
Thus, let us concentrate on consideration of JPEG and JPEG2000. Besides, we ana-
lyze the performance of recently proposed DCT based technique [12]. It differs from 
the standard JPEG by three modifications. First, image is divided into 32-by-32 size 
blocks (instead of 8-by-8 in JPEG). Second, DCT coefficients in each block are di-
vided into bit planes and complex probability models for data coding are used. And 
third, DCT based post-processing (de-blocking) of decompressed images with setting 
hard threshold equal to a half of quantization step applied at compression stage is 
used [13]. Due to these modifications, the proposed coder called AGU (accessible 
from http://www.cs.tut.fi/~karen/agucoder.htm) can outperform JPEG2000 in the 
sense of better PSNR for a given CR. Besides, AGU produces much smaller blocking 
artifacts in comparison to the standard JPEG and provides few dBs better PSNR in the 
case of noise-free image compression [12].     

Our experiments have been conducted on Lenna and Barbara 512x512 grayscale 
images. Noisy images have been created by adding a zero mean Gaussian noise to 
them with two variances 2 equal to 50 and 200. CR was expressed in bits per pixel 
(bpp). Besides, we have studied two approaches: compression of noisy images with-
out pre-processing and image coding with pre-filtering by means of spatially invariant 
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DCT based filter with hard thresholding (according to recommendation [14] threshold 
is set to 2.7 ). Therefore, in aggregate, six compression techniques have been ex-
ploited: JPEG, JPEG2000, AGU, and these techniques with pre-filtering denoted as F-
JPEG, F-JPEG2000, and F-AGU, respectively. The dependencies of PSNRor(bpp) for 
all methods behave in traditional [4,6,7]  and similar manner, i.e. PSNRor reduces with 
bpp decreasing.  

Behavior of dependencies PSNRnf(bpp) is more interesting. They are presented in 
Figures 1 and 2. For techniques JPEG, JPEG2000, AGU the plots are similar to those 
ones presented in papers [4,6,7]. When CR increases (bpp reduces) PSNRnf first re-
mains almost unchanged or grows (up to optimal operation point) and then drops 
down.  
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Fig. 1. Dependencies PSNRnf (bpp) for different compression methods for the test images  
Barbara (left) and Lena (right) for 2=200 
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Fig. 2. Dependencies PSNRnf (bpp) for different compression methods for the test images  
Barbara (left) and Lena (right) for 2=50 

Note that for both test images and both noise variances JPEG2000 and AGU out-
perform JPEG for all range of bpp variation. In the neighborhood of optimal operation 
point the values of PSNRnf for AGU are 0.5…1.5 dB better than for JPEG2000. For 
the test image Lena (for the same 2) better (larger) values of PSNRor are observed 
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than for the test image Barbara, especially in the neighborhoods of optimal operation 
points. Certainly, if 2 is smaller, better PSNRor are provided.             

Behavior of dependencies PSNRnf(bpp) for the techniques F-JPEG, F-JPEG2000, 
and F-AGU differs from that one for the techniques JPEG, JPEG2000, AGU. First of 
all, for large bpp PSNRnf(bpp) for F-JPEG, F-JPEG2000, F-AGU are larger than for 
JPEG, JPEG2000, AGU, respectively. Only for very small bpp these curves practi-
cally coincide. This means that pre-filtering allows considerably better compression 
of noisy images than direct application of coding to original noisy images. Second, 
the dependencies PSNRnf(bpp) for F-JPEG, F-JPEG2000 do not have maxima that are 
observed in optimal operation points for JPEG, JPEG2000, and AGU. If pre-filtering 
is applied, PSNRnf reduces with bpp decreasing. However, for bpps corresponding to 
optimal operation points for techniques JPEG, JPEG2000, and AGU the values of 
PSNRnf for F-JPEG, F-JPEG2000 and F-AGU are anyway about 0.5…1.5 dB larger 
than for the corresponding method if pre-filtering is not applied. Again, the results for 
F-JPEG2000 and F-AGU are better than for F-JPEG. And for F-AGU, PSNRnf can be 
up to 1.5 dB larger than for F-JPEG2000. 

We have compared the method F-AGU to compression technique with pre-filtering 
described in [5] for original image SNR=10 dB (image Lena). For bpp 0.25…0.5 F-
AGU provides about 2 dB better PSNRnf. Also, the performance of the proposed tech-
nique F-AGU has been compared to the method [6] for additive noise variance 100 
and the test image Lena of size 256x256 pixels. For bpp 0.25…0.5 (and this is the 
neighborhood of optimal operation point) F-AGU produces approximately 3 dB better 
results due to more efficient pre-filtering and coding.   

3   Determination of Optimal Operation Point 

As it was mentioned in Introduction, for a real life situation one is unable to calculate 
PSNRnf (since noise-free image is not at disposal). Thus, the question arises how to 
get to optimal operation point. Note that for different 2 and test images optimal op-
eration point is observed for different bpp although for given 2 and test image it 
practically coincides for all considered methods (JPEG, JPEG2000, and AGU). For 
example, for 2=200 the corresponding maximal PSNRnf is observed for bpp 0.5 for 
the test image Barbara and for bpp 0.25 for the test image Lenna (see Fig.1). Simi-
larly, for 2=50 the maximal PSNRnf takes place for bpp 0.75 for the test image Bar-
bara  and for bpp 0.5 for the test image Lenna (see Fig.2).  

Recall that in the process of image compression a quantitative measure available 
for calculation (controllable) is PSNRor and it can be evaluated for either noise-free or 
noisy image. By joint analysis of the plots PSNRnf(bpp) and PSNRor(bpp) we have 
noticed that maximal PSNRnf (for methods without pre-filtering) was observed for 
such bpp when PSNRor becomes equal to T=10log10(2552/ 2) or 20log10(255/ ). 
Really, for 2=200 one has T=25.12dB and for 2=50 T=31.12dB.  

Let us now consider the plots presented in Figure 3. As can be seen, when the 
curve PSNRor(bpp) crosses the level T, the maximal PSNRnf are provided for the 
corresponding compression technique. Thus, only two question remain unanswered – 
how to set T and how to determine the “moment” the curve PSNRor(bpp) crosses the 
level T.   
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The answer to the first question is simple. In some practical cases 2 can be a priori 
known and T is easily calculated. If 2 is a priori unknown, it can be pre-estimated 
using some blind technique of noise variance evaluation (see, for example, [15]). 
Then, using the obtained estimate 2

est instead of the true value of 2 one gets 
T=10log10(2552/ 2

est). The method [15] provides the accuracy of the estimate 2
est   

about few percent. Thus, T can by estimated with an error no large than 0.5 dB. 
The answer to the second question is mainly “technical”. One possible approach is 

to apply iterative procedure. As the first step, determine PSNRor for original noisy 
image to be compressed for some a priori set bpp if JPEG2000 coder is used as the 
basis or for some preset quantization step if DCT based coders are applied (JPEG or 
AGU). If the obtained initial PSNRor-1 is larger than T, then at the next step one has to 
decrease required bpp for JPEG2000 coder or to increase quantization step (QS) for 
DCT based coders. If the obtained initial PSNRor-st1 is smaller than T, then opposite 
actions has to be carried out. In this way, sooner or later, at some i-th step of iteration 
procedure one comes to one of the following two situations: PSNRor-i-1>T> PSNRor-i 

or PSNRor-i-1<T< PSNRor-i where PSNRor-i denotes the PSNRor obtained at the i-th 
step. If coding procedure parameters (bpp for JPEG2000 or QS for DCT based cod-
ing) are saved for each step, then the bpp or the QS required for providing optimal 
operation point can be determined by using, for example, linear interpolation of the 
curves PSNR(bpp) or PSNR(QS). In this manner, the final values of bpp or QS are 
obtained and compression is performed using them.    

Such verbal description leaves space for considering what can be reasonable pa-
rameters of the corresponding procedure for minimizing the number of iterations or 
for providing required accuracy (one direction of the future research). But it is clear 
that such procedure can be easily realized automatically. Our experience shows that 
3…6 iterations are often enough.        
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Fig. 3. Dependencies PSNRnf(bpp) and PSNRor(bpp) for JPEG2000 and AGU for the test image 
Lena corrupted by additive noise with 2=200 (left, T=25.12dB) and 2=50 (right, T=31.12dB)  

4   Conclusions 

We have shown that image pre-filtering can be useful for further lossy compression of 
noisy images. The recently proposed DCT based coder AGU can outperform 
JPEG2000 based coder for the considered application. The way to optimally select 
CR for providing the best quality of compressed images is described.   



386 N. Ponomarenko et al. 

References 

1. Salomon, D.: Data Compression. The Complete Reference. 3 rd edn. Springer (2004)  
2. Wei, D., Odegard, J.E., Guo, H., Lang, M., Burrus, C.S.: Simultaneous Noise Reduction 

and SAR Image Data Compression Using Best Wavelet Packet Basis. Proceedings of In-
ternational Conference on Image Processing, V. 3 (1995) 200-203    

3. Mittal, M.L., Singh, V.K., Krishnan, R.: Wavelet Transform Based Technique for Speckle 
Noise Suppression and Data Compression for SAR Images. Proceedings of the Fifth Inter-
national Symposium on Signal Processing and Applications (1999) 781-784    

4. Chan, T.C.L., Hsung, T.C., Lun,  D.P.K.: Improved MPEG-4 Still Texture Image Coding 
under Noisy Environment. IEEE Transactions on Image Processing, V. 12, 5 (2003) 500-
508  

5. Kim, S.D., Jang, S.K., Kim, M.J., Ra, J.B.: Efficient Block-based Coding of Noisy Images 
by Combined Pre-filtering and DCT. Electronic Letters, V. 35, 20 (1999) 1717-1719 

6. Al-Shaykh. O.K., Mersereau, R.M.: Lossy Compression of Noisy Images. IEEE Transac-
tions on Image Processing, V. 7, 12 (1998) 1641-1652   

7. Al-Shaykh. O.K., Mersereau, R.M.: Restoration of Lossy Compressed Noisy Images. IEEE 
Transactions on Image Processing, V. 8, 10 (1999) 1348-1360 

8. Sabelkin, M.V., Ponomarenko, N.N.: MM-Band Radar Image Wavelet Compression with 
Prefiltering. Proceedings of Kharkov Symposium on Millimeter and Sub-millimeter Waves 
MSMW, V. 1 (2001) 280-282 

9. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and 
compression. IEEE Trans. on Image Processing, V. 9, 9 (2000) 1532-1546 

10. Venkatraman, M., Kwon, H., Nasrabadi, N.M.: Object-Based SAR Image Compression 
Using Vector Quantization. IEEE Trans. on Aerospace and Electronic Systems, V. AES-
36, 4 (2000) 1036-1046 

11. Koh, S.S., Kim, C.H.: Fractal Image Coding Based on the Accurate Estimation of Image 
Parameters from Noise Image. Proceedings of IEEE International Conference on Multime-
dia and Expo, (2001) 1159-1162 

12. Ponomarenko, N.N., Lukin, V.V., Egiazarian, K.O., Astola, J.T.: DCT Based High Quality 
Image Compression, accepted to Scandinavian Conference on Image Analysis (2005) 

13. Egiazarian K., Helsingius M., Kuosmanen P., Astola J.: Removal of blocking and ringing 
artifacts using transform domain denoising. Proc. of ISCAS’99, V. 4 (1999) 139 – 142 

14. Egiazarian K., Melnik V., Lukin V., Astola J.: Local transform-based denoising for radar 
image processing. Proc. SPIE Nonlinear Image Processing and Pattern Analysis XII, V. 
4304 (2001) 170-178 

15. Ponomarenko N.N., Lukin V.V., Abramov S.K., Egiazarian K.O., Astola J.T.: Blind 
evaluation of additive noise variance in textured images by nonlinear processing of block 
DCT coefficients. Proc. of IS&T/SPIE International Conference on Image Processing: Al-
gorithms and Systems, SPIE V. 5014 (2003) 178-189 

 



J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 387 – 394, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Latency Insensitive Task Scheduling for Real-Time Video 
Processing and Streaming  

Richard Y.D. Xu1 and Jesse S. Jin2 

1 Faculty of Information Technology, University of Technology, 
Sydney Broadway NSW 2007 Australia 

richardx@it.uts.edu.au 
2 School of Design, Communication & I.T, The University of Newcastle, 

Callaghan NSW 2308, Australia 
jesse@newcastle.edu.au 

Abstract. In recent times, computer vision and pattern recognition (CVPR) 
technologies made automatic feature extraction, events detection possible in 
real-time, on-the-fly video processing and streaming systems. However, these 
multiple and computational expensive video processing tasks require special-
ized processors to ensure higher frame rate output. We propose a framework for 
achieving high video frame rate using a single processor high-end PC while 
multiple, computational video tasks such as background subtraction, object 
tracking, recognition and facial localization have been performed simultane-
ously. We show the framework in detail, illustrating our unique scheduler using 
latency insensitive tasks distribution and the execution content parameters gen-
eration function (PGF). The experiments have indicated successful results using 
high-end consumer type PC.  

1   Introduction 

As personal computers keep an upward trend on processing capacity, more and more 
average computer users begin to enjoy the benefits of real time video processing and 
streaming. 

Until recently, most video streaming application requires minimal processing to the 
captured frames. These processing tasks are limited to video compression, changing 
resolutions and frame rates. For this reason, this type of video processing scheduling 
only takes into consideration of information in video bit-stream domain (video frame 
size, frame rate, type of codec), and the information of video content is being ignored. 
For example, in Tanenbaum et al. [1], the author proposed two algorithms for hard 
real-time deadline scheduling.  These scheduling policies are generated according to 
video types, frame size and rates but not to the video frame content.  

In recent times, with the aid of advanced CVPR technologies, video is not merely 
used as output streaming data, it is also being used as inputs to feature extraction and 
event detection algorithms in many intelligent application. These applications are 
found in the areas of pervasive computing [2], human computer interaction (HCI), 
and recently in intelligent lecture streaming. Examples are Xu et al. [3] and Shi et al. 
[4], where the authors have designed real-time learning video streaming based on the 
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automatic events occurred in the live classroom using CVPR techniques including 
background subtraction, object and human tracking, pre-trained object recognition 
and human identification.  

Many of such systems require specialized hardware to achieve real-time processing 
and high resolution frame output, such as video feature extraction in Bianchi [5], and 
multi-processors cluster computers used in Klimeck et al. [6]. Many literatures can 
also be found to use parallel computer vision algorithms on single processor; how-
ever, most of these works are concentrating on single CVPR algorithm rather than a 
set of them running simultaneously. The examples can be found at Ben-Ezra et al. [7] 
and François et al. [8]. 

2   Properties of Real-Time CVPR Video Processing 

For vast majority of computer users, neither special hardware is feasible nor will the 
application only contain single CVPR algorithm. However, there are some properties 
that these video processing tasks exhibit where we can explore these properties to 
allow execution using inexpensive hardware and produce high frame rate streaming 
output.  

2.1   Task Priority Latency Sensitivities  

In real time application, each video task has different levels of sensitivities to time 
delays. Such as video capture, compression and streaming task are highly sensitive to 
latency, as each frame must be processed and delivered in real time with minimum 
fluctuation in quality. On the other hand, most video detection tasks can allow longer 
delays in processing. For example, an object recognition task that takes 1 more second 
in processing is considered equally useful in many consumer type applications. The 
latency sensitivities for common real-time CVPR tasks are listed in table 1: 

 

Table 1. Video task time latency sensitivity 
 

Tasks  Latency sensitivity 
Object Recognition Insensitive 
Face identification Insensitive 
Object Tracking Sensitive, but minor delays is tolerable, if 

objects or camera has slow motions 
Background Subtrac-
tion 

Sensitive  

Video capture, com-
pression, streaming 

Sensitive 

 

    Ideally, if processor is powerful enough, all required processing tasks can achieve 
completion regardless of its time-delay sensitivities, as illustrated in fig 1.a. However, 
in most PC application, the CPU has much lower processing capacity, if tasks are 
executed sequentially, then the time sensitive task may be delayed, shown in fig 1.b. 



 Latency Insensitive Task Scheduling for Real-Time Video Processing and Streaming 389 

A logical approach is to distribute the latency insensitive tasks among each video 
frame processing, shown in fig 1.c. 

 

 

Fig. 1. Allocation of video task: a) Ideal case: processor is powerful enough that all tasks can 
complete on time. b) Processing tasks sequentially, delay latency sensitive tasks.   c) Task 
allocation using our method, spatial discrepancy recovery task is used for some latency task to 
recover discrepancy between a processed and current video frame (this is not elaborated in this 
paper). 

2.2   Content Dependant Execution 

Unlike traditional video scheduling, the processing times required for CVPR type 
video task is not only dependant on the data bit domain alone (size, codec etc). It is 
also dependant on other factors relating to both video frame content features and the 
nature of individual task. The processing times may vary dramatically from frame to 
frame. For example, a complete object recognition matching algorithm may have 
processing times ranging from 500ms to 2800ms at different frame of same video clip 
in our experiment.  

Therefore, in order to ‘place’ portions of the video processing accurately and fairly 
into each frame delivery as shown in fig 1.c, an execution time prediction method is 
required. This predication is derived from video frame content features for individual 
task. In most times, unlike uncorrelated images, consecutive video frame’s contents 
do not vary significantly; therefore, video task execution time can be estimated tem-
porally as well as spatially. In addition, the execution time history (histograms) for 
video frames containing similar features should also be accountable to the time predi-
cation algorithm. 

By considering these properties we therefore, have formulated our unique video 
task scheduling policy and mechanism to run video task in multi-threads. We claim it 
is an efficient and adaptive method for scheduling latency insensitive and computa-
tional video tasks. 

We have noticed that there is a lack of attention for a systematic approach to 
schedule multiple CVPR video tasks in real-time streaming application in the current 
literature. This is primarily due to the relative short time period since CVPR has been 
applied to real-time streaming using PCs. We will illustrate our attempts in this arti-
cle, where we divide the scheduling system logically into two layers: the scheduling 

t t 

Latency 
insensitive 

Latency 
sensitive 

t

Spatial 
Discrepancy 

recovery 
 

Delay to latency sensitive task

(a) (b) (c) 
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policy and scheduling implementation layer as shown in Fig. 2. This paper concen-
trates on the scheduling policy layer where the rest of this paper is organized as each 
subcomponent resulted from our research. 

 

 

Fig. 2. Framework system diagram 

The Processing History Modeling subsystem considers the PGF parameters being 
generated and produces a predication base on the histogram with similar parameter 
values. This is discussed in section 3. The PGF Generation subsystem is to systemati-
cally generate parameters to predicate the execution time of each video task. This 
subsystem accounts for property indicated in section 2.2, and will be discussed in 
detail in section 4. 

3   Execution Time Histogram Modeling 

3.1   Histogram Training 

The task execution times are recorded and used to approximate later tasks execution 
times. The recording and modeling have done in both online and offline fashion: 

Offline training is required before first real-time streaming session begins. This is 
because initially, the system has no knowledge of user hardware specification and 
hence there is no modeling information to begin with. During offline training, the user 
is required to perform certain artificial video events. These tasks include moving 
training objects in front of the camera for object tracking task; and holding a photo 
(which is printed from the system training library) steady in front of the video camera 
for recognition task execution time calculation.  

Online execution time histogram modeling is a real-time continuous updating 
process. As soon as a video task is completed, its execution time is being recorded 
and modeled. These data is then used for later sessions.  

3.2   Histogram Modeling 

As shall be seen in Section 4, it is difficult to formulate the relationships directly 
between the parameters being generated with the video task execution time. There-
fore, we have used histogram to model the execution times. 

Processing 

Video 
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It is both intuitive and experimentally proven that video frame generates similar 
parameters has similar processing times. Therefore, in both training methodologies, 
for each video task, there is a hash table and sets of Gaussian model fittings associ-
ated. The hash table’s dimension is governed by the numbers of parameters required 
for each video task. Each hash table index contains ranges of parameters values. The 
detail of parameter generation is stated in the Section 4. 

 For video processing tasks has same (or similar) parameters, the executions time 
will contain variances. A Gaussian model is hence used which corresponds to a hash 
table entry that has relatively higher number of counts, as shown in Fig 3. When video 
task’s parameters are being generated, the counting for the corresponding hash table 
entry is incremented. At the same time, the exact parameters values are used to update 
its Gaussian model fitting. This is very similar to algorithm used in Wren [9], where a 
similar methodology is applied to video background subtraction training.  Our predi-
cation on processing completion time in current video frame is always based on the 
mean of the corresponding Gaussian fittings in the histogram. 

The hash tables and associated Gaussian fittings are initially populated with values 
being generated from the pre-session (offline) training. Its values are being updated as 
more processing and streaming sessions to occur.  

 

 

Fig. 3. Hash table for video task execution time modeling in parameter space 

4   Parameters Generation Function 

Before execution histogram can be modeled as stated in the previous section, we must 
accurately determine the set of parameters from video processing tasks results to each 
video frame. We have therefore proposed our unique execution time parameters gen-
eration function (PGF) specific to individual video task (algorithms) being incorpo-
rated into a real-time video streaming system. 

The scheduler is based on our current streaming application, where we used vari-
ous video processing and CVPR algorithms. These tasks include object tracking, 
object recognition, background subtraction and face detection.  Therefore, we have 
devised a unique PGF for each task. To illustrate its novelty, we will present the PGFs 
for tracking and recognition task, which corresponds to temporal and spatial parame-
ter generation respectively.  

 
 

Parameter 1

Parameter 2
The hash table with fewer 

entries uses same Gaussian 
modeling as its nearby neighbor 
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In the first step, in order to accurately assess the execution time, we have applied 
off the shelf profiling software to determine the part of program which accounts for 
more than 80% of the computation using several training video sequence. Parameters 
correspond to the executions of this portion of program is used.  

4.1   Temporal Predication  

To illustrate the temporal predication method, we illustrate a PGF for tracking, where 
our method is based on kernel based mean shift [10]. 

For mean shift tracking, the intuitive parameters would be x , y  corresponding to 
the elliptical shape of the region containing the tracked object. This is calculated via 
the adaptive bandwidth from the previous video frame. Also for mean shift tracking 
similarity measure, barta is used to represent the maximized Bhattacharyya coeffi-
cients used in mean shift process. Therefore, the execution parameter space contains 
{ x , y  , barta }. 

The parameters values of the current video frame are derived temporally (past 
video processing) using common Kalman filtering predication for tracking region 
variation.  

4.2   Spatial Predication 

To illustrate the temporal predication method, we illustrate a PGF for object recogni-
tion, where our method is based on recently popular Scale Invariant Feature Trans-
form (SIFT) [11]. We have identified that the algorithm is most computational expen-
sive at the key point’s localization and the descriptor generations in most of cases.  

We have formulated to use smooth and keys as the parameters. keys represents the 
number of key points. smooth represents how “smooth” the current video frame is. 

smooth is determined from points counting from binary threshold image of the Differ-
ence of Gaussian (DoG) response of the current video frame.  

 
( ) ( , ) ( ) ( , )DoG G x, y,k x y G x, y,k x y1 2σ  ∗ Ι σ  ∗ Ι= −  

 
where G  is the Gaussian kernel derivative and Ι  is the current video frame. 1σ  and 

2σ  are the first two variable variances used in the Gaussian kernel. Therefore, for 
smoother image, the smaller value of smooth is, which indicates less computation is 
required for completing rest of stable feature generation for object recognition tasks 
using current video frame. 

4.3   Minimum Overhead PGF 

The above two examples also illustrates the idea of generating most parameters from 
the initial part of computations of the actual video processing task rather than having 
a separate parameter generation function. For example, { x , y  , barta }are required to 
compute mean shift object tracking even there is no execution scheduler or PGF being 
used. Kalman filtering is the only overhead, which is low in computation.   
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5   Empirical Result 

We have tested our work using live static video camera and a single high-end PC for 
processing. Each video task is running in different thread according to our scheduling 
policies. We have achieved high frame output while the predication using PGF con-
tains moderate variances. 

We have record the test result in table 2; the input video is 640*480 resolutions and 
processed video is at 320 * 240 resolutions. We have applied three latency insensitive 
tasks, object tracking, object recognition and facial detection using Viola et al. [12]. 
The latency sensitive tasks include background subtraction and video compression 
using MPEG-4 codec.  We have turn off all other applications to ensure maximum 
CPU availability.  

The results are promising, in both cases, we have achieved high frame rate around 
20 FPS, while the latency insensitive tasks have successfully being scheduled in a 
delayed but satisfactory rate. The objection recognition has performed at about 2 
second period. Tracking and facial detection has been performed around 5 and 3 per 
second respectively. 

 

Table 2. Number of completed tasks 
 

# of task Video 1 Video 2 
Total play time 30 54 
processed output frame 634 1032 
FPS 21.13 19.11 
Completed SIFT 14 23 
Completed Tracking 162 248 
Completed Facial detection 96 138 

6   Discussion 

We have presented in this paper an approach to schedule multiple content dependent 
video processing tasks on a single processor PC. This methodology can be used to 
resolve processing bottleneck, which the time delay sensitive task will be executed in 
priority while the latency insensitive tasks is not delayed excessively. This is achieved 
through an accurate predication model using our unique execution time parameter 
generation functions (PGF) and the execution histogram modeling.  

Much work is required for fairer scheduling policies and researching more PGFs 
for other commonly used CVPR algorithms.  We argue that most parts of our frame-
work are still valid, if we are to apply this method in a multiprocessor environment. 

Acknowledgment 

This project is supported by Australia Research Council SPIRT Grant (C00107116).  



394 R.Y.D. Xu and J.S. Jin 

References 

[1] S. Tanenbaum, (2001) Chapter 7.4 Multimedia Process scheduling on Modern operating 
systems Prentice Hall, c2001. pp. 649 

[2] S. Senda, K. Nishiyama, T. Asahi, K.Yamada, Camera-typing interface for ubiquitous in-
formation services, Proc Second IEEE Conference on Pervasive compeering 2004, pp. 
366- 369 

[3] R.Y.D. Xu, J.S.Jin, J.G. Allen, Framework for Script Based Virtual Directing and Multi-
media Authoring in Live Video Streaming, Proc. 11th Intl Conf. Multi-Media Modelling, 
Melbourne, Australia, 2005, pp. 427-432 

[4] Y. Shi, W. Xie, & G. Xu, Smart Remote Classroom: Creating a Revolutionary Real-Time 
Interactive Distance Learning System. Advances in Web-based Learning, 1st Int. Conf. 
Web-based Learning 2002,J. Fong et al. (Eds). Springer-Verlag, LNCS 2436, 130-141.   

[5] M. Bianchi, AutoAuditorium (1998) A fully automatic, multi-camera system to televise 
auditorium presentations”, Proc. of Joint DARPA/NIST Smart Spaces Technology Work-
shop, July 1998 

[6] Gerhard Klimeck, Gary Yagi, Robert Deen, Myche McAuley, Eric DeJong, Fabiano Oya-
fuso "Near Real-Time Parallel Image Processing using Cluster Computers", International 
Conference on Space Mission Challenges for Information Technology (SMC-IT), Pasa-
dena, CA July 13-16, 2003. 

[7] M. Ben-Ezra, S. Peleg, M. Werman, “Real-Time Motion Analysis with Linear Program-
ming,” Computer Vision and Image Understanding, 78(1), April 2000, pp. 32-52. 

[8] A. R. J. François, G. G. Medioni, “A Modular Software Architecture for Real-Time Video 
Processing”, Proc. the Second International Workshop on Computer Vision Systems, 
2001, pp 35 – 49 

[9] C. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland, “Pfinder: real-time tracking of 
the human body,” IEEE Trans. on Pattern Anal. and Machine Intell., vol. 19, no. 7, pp. 
780–785, 1997. 

[10] D. Comaniciu, V. Ramesh, P. Meer (2003): Kernel-Based Object Tracking, IEEE Trans. 
Pattern Analysis and Machine Intelligence, 25(5): 564-575, 2003. 

[11] D. Lowe, Distinctive image features from scale invariant key points David G. Lowe, In-
ternational Journal of Computer Vision, 60, 2 (2004), pp. 91-110. 

[12] P. Viola, M. Jones, Fast and Robust Classification using Asymmetric AdaBoost and a De-
tector Cascade, Neural Information Processing Systems 14, Dec 2001 



J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 395 – 402, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Entropy Reduction of Foveated DCT Images1  

Giovanni Iacovoni*, Salvatore Morsa*, and Alessandro Neri** 

* Ericsson Lab Italy, Via Anagnina 203, 
00040 Rome, Italy 

{Giovanni.iacovoni, salvatore.morsa}@ericsson.com 
** Applied Electronics Department, University of ROMA TRE, 

Via della Vasca Navale 84, 00146 Rome, Italy 
neri@ele.uniroma3.it 

Abstract. This contribution addressees the problem of the theoretical 
assessment of the bit rate reduction that can be achieved through foveated 
image compression for codecs operating in the DCT domain. Modeling the 
image components as Compound Gaussian Random Fields (CGRFs), we extend 
the mathematical analysis of the DCT coefficient distributions reported in [1] to 
foveated images. As a general result, we demonstrate that the DCT coefficients 
of low pass filtered image blocks can be effectively modelled with Laplacian 
distributions. This property allows us to express the Shannon rate reduction 
achievable with foveated compression in a simple and compact form as function 
of the foveal filter coefficients. Experiments results used to validate the 
theoretical analysis are also included. 

1   Introduction 

The non-uniform distribution of photoreceptors in the human retina drastically limits 
the maximum spatial frequency that can be perceived by the human visual system in 
regions far away from the fixation point (the point on the image the subject is looking 
at). Foveation defines a relation between the maximum detectable spatial frequency 
for a human at a given point as function of the coordinates of the fixation point. This 
relation has been used in recent works, [2]-[5], in the field of image and video 
compression techniques. More precisely, foveation is used to low-pass filter the 
images according to the distance from the fixation point (the greater the distance the 
more the image is filtered). This allows achieving higher compression ratios than 
those attained when encoding uniform resolution images.  

In this paper we analytically quantify the entropy reduction due to the above 
foveation process. To this aim, we start from the observation that any AC-DCT 
coefficient is Laplacian distributed [1]. We then show that after filtering the 
distribution is still Laplacian, with the original parameter modulated by the geometric 
mean of the filter coefficients. 

After that we apply the Rate-Distortion theory yielding the Shannon lower bound 
for the entropic coding of Laplacian distributed variables.  
                                                           
1 This work was carried out in the context of the research activities of CoRiTeL Consortium, 

Via Anagnina 203, 00040 Rome, Italy. 
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In section 2 all the above mentioned procedure is detailed. Section 3 provides a 
comparison of this analytical result with the numerical evaluation of the actual 
compression gain achieved through entropy coding of some examples of actual 
images.  

2   Entropy Reduction 

For the evaluation of the reduction of the bit rate achieved by the foveal filtering we 
assume as in [1] that each image component Z (e.g. luminance) is a Compound 
Gaussian Random Field (CGRF). Definition and properties of a CGRF can be easily 
derived from those of the Gaussian Random Fields, (see [6], [7]), recalling that the 
statistical properties of a non stationary zero mean Gaussian Random Field {Z[k,q]} 
are completely determined by the covariance function  

[ ][ ]{ }1 1 2 2 1 1 2 2( , , , ) ( , ) ( , )zR k q k q E z k q z k q= . 

A CGRF is a doubly stochastic random field whose covariance function 
Rz(k1,q1,k2,q2) is the realization of a stationary process, so that, when conditioned to 
Rz(k1,q1,k2,q2), it reduces to a classical GRF. For instance, the conditional first order 
distribution of  {Z[k,q]} takes the form:  

[ ]2

2
2

( , )1
( , ); ( , ) exp

2 ( , )2 ( , )
Z

z k q
p z k q s k q

s k qs k qπ
= −  (1) 

where we put 2 ( , ) ( , , , )zs k q R k q k q= .  

In order to derive the statistical properties of the DCT coefficients, let us partition 
the original image into square blocks of NxN pixels and let us denote with Z(i,j) the  
2D array corresponding to the (i,j) block. Let us denote with D the one-dimensional 
DCT operator and with ( , ) ( , )i j i j T=Y DZ D the DCT of  the (i,j) block. 

The linear relationship between Y(i,j)  and Z(i,j) implies that Y(i,j)  is a CGRF  with 
covariance function: 

2 1

1 1 2 2

1 1 1 1

2
, , ,

0 0 0 0

( , )

N N N N

i j n k n k

k q k q

n m D Dσ
− − − −

= = = =

= ×  

1 21 1 2 2 , ,( , , , ) T T
z q m q mR iN k jN q iN k jN q D D× + + + + . (2) 

Thus, according to [1], the DCT coefficient ( , ) ( , )i jy m n  of block (i,j) has the 

following conditional p.d.f.  
2( , )

2
,

( , ) 2
, 2

,

( , )
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2 ( , )
( , ) / ( , )

2 ( , )

i j

i j
i j

Y i j

i j

y m n

m n
p y m n m n

m n

σ
σ

πσ

−

= . 
(3) 

Thanks to the central limit theorem, the first order distribution of DCT coefficients 
still holds even when Z deviates from Gaussianity. 
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As observed in [1], statistical analysis applied to real world images show that the 
first order distribution of 2

, ( , )i j n mσ is “somewhere between exponential and half 
gaussian”. Consequently, averaging of (3) with respect to 2

, ( , )i j n mσ  yields that the 
the pdf’s of the AC transform coefficients is well approximated by a Laplacian model, 
having zero mean and variance 1/λ(m,n) , i.e. 

( , )2 ( , ) ( , )( , ) 2 ( , )
( , ) e

2

i jm n y m ni j
Y

m n
p y m n

λλ −= . (4) 

To quantify the entropy reduction for a single DCT coefficient subjected to 
foveation, we observe that image filtering can be directly modelled in the DCT 
domain. As demonstrated in [8], the DCT of the filtered signal is given by the product 
of the DCT of the input signal and the FFT of the filter impulse response. Thus, 
denoting with ( , ) ( , )i j

FovH m n the coefficients of the frequency response of the foveal 

filter applied to block (i,j), the DCT coefficients ( , ) ( , )i j
FovI m n of the foveated block are 

given by  ( , ) ( , ) ( , )( , ) ( , ) ( , )i j i j i j
Fov FovI m n H m n I m n= . We remark that this property can be 

directly used for real time implementation of foveal filtering in transcoders operating 
in the transformed domain. 

This property also implies that the conditional p.d.f of the filtered DCT coefficient 
( , ) ( , )i j
FovI m n  conditioned to the pixel variance inside the block is still approximately 

Gaussian, i.e.: 
2( , )

2( , ) 2

( , )

2 ( , ) ( , )
( , ) 2
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2 ( , ) ( , )
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I m n

H m n m n
i j
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Fov

p I m n m n
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σ

σ
π σ

−

= . 
(5) 

Considering now as in [1] the case of exponentially distributed pixel variance we 
have 
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It can be easily verified that similar result applies for half-Gaussian distributions. 
Thus, after filtering the marginal distribution of each AC DCT coefficient is 

Laplacian with parameter 

( , ) ( , )
, 2 ( , )i j i j

m n Fov m nμ λ=  (7) 

where: 

( , )
2( , )

( , )
( , )

( , )
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m n
m n

H m n

λλ = . (8) 



398 G. Iacovoni, S. Morsa, and A. Neri 

We remark that in this case, the field of DCT coefficients has statistical properties 
that varies with the DCT coefficient indexes as well as with block. Nevertheless, the 
Laplacian behaviour still implies that the uniform mid-step quantizer is the optimal 
one (see [9]). 

Thus, assuming the Mean Squared Error (MSE) as the distortion metric, the rate 
related to the AC coefficients has to satisfy the Shannon lower bound condition ([10]) 

2

1 2
( ) log

2 2in Tot

in

e
R D N

Dπ λ
≥  (9) 

with 

1

1 1 1 1

( , )
h v Tot

M M N N N

in
i j m n

m nλ λ
= = = =

= ∏∏∏∏  (10) 

where D is the distorsion due to quantization, NTot is the number of pixels in the 
image, Mh and Mv are the number of horizontal and vertical blocks respectively. 
Relationship (9) can also be written as 

2

1
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Similarly, after filtering we have 
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or equivalently 
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In the two above relationships we implicitly assumed that the distortion D can be 
considered the same before and after the foveation process. This is always true when 
R>1 (see [10]). 

Thus, denoting with Fovλ the geometrical mean of the foveal frequency response, 

i.e. 
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we finally have 
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Let us notice that  
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In other words Fov= k in with 
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Since relationship (15) can also be rewritten as:  
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Eq. (19) gives the entropy reduction that can be achieved by foveal coding. 
From a practical point of view the degree of approximation involved when 

computing Rin (for instance not perfect laplacianity, and so on) is the same as for RFov, 
so that it is reasonable to assume that in is the same order of magnitude of Fov. 

3   Experimental Results 

To verify the accuracy of Eq. (19) we have compared the entropy reduction predicted 
by the theoretical analysis with the empirical compression gain evaluated by coding 
both the original image and its foveated counterpart.  

The empirical model for the maximum detectable frequency fc is [5]: 

)(tan*75.131

1
),,,,(

1

V

Rd
Vyxyxf ffc −+

=
−

, 
(20) 

where d is the euclidean distance between the current point (x, y) and the fovea point 
(xf, yf) on the image, V is the viewing distance and R is the radius of the fovea region 
(which is unfiltered by the eye). R comes from the need of modelling a “flat unfiltered 
zone” in the digital domain. The value of R depends on V. The test images are filtered 
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according to the following foveation process where the fovea is placed in the center of 
each image: first, we apply the DCT transform to every 8x8 block of the images; then, 
we filter the images in the DCT domain [8] using 8 different 7-taps filters whose cut 
off frequencies decrease as the distance of the block from the fovea increases. Filter 
generation is done using Matlab function fircls (as in 2) with normalized cut off 
frequencies ranging from 0.125 to 1, with a step of 0.125. The radius of fovea used in 
the experiments is equal to 32 pixels. 
 

Table 1. Comparison of bit reductions for the DCT coefficients in (x,y) position for three test 
images: computed and given by (19): a) “Lena” b) Baboon and c) Bridge 

“Lena” Empirical Theoretical  
(1,2) 704 777 
(2,2) 1396 1554 
(1,3) 3143 3294 
(5,6) 10236 11326 
(8,8) 8944 9431 

(a) 

“Baboon” Empirical Theoretical 
(1,2) 720 777 
(2,2) 1675 1554 
(1,3) 3260 3294 
(5,6) 20147 22404 
(8,8) 24102 25060 

(b) 

“Bridge” Empirical Theoretical 
(1,2) 812 777 
(2,2) 1675 1554 
(1,3) 3494 3294 
(5,6) 16281 17744 
(8,8) 14059 14653 

(c) 

We apply the following process to both the original and the foveated version of the 
test images: first we extract the DCT coefficients in the same position from each 
block and, after quantization (we choose the quantization factor Q=1), we code them 
using optimised Huffman tables [11]. 

The bit reductions due to foveation for luminance of three test images (Baboon, 
Bridge and Lena) obtained with this processing are shown for some DCT coefficients  
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in the first column of Table 1. The second column contains the correspondent entropy 
reduction predicted by Eq. (19). The considered images have a size of 512x512 
pixels. 

Regardless of the order of the considered DCT coefficient, the tables show that the 
error resulting from formula (19) is around 10% in the worst case. These 
discrepancies are mainly due to the unavoidable violation of the assumption of perfect 
Laplacian distribution of DCT coefficient of the original image. Besides, the entropy 
gain cannot exceeds the number of bits needed to code the DCT coefficient in the 
original image. Therefore, whenever the latter is less than the entropy gain predicted 
by (19) the second column of the table gives just the number of bits needed to code 
the DCT coefficient of the original image. 

4   Conclusions 

We have proposed a compact formula for the entropy reduction that can be achieved 
through foveated image compression for codecs operating in the DCT domain. 
Compared to real compression gain there are minor discrepancies discussed in  
Section 3.  

However, care must be employed when applying the above results since they 
strongly depend on the assumption that the quantization distortion D doesn’t change 
when foveation is applied. Further studies will develop an analysis to assess the 
validity of that assumption. 

The extension of the entropy reduction to the whole image is straightforward, 
considering that the DC coefficient is never filtered.  
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Abstract. The purpose of the paper is to introduce a new method for
flexible storage of still images. The complete design of the system is
described with the scalable encoding, the distortion computation, the
bits allocation strategy, and the method for the memory management.
The main improvement is the full exploitation of a perceptual metric
to assess precisely the introduced distortion when removing a layer in
a scalable coding stream. Experimental results are given and compared
with a system which uses the PSNR as distortion metric.

1 Introduction

In the paper we focus on the problem of digital still image storage. The problem
occurs when the total memory size is limited, the amount of data to be stored
is large and the quality of the decoded images must be high. Basic memory
systems store each image, by granting each item a fixed share of the memory (see
fig 1 [a]). The maximal number of stored images is thus limited. An improvement
of these systems is usually based on the image encoding in order to minimize
the compressed image size and to save a bigger memory area. The classical
”flexible” storage implementation [1] aims at improving both these aspects : the
image encoding and the storage process.

More precisely, the flexible method takes avantage of the scalability concept
which provides a way to separate the image quality in several accessible layers.
Then it is possible to keep the most significant image layers and to remove
the least significant image layers already stored in the memory area. An optimal
flexible allocation of storage capacity is performed with the use of flexible storage
because : (i) the available storage capacity is fully exploited, (ii) the number
of images to store is variable and can be changed at anytime, (iii) the highest
possible quality is preserved when a new image is stored. While a basic system
stores only necessary layers to get the minimal acceptable quality, a flexible
system allows to store extra layers up to the best quality. Figure 1 [b] shows
the advantages of the flexible storage principle with respect to a basic scheme.
We can see that the allocated image size is distributed according to a quality
criterion, which allows having little quality difference between the stored images.

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 403–410, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The use of a memory whose size is fixed but with the properties associated
to the flexible memory may have a lot of applications in image database storage
or digital still cameras.
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Fig. 1. Elastic memory principle

2 System Overview

Figure 2 illustrates the general structure of the system. To deliver a compressed
version with several layers for each image, we use as scalable encoding scheme
the standard JPEG2000 with quality scalability mode i.e. Signal to Noise Ratio
(SNR) scalability. Storage a new image is achieved using a process of memory
allocation. This implies a rate vs. distortion tradeoff to insert some new image
layers by remaining the most relevant ones of the previous stored images. To
measure the distortion, we have to use a quality criterion that must produce ob-
jective quality scores in good correlation with human judgment. Usually, PSNR
is computed as a quality criterion. Unfortunatly, it is too poorly correlated with
human judgement. We prefer to use a perceptual criterion. To present the entire
process, the extraction and decoding steps are included in the figure 2 for the
final image visualisation even if they are not specific to flexible memory. The
following subsections detail more precisely the system overview.

2.1 The JPEG2000 Quality Layers

The SNR scalability included in JPEG2000 is based on a rate / distortion op-
timization, called Post Compression Rates Distortion (PCRD-opt), included in
the algorithm Embedded Coding with Optimal Truncation (EBCOT). This stage
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carried out after the contextual arithmetic coding is a rate allocation to various
layers of quality which are separated between them by truncation points. Within
an image, layers are hierarchically ordered which means that a layer might be
exploited only if the first layers are available. From a practical point of view, the
JPEG2000 header provides the set of truncation points between layers. So, it is
easy to reach the associated rate of each layer and to remove unnecessary layers
according to the hierarchical order. For this purpose, we have elected to take
the JP2000 stream as it comes without modifying the rate / distortion process.
This leads to define the optimal size of the layers for each image independently
for our system.

encoding

Scalable

Images

decoding

1
2

3

N

Storage area

Images

extraction

1
2

3

N

Images

Memory allocation

      and Storage

Fig. 2. Flexible storage implementation

2.2 Perceptual Distortion

By the past we have developped several criteria based on human vision model
for still color image quality assessment. Here, we use a reduced reference quality
criterion that is well suited for distortions stemming from JPEG 2000 compres-
sion [2]. This criterion is divided into two steps. At first, a reduce description
is built for both original and distorted image by extracting features in a psy-
chovisual space. Then, the two reduced descritions are compared to produce the
quality score.

To build the reduced description of an image, we project it in a psycho-
visual space. This is achieved through different functions including perceptual
colorspace transformation (Krauskopf’one [3]), contrast sensitivity function, per-
ceptual channels decomposition and masking effect functions. These different
steps lead to a subband representation for the achromatic component (17 sub-
bands) and to two images for the chromatic components. The next step, feature
extraction is achieved only on the subbands of the achromatic component but
taking into account the chromatic data. We select locations, called ”characteris-
tic points”, in the subband representation in order to extract features on them.
These points are located on concentric ellipses, centered on the image center. We
choose a fixed number of points per ellipse so these points are more concentrated
in the image center (which generally gathers the objects of interest). At last, we
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extract several features on each characteristic point. First, a linear structure is
extracted by a ”stick growing algorithm”. This structure is described by its ori-
entation, its size (length and width), its maximum contrast amplitude. We also
extract the mean values of achromatic and chromatic components computed on
a circular neighboorhood of radius 5 pixels around the structure. All these fea-
tures for all the characteristic points constitute the reduced description of the
image.

The computation of an image quality from the reduced description of its
reference and its distorted version, is also achieved in several steps. First, we
produce for each characteristic point a correspondence coefficient per feature
which indicates the similarity between the feature values of the distorted and
the reference image. Then these coefficients are combined locally to produce a
local similarity measure. The global similarity measure is defined as the mean
of the local similarity measures. Finally, the objective quality score is produced
using a linear transformation of the global similarity measure. Parameters of this
linear transformation can be adapted to a particular distortion system. Here we
use parameters adapted for JPEG2000. With this criterion 1, we get a value of
0.95 for the correlation coefficient between objective quality score and human
judgment on the JPEG2000 images of the LIVE database [4].

2.3 Memory Management

The bit allocation problem occurs in order to share the memory between the
compressed images. It consists in minimizing the global distortion D subject to
the constraint that the global rate R is under the memory size Rd. For each
JPEG2000 stream corresponds a set of layers. Let be j the stream index, and
i the layer number. di,j and ri,j are respectively the distortion and the rate for
the j-th stream with i layers (note that i can be different for each stream). If
there are M streams, we assume that the problem is:

minD = min
M−1∑
j=0

dj,i subject to R =
M−1∑
j=0

rj,i ≤ Rd (1)

A combination of M streams involves a point (R,D) in the distortion / rate
space, all the combinations produce a cluster. The problem becomes the de-
termination, on the cluster convex hull, of the point whose rate is just lower
than Rd. In order to reduce the complexity the Lagrange-multiplier method is
introduced to solve:

min(D + λ×R) ⇐⇒
M−1∑
j=0

min(di,j + λ× ri,j)

The complexity decreases because the reduction of distortion is now achieved
separately from each stream. The general form of the algorithm is:
1 The implementation is available freely (http://www.dcapplications.t2u.com).
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1. The convex hull d(r) for each stream is directly computed, by storing the
distortion / rate point corresponding to each layer;
2. The point on the global convex hull is determined, its rate is just below Rd.
For this second step, the algorithm proposed by Shoham [5] is particularly
adapted. It is based on the computation of singular values of the Lagrange-
multiplier λ. Precisely a singular value of λ is the slope of the line that pass
through two consecutive points of the convex hull. So from a first point on the
hull, by successive computations of singular values, we get the global convex
hull.

In practice a first point is (Rmax, Dmin) where Dmin equals to the sum of the
distortions when considering each stream with all its layers, the corresponding
rate Rmax is then maximal. Removing the i-th layer of the j-th stream implies
an increase in distortion and a decrease in rate, and we get:

λi,j =
Δdi,j

Δri,j
=

di−1,j − di,j

ri,j − ri−1,j

The successive singular values of λ are obtained by ordering the λi,j in a de-
creasing manner and by considering all the streams.

The first step consists in computing a new distortion / rate curve for each
new compressed image to store: respecting the layers order and the rates from
JPEG2000 PCRD-opt, but using our perceptual metric. As a consequence the
new d∗(r) curves are not necessary convex and the previous bit allocation process
has to be adapted to our problem.

As long as the memory is not full, the compressed images are stored with all
their layers so with the best quality. When the physical storage area becomes
full, the goal is to remove the layers which induce the largest decrease in rate and
the smallest increase in distortion. For each new image addition in the memory,
the basic allocation method steps are:

1. calculate the set of λ∗i,j = Δd∗i,j/Δri,j and store them in a list conserving the
layers order of the jpeg stream. This list will be used as a ”FILO”, where the
first accessible item corresponds to the lambda of the last jpeg layer;
2. considering the FILO lists of the jpeg streams already stored and the FILO
list of the new compressed image:

until the rate criterion of equation 1 is satisfied, find successively the smallest
accessible item λ∗, remove it from its list and delete the corresponding jpeg layer;

We impose another constraint such as the system guarantees a minimal quality
to the stored images. Thus it is forbidden to continue to remove a layer of a jpeg
stream once this threshold is reached. In practice for the allocation method, the
corresponding lambdas are simply retired from the list relative to the suppress-
ible layers. Obviously when the memory is full with compressed images having
reached all this threshold of minimal quality, it is impossible to add another
picture (without erasing completely beforehand a stored jpeg stream).
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3 Experimental Results

A first use consists of the insertion of six 512x512 colour images in the flexible
memory with the perceptual quality criterion. The JPEG2000 coding is made
from the Kakadu library2 functions. The setup fixes a max rate to 1 bpp, a initial
layers number to 9 and a perceptual score threshold to 4 for a memory size of
100 kB. Table 1 illustrates the various stages of the operation while indicating to
each new insertion (ni): the number of layers, the perceptual score, the number
of extra layers for each image inserted as well as the use of the memory in term
of flexibility (a number of releasable bytes corresponding to the total number of
extra layers) and of availability compared to the inserted images set. The first
3 insertions of ’Lena’, ’Peppers’ and ’Air-Force Plane’ do not pose any problem
because the memory is sufficient: no quality layers are removed. If one preserves
in the state the whole of the layers only 1.8 % of the memory is available. On the
other hand, one has a budget of around 50 kB (half of the memory) compared
to the acceptable perceptual score. The insertion of a new image generates the
optimization of the memory by suppression of extra layers (’Lena’ loses 2 layers,
’Peppers’, ’Air-Force’ and ’Barbara’ 1 layer). The budget of 20 kB is sufficient
for the insertion of the House image which extracts all the extra layers of the
other images except Lena which preserves 2 extra layers. These last bring a very
significant quality compared to the bytes used. It does not allow the insertion
of the sixth image (’Fruits’) taking into account the thresholds of the flexible
memory. For the 5 images stored, the perceptual scores are quite homogeneous.

Table 1. Basic usage of flexible storage with successive new insertions (ni) of five
images

Inserted images # layers Percept. score Extra layers Extra bytes Availability (%)
Lena (ni) 9 5 4 22030 67.2

Lena 9 5 4
36200 34.5

Peppers (ni) 9 5 2
Lena 9 5 4

50251 1.8Peppers 9 5 2
Air-Force (ni) 9 4.89 2

Lena 7 4.91 2

19729 7.7
Peppers 8 4.77 1
Air-Force 8 4.58 1

Barbara (ni) 8 4.60 1
Lena 7 4.91 2

7932 0.8
Peppers 7 4.30 0
Air-Force 7 4.10 0
Barbara 7 4.58 0

House (ni) 7 4.03 0

2 avalaible at http://www.kakadusoftware.com
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Fig. 3. Distortion / rate curves obtained when storing 5 images in the flexible memory.
The circles mark the retained points after bit allocation.

The goal of this second test set is the comparison with a PSNR based scheme.
Five images of the previous data set are stored. The setup is the same as before,
except: the coding max rate is 1.5 bpp, and the quality threshold is 25 dB for
a PSNR and 3 for a perceptual distortion use. This parameters are choosen for
increasing the extra layer number and for highlighting our results when storing
the image ’Mandril’. The curves of the figures 3 (for which, after bit allocation,
the choosen PSNR(r) or d∗(r) points are marked by circles) show indeed that
for this high frequency image, the classical distortion gives low PSNR values and
no layer can be removed. Our perceptual metric produces objective distortion
measures: some layers can be deleted from the ’Mandril’ stream without visual
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artifacts, and the saved bits give more rate to store the other images with a
homogeneous visual quality.

4 Conclusion

We have introduced a new method for the flexible storage of still images. The
method is based on the use of a perceptual metric which produces objective qual-
ity scores when coding the images with JPEG2000. An overview of the system is
given. The perceptual distortion computation and the memory management are
detailed. Results are given with a basic usage and a PSNR comparison. They
show how the objective quality evaluation allows to share more efficiently the
bits between the stored layers of the JPEG2000 streams.
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Abstract. We describe a method for removing quantization artifacts
(de-quantizing) in the image domain, by enforcing a high degree of sparse-
ness in its representation with an overcomplete oriented pyramid. For this
purpose we devise a linear operator that returns the minimum L2-norm
image preserving a set of significant coefficients, and estimate the original
by minimizing the cardinality of that subset, always ensuring that the
result is compatible with the quantized observation. We implement this
solution by alternated projections onto convex sets, and test it through
simulations with a set of standard images. Results are highly satisfactory
in terms of performance, robustness and efficiency.

1 Introduction

Spatial quantization is part of the image capture with digital devices. Usually
artifacts (false contours and suppression of low-contrast texture) are close or
even below the visibility threshold, but they become evident in a number of
situations. For instance when stretching the local luminance range for detail
inspection, or when de-convolving quantized blurred images, mostly if there is
little random noise. It is also a useful step for local features extraction (e.g.,
luminance gradient) sensitive to those artifacts, for interpolating iso-level curves
in topographic or barometric maps, or for using a reduced number of bits per
pixel when there are not enough resources to perform image compression.

Surprisingly enough, de-quantizing in the image domain has received little at-
tention in scientific literature (exceptions are [1,2]). In contrast, transform quan-
tization has been widely treated, especially in the context of post-processing com-
pressed images (de-blocking), usually under orthogonal or bi-orthogonal trans-
forms (e.g., [3,4,5]), but also under overcomplete transforms (e.g., [6,7]). In this
work we propose to enforce a certain characterization of sparseness in the over-
complete wavelet domain as the base criterion of the restoration, always ensuring
that the estimated image is compatible with the quantized observation. The so-
lution is formulated as belonging to the intersection of two convex sets [8].

� Both authors funded by grant TIC2003-1504 from the Ministerio de Ciencia y Tec-
nologia. JP is under the ”Ramon y Cajal ” program.
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2 Image Model

Linear representations based on multi-scale band-pass oriented filters (wavelets)
are well-suited for representing basic properties of natural images, such as scale-
invariance and the existence of locally oriented structures. Natural images typi-
cally produce sparse distributions of their wavelet coefficients. This means that
the energy of the image is mostly concentrated in a small proportion of coef-
ficients [9,10]. It has also been observed that overcomplete representations 1)
may produce sparser distributions than critically sampled wavelets [11]; and
2) being translation invariant, they typically provide better results for image
processing (e.g., [12,13]). For this work we chose the steerable pyramid [14],
an oriented overcomplete representation whose basis functions are rotated and
scaled versions of each other. In addition to marginal statistics in the wavelet
domain, many authors have exploited the dependency existing among neigh-
bor coefficients (e.g., [15,16,17,18]). We have considered this dependency when
selecting significant coefficients, in Section 4.1.

3 Enforcing Sparseness

Most degradation sources decrease the sparseness of the wavelet coefficients
(e.g., [19,20]). In an attempt to recover the high-sparseness condition of the
original, we devise an operator which increases the image sparseness by preserv-
ing a given subset of significant coefficients while minimizing the global L2-norm.
Now we describe this operator for overcomplete representations.

Let x ∈ RN be an image and x′ = Φx its overcomplete representation. Φ is
an M ×N matrix (M > N) with each row φj representing an analysis function.
We assume that Φ preserves the L2-norm, ‖Φx‖ = ‖x‖, and that it has perfect
reconstruction, ΨΦx = x, where Ψ = (ΦT Φ)−1ΦT is the pseudoinverse of Φ.
Given an index set G of what we consider the M ′ most significant coefficients of
x′ (see Section 4.1), we define ΦG as the M ′ ×N matrix formed by all φj row
vectors such that j ∈ G. Our sparseness-enforcing operator for that set is:

x̃(G,x) = arg min
z∈RN

‖z‖ s.t. ΦGz = ΦGx. (1)

Naming ΨG the pseudoinverse of ΦG, previous equation is equivalent to x̃(G,x) =
ΨGΦGx. We call SG = ΨGΦG. Note that, when rank(ΦG) = N the Equa-
tion (1) has a trivial solution, x. Thus, for SG to be of interest, we choose
M ′ < N . However, note that ΨG is not trivial to compute. In practice we have
applied the method of alternated projections (POCS), that states that itera-
tive orthogonal projections onto a number of intersecting convex sets converge
strongly to their intersection. We have used two convex sets: 1) the set of vectors
of coefficients having the same values as x for the indices in G, V (G,x) = {z′ ∈
RM : z′j = φjx, ∀j ∈ G}; and 2) the set of admissible vectors of coefficients,
A(Φ) = {z′ ∈ RM : ∃x0 ∈ RN : z′ = Φx0}. The orthogonal projection onto the
first set is achieved by setting the coefficients with indices in G to their original
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values, leaving the rest unchanged: P⊥
V (G,x)(z

′) = D(G)x′ + (I(M) − D(G))z′,
where x′ = Φx, I(M) is the M ×M identity matrix and D(G) is a M ×M
diagonal matrix such that dii = 1 if i ∈ G and dii = 0 otherwise. For the other
set, the orthogonal projection consists of inverting the transform and applying
it again: P⊥

A(Φ)z
′ = ΦΨz′. The solution x̃(G,x) can be expressed as the inverse

transform of the minimum L2-norm vector belonging to the intersection of both
sets. So 1: x̃(G,x) = SGx = Ψ limn→∞(P⊥

A(Φ)P
⊥
V (G,x))

n(0). Since P⊥
V (G,x)(·) is

an affine orthogonal projector, superindex n indicates the number of iterative
compositions of the functions within the brackets, not a power.

4 Image De-Quantizing

Left panel of Figure 1 shows a joint histogram of the coefficients for a subband
of quantized Boat image vs. those of the original. It is normalized in amplitude
by columns to express the probability of the observed given the original. We can
see that low-amplitude coefficients are severely damaged whereas high-amplitude
coefficients are just slightly damped and contaminated with noise of nearly con-
stant variance. Right panel shows the same joint histogram, but normalized by
rows and transposed, so now it expresses an empirical measurement of the pos-
terior density of the original given the observation. We can also discriminate an
inner region, for which the posterior density is complicated, and an outer region,
where the original can be reliably estimated from the observation.

4.1 Selecting Significant Coefficients

According to the right panel of Figure 1, it seems natural to choose a threshold
to discriminate the inner from the outer region. Discarding the effect of the
prior density, it is also reasonable to choose, for each subband k, a threshold λα

k

proportional to the standard deviation of the noise caused by the quantization in
that subband, σk. That is, λα

k = ασk with α ∈ R+, where σk can be estimated
analytically from the analysis functions, assuming that quantization noise is
white and uniform in density. However, a more reliable estimate can be obtained
through simulations, by measuring the variance for a set of quantized standard
images, and averaging these measurements (our choice). Once we have estimated
every σk for a certain quantization process, we can sweep the proportionality
factor α from 0 to ∞ to control the cardinality of G, as a sparseness index
of x̃(G,x). We have obtained better results for this task by considering that
a coefficient is significant if any coefficient within its neighborhood, including
itself, surpasses the amplitude threshold λα

k . For this work we have used a 5× 5
spatial neighborhood. Naming I0

k the set of indices of subband k and N(·) the
neighborhood set for a given index, the set of significant coefficients of k is:

Ik(α) = {i ∈ I0
k : i ∈ N(j); ∀j ∈ I0

k : |φjx| ≥ ασk},

and the total set of significant indices is: G(α) =
⋃K

k=1 Ik(α).
1 We have greatly accelerated convergence by using a linear prediction technique.
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Fig. 1. Normalized joint histograms of the coefficients of a subband from a quantized
image and from the original image. Left: degradation model (original in abscissas).
Right: Posterior density (quantized in abscissas).

4.2 Global Problem Formulation

Let’s consider an index set G(α) and let q(x) = y be a quantization process.
When applying our sparseness-enforcing operator, it exists the possibility that
q(SG(α)x) �= y. We must ensure that the final estimation belongs to Q(y) = {x ∈
RN : q(x) = y}, the compatibility set for y. On the other hand, it is easy to check
that SG(α) is the orthogonal projector onto the set C(G(α)) = {x ∈ RN : ∃x0 ∈
RN s.t. x = SG(α)x0}, which represents the set of sparsified images obtained
with the set of indices G(α). This is a linear subspace. Its dimensionality is the
cardinality of G(α), which decreases as α increases. As we are looking for the
smallest possible set of significant coefficients, we search for the highest α such
that C(G(α)) still includes at least one image compatible with y:

α̂ = sup{α ∈ R
+ : C(G(α))

⋂
Q(y) �= ∅}. (2)

Calling T (α,y) = C(G(α))
⋂
Q(y), we choose our final estimate to be the ele-

ment of T (α̂,y) closest to the observation y: x̂ = P⊥
T (α̂,y)(y), where P⊥

T (α̂,y) is
a (non-linear) orthogonal projection function. In contrast with most estimators
used in restoration, this preserves all the information carried by the observation.

4.3 POCS-Based Solution

As Q(y) and C(G(α)) are both convex sets, we can compute our estimation for
a given α, noted x̂α, through alternated orthogonal projections. The orthogonal
projection onto Q(y) can be defined as z = P⊥

Q(y)(x), with

zi =

⎧⎨⎩
xi, yi − δi

2 < xi ≤ yi + δi

2

yi − δi

2 + ε, xi ≤ yi − δi

2

yi + δi

2 , yi + δi

2 < xi
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where δi are each quantization interval width and ε ∈ R+ (ideally infinitesimal)
is an artifice to achieve empty intersection between adjacent closed intervals.
Therefore, our estimation for a given α is: x̂α = limn→∞(P⊥

Q(y)SG(α))ny. We
use a line search to find the highest factor α̂ for which previous limit converges.

4.4 An Efficient Approximated Solution

We have verified two very positive facts. First, that the factor α̂ closely match
the LSE hand-optimized factor in simulations. Second, that α̂ is remarkably con-
stant for different images (typically ranging between 4 and 5), under the same
linear representation and the same quantization. Thus we have used, instead of
a different α̂ each time, an averaged value computed off-line for a collection of
standard images. Doing that, we save around one order of magnitude in compu-
tation time (which becomes close to 10 s. for 2562 images and to 50 s. for 5122,
with our MATLAB implementation using a 3.4 Ghz Pentium IV CPU), whereas
decrease in Signal-to-Noise Ratio is only around 0.10 dB. We note that when
the average factor is higher than the optimal value, Q(y) and C(G(α)) do not
intersect, and then POCS provides a LS-optimal solution.

5 Results and Discussion

We have tested our method on a set of ten 8-bit grayscale standard images, of
2562 pixels (Lena, Peppers, Cameraman, Einstein, House) and 5122 (Barbara,
Boat, Goldhill, Plane, Windmill). We have used the steerable pyramid [14] with
6 scales and 4 orientations. Figure 2 shows the increase in Signal-to-Noise Ratio
(ISNR) of the processed images w.r.t. the observations for a range of quantization
bits. Improvement is remarkable, especially in the medium range. There is a
sudden descent in performance in the fine quantization range that we have not
completely explained yet.

Fig. 2. Increment in SNR (ISNR), expressed as 10 · log10(σ2
q/σ2

r), where σ2
q and σ2

r are
the MSE for observation and estimation, respect., and for several quantization bits
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Table 1. Results of our method for 3 and 4 bit quantization, showing the increment
w.r.t. the original in Signal-to-Noise-Ratio (in dB) and also in the Structural Similarity
Index (×100) [21]

Bits Metric Ref. Barbara Boat Lena Peppers

3 ISNR 28.74 2.29 2.24 1.93 2.01
ISSIM 80.53 7.29 6.03 6.71 7.48

4 ISNR 34.77 1.91 0.86 1.54 1.38
ISSIM 90.10 3.70 0.85 3.24 3.05

Fig. 3. Some visual results. Left: Observation. Center: Comparison method. Right: Our
method. See text for details.

Table 1 shows numerical results for quantization using 3 and 4-bits. We
also include the increase in the Structural Similarity Index (SSIM) [21], a
perceptually-inspired metric taking values in the range [0,1]. First column shows
the averaged PSNR/SSIM values of the observation (SSIM values multiplied
times 100). There is a very significant improvement under both metrics. First
row of Figure 3 shows a cropped result using 3 bits. We have implemented a
method (central panel) to help us as a reference, based on a similar strategy
than [2]: a gradient-descent in the L2-norm of the output of a high-pass (Lapla-
cian) filter applied to the image, each time projecting the updated image onto
the compatibility set Q(y). Our result (right panel) is 1.30 dB above, confirm-
ing once again that sparseness-based solutions are more powerful than classical
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Fig. 4. Left. Detail of the sky of a real 8-bits photographic picture (amplified contrast).
Right. Same detail in the picture after processed by our method.

smoothness-based approaches. Second row shows another example. The same im-
age is blurred with a Gaussian kernel (σb =

√
2), corrupted with noise (σn = 2)

and then quantified with 3 bits. Central panel shows the results from a general
purpose maximum-likelihood semi-blind deconvolution method (deconvblind
in MATLAB), passing the Point Spread Function as argument but not the vari-
ance of the noise. Right panel shows the deconvolution after de-quantizing the
observation. The suppression of artifacts is very noticeable (1.18 dBs ISNR, 0.13
ISSIM). It is remarkable that we have obtained for the image in the right panel
the same SSIM (0.70) w.r.t. the original as for the result of applying the decon-
volution directly to the unquantized blurred and noisy image. Figure 4 shows
removal of low-contrast artifacts in a 8-bit image.

To conclude, we have presented an automatic sparseness-based practical tool
for removing pixel quantization artifacts which provides close to LS-optimal
results. We still have to further investigate the causes for the drop in performance
on the fine quantization range.
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Abstract. A novel frequency domain technique for image blocking ar-
tifact reduction is presented in this paper. For each block, its DC and
AC coefficients are recalculated for artifact reduction. To achieve this,
a closed form representation of the optimal correction of the DCT coef-
ficients is produced by minimizing a novel enhanced form of the Mean
Squared Difference of Slope (MSDS), for every frequency separately. Ex-
perimental results illustrating the performance of the proposed method
are presented and evaluated.

1 Introduction

The block based discrete cosine transform (B-DCT) scheme is a fundamental
component of many image and video compression standards. Since blocks of
pixels are treated as single entities and coded separately, correlation among spa-
tially adjacent blocks is not taken into account in coding, which results in block
boundaries being visible when the decoded image is reconstructed. Such so-called
“blocking” artifacts, are often very disturbing, especially when the transform co-
efficients are subject to coarse quantization.

In this paper a new method is proposed for the reduction of the blocking effect
in the B- DCT schemes. This method is applied only on the compressed data.
The lowest DCT coefficients are recalculated by minimizing a novel enhanced
form of the Mean Squared Difference of Slope (MSDS) [1], which involves all
eight neighboring blocks. The minimization is constrained by the quantization
bounds and is performed for every frequency separately. Thus, a closed form
representation is derived, which predicts the DCT coefficients in terms of the
eight neighboring coefficients in the subband-like domain.

The rest of this paper is organized as follows: Section 2 presents in detail the
blocking artifact reduction algorithm by constrained minimization. Experimental
results given in Section 3 evaluate visually and quantitatively the performance
of the proposed methods. Finally, conclusions are drawn in Section 4.
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2 Reduction of Blocking Artifact in the Frequency
Domain

As noted, blocking effects result in discontinuities across block boundaries. Based
on this observation, a metric called Mean Squared Difference of Slope (MSDS)
was introduced in [1], involving the intensity gradient (slope) of the pixels close to
the boundary of two blocks. Specifically, it is based on the empirical observation
that quantization of the DCT coefficients of two neighboring blocks increases
the MSDS between the neighboring pixels on their boundaries.

To better understand this metric, consider an 8 × 8 block f of the input
image and a block w vertically adjacent to f . If the coefficients of the adjacent
blocks are coarsely quantized, a difference in the intensity gradient across the
block boundary is expected. This abrupt change in intensity gradient across the
block boundaries of the original unquantized image is rather unlikely, because
most parts of most natural images can be considered to be smoothly varying
and their edges are unlikely to line up with block boundaries. From the above,
it is clear that a reasonable method for the removal of the blocking effects is to
minimize the MSDS, which is defined by:

εw =
7∑

m=0

[d1(m) − d2(m)]2 (1)

where d1(m) is the intensity slope across the boundary between the f and w
blocks, defined by:

d1(m) = f(m, 0)− w(m, 7) (2)

and d2(m) is the average between the intensity slope of f and w blocks close to
their boundaries, defined by:

d2(m) =
w(m, 7) − w(m, 6)

2
+
f(m, 1)− f(m, 0)

2
(3)

The ideas in the above discussion are applicable to both horizontal and vertical
neighboring blocks. Specifically, if blocks w, e denote the blocks horizontally
adjacent to f , and blocks s, n present the blocks vertically adjacent to f , then,
the MSDS which involves both horizontal and vertical adjacent blocks (hereafter,
MSDS1) is given by:

MSDS1 = εw + εe + εs + εn (4)

where εe, εs and εn are defined similarly to (1-3).
We now extend the definition of MSDS by involving the four diagonally

adjacent blocks. If nw is a block diagonally adjacent to f , then, we define:

εnw = [g1 − g2]2 (5)

where g1 = f(0, 0)− nw(7, 7) and

g2 = nw(7,7)−nw(6,6)
2 + f(1,1)−f(0,0)

2

(6)
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If nw, ne, sw and se are the four blocks diagonally adjacent to f , the MSDS
involving only the diagonally adjacent blocks (hereafter, MSDS2) is:

MSDS2 = εnw + εne + εsw + εse (7)

where εne, εsw and εse are defined in a manner similar to (5) and (6). Thus, the
total MSDS (hereafter, MSDSt) considered in this paper, involving the intensity
slopes of all the adjacent blocks is:

MSDSt = MSDS1 +MSDS2 (8)

The form of MSDS used in the proposed methods of [1,2] is MSDS1, which,
as mentioned above, involves only the horizontal and vertical adjacent blocks for
its computation and thus does not use the intensity slopes of the four diagonally
adjacent blocks. This implies that their methods cannot remove the specific type
of blocking artifact called “corner outlier” [3], which may appear in a corner point
of the 8× 8 block.

In [2] a global minimization of the MSDS1 is proposed for the reduction of
blocking effects. However, since B-DCT schemes (such as JPEG) use scalar quan-
tization (i.e., quantization of individual samples) for each frequency separately, a
separate minimization of the contribution of the quantization of each particular
coefficient to the blocking artifact is more appropriate than a global minimization.
Global minimization would be more suitable if vector quantization (i.e., quantiza-
tion of groups of samples or vectors) of the DCT coefficients were used, which is,
however, not the case in B-DCT coding schemes. Consider also that, since DCT
transform is very close to KL transform, the DCT coefficients are almost uncorre-
lated [4]. Thus, the modification of each DCT coefficient based on the minimiza-
tion of MSDS which includes values of the low-pass, middle-pass and high-pass
frequency coefficients is obviously not the best solution, and the minimization of
MSDSt for each frequency separately is the appropriate procedure.

The new enhanced form of the MSDSt involving all eight neighboring blocks is
used in this paper, and its local constrained minimization for each frequency, pro-
duces a closed-form representation for the correction of the DCT coefficients in the
subband-like domain of the DCT transform. To achieve this, the form of MSDSt

in the frequency domain is obtained, and all other frequencies apart from the one
(k, l) under consideration are set to zero. It was observed that only the first sixteen
DCT coefficients (i.e., 0 ≤ k, l ≤ 4) need to be recalculated by MSDS minimiza-
tion, since the modification of the remaining coefficients does not improve signif-
icantly the reduction of the blocking artifacts (because of their poor contribution
to MSDS [2]), while requiring nonnegligible extra computational load.

In the sequel, the MSDSt is calculated and minimized in the frequency do-
main.

2.1 Calculation of MSDS1 in the Frequency Domain

Let f(m,n) denote a 8 × 8 block of the input image and F (u, v) denote its
forward DCT, where 0 ≤ m,n, u, v ≤ 7 and (0, 0) denotes the upper left corner
pixel of the block as well as the first (DC) transform coefficient. Let w, n, e, s,
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nw, ne, sw and se denote the eight blocks adjacent to f in horizontal, vertical
and diagonal directions and W , N , E, S, NW , NE, SW and SE denote their
corresponding forward DCTs.

Following (2) and (3), the expression d1(m) − d2(m) which is used for the
calculation of εw in (1) is:

d1(m) − d2(m) =

= f(m, 0)− w(m, 7) − (w(m,7)−w(m,6)
2 + f(m,1)−f(m,0)

2 )
(9)

where 0 ≤ m ≤ 7. Let G denote the discrete cosine transformation matrix (where
the uth row of G is the basis vector C(u) cos((2m
+1)uπ/16)) and GT denote its transpose. Then, the f block can be derived from
the inverse DCT transform as follows:

Inverse DCT : f = GTFG (10)

Let Gx and Gy denote the xth row and yth column of the discrete cosine transfor-
mation matrix G. Using (10), f(m, 0) is easily seen to equal GT

mFG
0. Likewise,

the other terms of (9) can also be expressed in the frequency domain and (9)
can be expressed as follows:

d1(m) − d2(m) = (GT
mFG

0 −GT
mWG7)−

−(GT
mWG7−GT

mWG6

2 + GT
mFG1−GT

mFG0

2 )
(11)

Since,
G1 = (−1)uG6 and G0 = (−1)uG7 (12)

where u denotes the row number and 0 ≤ u ≤ 7, expression (11) reduces to:

d1(m) − d2(m) =

= (1/2)GT
m(3FG0 − 3W (−1)uG0 − FG1 +W (−1)uG1) =

= (1/2)GT
m(F − (−1)uW )(3G0 −G1)

(13)

Since G is a unitary orthogonal transform,
∑7

m=0 G
mGT

m = I, where I is the
identity matrix. Thus, adding the squares of (13) for all m according to (1), the
MSDS term εw between the f and w blocks is produced:

εw = (1/4)(3GT
0 −GT

1 )(F − (−1)uW )T (F − (−1)uW )(3G0 −G1) (14)

The sum of the MSDS terms of the f block corresponding to the four horizontally
and vertically adjacent blocks can now be expressed as [2]:
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MSDS1 = εw + εe + εs + εn =

= (1/4)(3GT
0 −GT

1 )[(F − (−1)uW )T (F − (−1)uW )

+(F − (−1)uN)(F − (−1)uN)T + (E − (−1)uF )T (E − (−1)uF )

+(S − (−1)uF )(S − (−1)uF )T ](3G0 −G1)

(15)

2.2 Calculation of MSDS2 in the Frequency Domain

Using (6) the expression g1 − g2 which is used for the calculation of the MSDS
term εnw in (5) is found by:

g1 − g2 = f(0, 0)− nw(7, 7)−

−(nw(7,7)−nw(6,6)
2 + f(1,1)−f(0,0)

2 )
(16)

The above may be expressed in the frequency domain, using (10) as:

g1 − g2 = (GT
0 FG

0 −GT
7 NWG7)−

−(GT
7 NWG7−GT

6 NWG6

2 + GT
1 FG1−GT

0 FG0

2 )
(17)

Using (12), eq. (17) reduces to:

g1 − g2 =
3
2
GT

0 (F −NW )G0 − 1
2
GT

1 (F −NW )G1 (18)

Using (5), the MSDS term εnw is now easily computed. Likewise, similar expres-
sions are found for εne, εsw and εse, and from (7) the expression of the MSDS2

in the frequency domain is immediately obtained.

2.3 Local Minimization of MSDSt for Each Frequency

We now set to zero all frequencies apart from frequency (k, l). This implies that
we set to zero all elements of the DCT matrices, involved in the expressions
of MSDS1 and MSDS2 in the frequency domain, apart form the specific (k, l)
element. Thus, for the computation of MSDS1 using (15), we set to zero all
elements with frequencies (i, j) �= (k, l) of the matrices F , W , E, S and N . If pi

is the ith element of the vector (3G0−G1), the MSDSkl
1 for the specific frequency

(k, l) is now easily derived from (15):

MSDSkl
1 = 1

4 (p2
k(Sk,l − (−1)kFk,l)2 + p2

k(Fk,l − (−1)kNk,l)2

+p2
l (Fk,l − (−1)kWk,l)2 + p2

l (Ek,l − (−1)kFk,l)2)
(19)

where the subscripts k, l indicate the (k, l)th element of each matrix.
For MSDS2, we also set to zero all frequencies apart from the frequency (k, l).

Then, if ai = (G0)i, bi = (G1)i, and using (5) and (18), we obtain for the MSDS
term εkl

nw computed only for the (k, l) frequency the following expression:
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εkl
nw = (

9
4
a2

ka
2
l −

3
2
akalbkbl +

1
4
b2kb

2
l )[Fk,l −NWk,l]2 (20)

For all four diagonal blocks, the MSDSkl
2 for the specific frequency (k, l) is:

MSDSkl
2 = εkl

nw + εkl
ne + εkl

sw + εkl
se =

(9
4a

2
ka

2
l − 3

2akalbkbl + 1
4b

2
kb

2
l )[(Fk,l −NWk,l)2+

(SWk,l − Fk,l)2 + (SEk,l − Fk,l)2 + (Fk,l −NEk,l)2]

(21)

Setting the gradient of MSDSkl
1 and MSDSkl

2 to zero, we obtain the representation
corresponding to the minimum MSDSkl

t . Therefore, the imposition of

∂(MSDSkl
t )

∂Fk,l
=

∂(MSDSkl
1 +MSDSkl

2 )
∂Fk,l

= 0 (22)

results to:
2(p2

k + p2
l )Fk,l + 4RFk,l =

(Sk,l +Nk,l)(−1)kp2
k + (Wk,l + Ek,l)(−1)kp2

l

+(NWk,l +NEk,l + SWk,l + SEk,l)R

(23)

where R = 9a2
ka

2
l − 6akalbkbl + b2kb

2
l . Thus, (23) provides the following expres-

sion of the DCT coefficient at frequency (k, l) in terms of its eight neighboring
Laplacian corrected DCT coefficients in the subband-like domain:

Fk,l = (Sk,l+Nk,l)(−1)kp2
k+(Wk,l+Ek,l)(−1)kp2

l

2(p2
k+p2

l )+4R

+ (NWk,l+NEk,l+SWk,l+SEk,l)R

2(p2
k+p2

l )+4R

(24)

subject to:
FL

k,l ≤ Fk,l ≤ FU
k,l (25)

where FU
k,l and FL

k,l are the quantization upper and lower limit respectively.
Equation (24) subject to the constraint of equation (25) provides the cor-

rection of the (k, l) DCT coefficient for the reduction of the blocking effect in
B-DCT coded images (e.g. JPEG coded images).

3 Experimental Results

In this section, simulation results demonstrating the performance of the proposed
technique are presented. For this purpose, several images of different character-
istics were chosen and compressed using a JPEG picture.

In order to measure and evaluate the performance of our approach for block-
ing artifact reduction, the proposed constrained optimization method is applied
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Table 1. A: MSDSt per block of the nonsmoothed reconstructed image, B: MSDSt per
block of the reconstructed image processed by method [2], C: MSDSt per block of the
reconstructed image processed by proposed method

original image bit per pixel A B C
lenna 0.4096 bpp 3118 2980 2738

512 × 512 0.2989 bpp 3898 3397 3082
MSDSt=1608 0.1942 bpp 5413 4976 4537

peppers 0.4211 bpp 2513 2311 2210
512 × 512 0.3137 bpp 3013 2798 2595

MSDSt=2341 0.1989 bpp 4467 3877 3419
boat 0.4988 bpp 6145 5844 5334

512 × 512 0.3245 bpp 7539 7008 6619
MSDSt=4393 0.2417 bpp 8489 7823 7301

(a) (b)

(c) (d)

Fig. 1. (a) A portion of the JPEG coded “Lenna” image at 0.2989 bpp, (b) Reduction
of blocking artifacts with the proposed method at 0.2989 bpp, (c) A portion of the
JPEG coded “Peppers” image at 0.3137 bpp, (d) Reduction of blocking artifacts with
the proposed method at 0.3137 bpp

to the test images. Commonly used metrics, such as the mean square error or
signal to noise ratio were not employed, since they involve pixels of the entire
image and not just the pixels near the block boundaries. Rather, the value of the
MSDSt per block is used for the evaluation of our technique. The MSDSt is com-
puted along each block boundary, considering a common boundary between two
adjacent (vertical, horizontal or diagonal) blocks only once. Table 1 shows the
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image name, its size, the MSDSt of the original image (all in the first column),
the coding rate (bits per pixel) and the value of the MSDSt per image block for
the cases of the nonsmoothed reconstructed image, of the reconstructed image
processed by method of [2] and finally for the case of the reconstructed image
processed by the proposed algorithm.

As expected, in B-DCT coded images the value of MSDSt per block increases
compared to the original images, due to quantization. Our approach shows a sig-
nificant reduction of the MSDSt and clearly outperforms the method proposed in
[2]. A visual illustration of the performance of our method, showing the JPEG re-
constructed magnified portions of “Lenna” and “Peppers” images and the corre-
sponding reconstructed portions of the images processed by the proposed method
is shown in Fig. 1. These figures illustrate the efficiency of the proposed method.

4 Conclusions

When images are highly compressed using B-DCT transforms, the decompressed
images contains bothersome blocking artifacts. This paper presented a novel algo-
rithm applied entirely in the compressed domain, in order to reduce these block-
ing artifacts. A novel form of the criterion of Mean Squared Difference of Slope
(MSDS) is also introduced involving all eight neighboring blocks. MSDS is then
minimized for each frequency separately, producing a closed form for the correc-
tion terms for the DCT coefficients so as to achieve reduction of the blocking ef-
fect of coded images. Experimental evaluation of the performance of the proposed
technique showed its ability to detect and alleviate blocking artifacts effectively.
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Abstract. The H.264 video compression standard provides tools for coding im-
provements of at least 2 dB, in terms of PSNR, and at least 50% in bit rate sav-
ings as compared with MPEG-2 video compression standard. It is expected that 
the H.264/MPEG-4 AVC will take over the digital video market, replacing the 
use of MPEG-2 in most digital video applications. The complete migration to 
the new video-coding algorithm will take several years given the wide scale use 
of MPEG-2 in the market place today. This creates an important need for 
transcoding technologies for converting the large volume of existent video ma-
terial from the MPEG-2 into the H.264 format and vice versa. However, given 
the significant differences between the MPEG-2 and the H.264 encoding algo-
rithms, the transcoding process of such systems is much more complex to other 
heterogeneous video transcoding processes. In this paper, we introduce and 
evaluate two versions of a fast intra-frame mode decision algorithm to be used 
as part of a high-efficient MPEG-2 to H.264 transcoder. In this work, we utilize 
an architecture of pixel domain video transcoding but we use the DC coefficient 
of the MPEG-2 DCT 8x8 blocks. Our evaluation results show that the proposed 
algorithm considerably reduces the complexity involved in the intra-frame pre-
diction.  

1   Introduction 

Nowadays, the MPEG-2 video coding format [1] is being widely used in a number of 
applications from digital TV systems to video-on-demand services. The use of 
MPEG-2 technology represents billions of dollars of investment in the MPEG-2 infra-
structure.1During the last few years, technological developments, such as novel video 
coding algorithms, lower memory costs, and faster processors, are facilitating the 
design and development of highly efficient video encoding standards. Among the 
recent works in this area, the H.264 video encoding standard, also known as MPEG-4 
AVC, occupies a central place [2]. The H.264 standard, jointly developed by the ITU-
T and the MPEG committees, is highly efficient offering perceptually equivalent 
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quality video at about 1/2 of the bitrates offered by the MPEG-2 format.  These sig-
nificant bandwidth savings open the market to new products and services, including 
HDTV services at lower bitrates. Furthermore, given the relatively early stage of 
video services in mobile phones, it will be one of the first market segments to adopt 
H.264 video. However, these gains come with a significant increase in encoding and 
decoding complexity [3]. 

While the H.264 video standard is expected to replace MPEG-2 video the coming 
years, a significant amount of research is needed for developing efficient encoding 
and transcoding technologies. The transcoding of MPEG-2 video to H.264 format is 
particularly interesting given the wide availability and use of MPEG-2 video nowa-
days. Furthermore, there is a clear industry interest in technologies facilitating the 
migration from MPEG-2 to H.264. The coexistence of these technologies until the 
complete adoption of H.264 creates a need for technologies to transcode from the 
MPEG-2 into the H.264 format and vice versa. However, given the significant differ-
ences between the MPEG-2 and the H.264 coding algorithms, transcoding is a much 
more complex task compared to the task involved in other heterogeneous video 
transcoding architectures [4-8]. 

The H.264 employs a hybrid coding approach similar to that of MPEG-2 but dif-
fers significantly from MPEG-2 in terms of the actual coding tools used. The main 
differences are: 1) use of an integer transform with energy compaction properties; 2) 
an in-loop deblocking filter to reduce block artifacts; 3) multi-frame references for 
inter-frame prediction; 4) entropy coding; 5) variable block size for motion estimation 
and 6) intra-frame prediction. The H.264 standard introduces several other new cod-
ing tools aiming to improve the coding efficiency [2].  

In this paper, we focus our attention on the intra-frame prediction: one of the most 
stringent tasks involved in the encoding process. A complete overview of the H.264 
can be found in [9]. The rest of the paper is organized as follows. Section 2 provides a 
brief overview of the intra-frame prediction process used by the H.264 encoding stan-
dard. In Section 3, we introduce a fast intra-frame prediction algorithm suitable for 
the transcoding of MPEG-2 into H.264. In Section 4, we carry out a performance 
evaluation of the proposed algorithm in terms of its computational complexity and 
rate-distortion results. Finally, Section 5 concludes the paper.  

2   Intra-frame Prediction in H.264 

H.264 incorporates into its coding process, an intra-picture prediction (defined within 
the pixel domain) whose main aim is to improve the compression efficiency of the 
intra-coded pictures and intra-MBs. Intra prediction can result in significant savings 
when the motion present in the video sequence is minimal and the spatial correlations 
are significant. Throughout the paper, we will illustrate the principle of operation of 
the intra-frame prediction modes as applied to the luminance and chrominance blocks. 

While macro blocks (MB) of 16x16 pixels are still used, predicting a MB from the 
previously encoded MBs in the same picture is new in H.264. For luminance compo-
nent, an MB may make use of 4x4 and 16x16 block prediction modes, referred to as 
Intra_4x4 and Intra_16x16, respectively. Recently, the Intra_8x8 block prediction 
mode has been added as part of the Fidelity Range Extension (FRExt) of the standard. 
There are nine 4x4 and 8x8 possible block prediction directions and four 16x16 block 
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prediction directions. Figure 1 depicts the nine and four prediction directions for the 
4x4, 8x8 and 16x16 prediction modes, respectively. For chrominance component, an 
MB makes use of 8x8 block prediction mode only. There are four 8x8 possible block 
prediction directions. The prediction directions for the 8x8 prediction mode (not 
shown in the figure) are similar to the ones used for the 16x16 prediction mode in the 
luminance component. 
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Fig. 1. Prediction Modes for Luminance Component. (a) 4x4. (b) 8x8. (c) 16x16. 

These intra prediction modes include a directional prediction greatly improving the 
prediction in the presence of directional structures. With the intra-frame prediction, 
the I-pictures can be encoded more efficiently than in MPEG-2, which does not sup-
port intra-frame prediction. 
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For each MB, and for each color component (Y,U,V), one prediction mode and one 
set of prediction directions is kept. The H.264 encoder selects the best combination 
mode/direction by using the Sum of Absolute Errors (SAE). This implies that for each 
existing direction of each mode, the predictor within the pixel-domain is created from 
the boundary pixels of the current partition and the SAE costs are evaluated. The best 
combination of mode/direction is determined corresponding to the one exhibiting the 
minimum SAE cost. The residual is encoded using a 4x4 integer based transform. In 
the next section, we present a fast intra-frame mode decision algorithm suitable for 
transcoding video material from the MPEG-2 into the H.264 format. We achieve very 
high computational savings by accelerating the estimation process of intra-frame 
prediction of H.264 using the DC coefficient of the MPEG-2 DCT 8x8 blocks.  

3   FIMDA: Fast Intra-frame Mode Decision Algorithm 

Our approach simplifies the intra-frame prediction by making use of the DC coeffi-
cients available from the decoding process of the MPEG-2. However, due to the pres-
ence of three different sizes of blocks used by the H.264, namely 4x4, 8x8 and 16x16, 
and that the MPEG-2 standards use blocks of 8x8, the evaluation of the prediction 
mode involves and intermediate scaling process. In the following, we describe one by 
one the main steps of our algorithm. 

3.1   Computation of the DC Coefficients of the Original Blocks 

In an MPEG-2/H.264 video transcoder, once having decoded the MPEG-2 video, 
besides the uncompressed video, the DC coefficient of the 8x8 blocks (Y,U,V) is 
readily available to the H.264 video encoder. Since the MPEG-2 makes use of only 
8x8 blocks, we need to devise a mechanism allowing us to properly compute the DC 
coefficients of the 4x4 and 16x16 blocks. Figures 2a and 2c depict the procedure for 
computing the DC coefficients of the four 4x4 blocks and the one associated to the 
16x16 block. The DC coefficients of the 8x8 blocks are directly obtained by reusing 
the information coming from the MPEG-2 decoding process (Figure 2b). 

As seen from Figure 2a, the process to obtain the four DC coefficients of 4x4 
blocks involves first applying the inverse DCT to each 8x8 block of the decoded 
MPEG-2 picture. This step regenerates the 8x8 block in the space domain (pixel do-
main values are needed anyway). The process to obtain the DC coefficients in 4x4 
blocks consists in the sum of all the pixel of the block divided by 4. In this case, we 
do not reuse the information of the DC coefficients of MPEG-2 8x8 blocks, because 
this solution is faster than other mechanisms, like the proposed in the paper [10]. For 
obtain the DC coefficients of the 8x8 blocks (see Figure 2b), no additional operation 
are required. This information is available in the decoded sequence. 

Regarding the computation of the DC coefficient of the 16x16 block, this one can 
be obtained as follows, 
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this is to say, by adding the four DC coefficients of the four corresponding 8x8 blocks 
and then dividing the result by two. Equation 1 is simply derived from the fact that the 
DC coefficient of an NxN block is nothing else but the mean value of all the pixels 
within the block. This conversion procedure is depicted in Figure 2c. 
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Fig. 2. Resolution conversion method (a) 8x8 to 4x4, (b) 8x8 to 8x8, (c) 8x8 to 16x16 

3.2   Computation of the DC Coefficients of the H.264 Predictors 

The computation of the DC coefficient of the intra luma and chroma block prediction 
directions of the H.264 standard is a straightforward procedure.  Let’s take the exam-
ple of computing the Vertical Predictor (P0) involved in the 4x4 intra luma mode 
prediction.  The predictor is created by copying the values of the upper border pixels 
into all the entries within the same column (see Figure 3). According to the DCT, the 
DC coefficient of the predictor is given by: 

DC = a + b + c + d.          (2) 

In this simple form, we are able to compute the DC coefficients of the Vertical 
Prediction. Similarly, this process can be applied for obtaining all the other predictors. 
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Fig. 3. Example of creation of a 4x4 predictor 
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3.3   Computation of the Prediction Mode and Predictors 

The third step of our proposed algorithm consists in obtaining the prediction mode 
and predictors for each macroblock and for each color component. In order to obtain 
the overall best predictors over all the prediction modes for a given macroblock, we 
proceed as follows.  In the case of the 16 x16 prediction mode, the best predictor is 
simply obtained by taking the one whose DC coefficient exhibits the lowest absolute 
(ABS) difference with respect to the DC coefficient of the original block.  Similarly to 
the 16x16 prediction mode, for the 8x8 prediction mode, we determine the predictor 
whose DC coefficient exhibits the lowest absolute difference with respect to the DC 
coefficient of  the original block for each one of the four 8x8 blocks of the macrob-
lock. Similarly, for the 4x4 prediction mode, the best predictor is obtained for each 
one of the 16 4x4 blocks of the macroblocks. As a further feature allowing us to speed 
up this process, we only consider the use of the prediction directions 0, 1 and 2 (for all 
luma and chroma predictions modes). We base this choice by having studied a large 
number of images (more than 120.000 samples) available in the database reported in 
[11], these three predictors are used in more than 70% of the times with [12]. 

In this point, we evaluate the best prediction mode (4x4, 8x8 or 16x16 mode)  for 
coding a macroblock in two different ways: 1) DC-ABS. The prediction mode chosen 
will be the one which the accumulate errors is lowest. This accumulate error is the 
sum, in absolute value, of the differences between de DC coefficients of the original 
blocks and the DC coefficients of their respective prediction directions. 2) DC-ABS 
pixel. The prediction mode chosen will be the one which the accumulate error is low-
est too. However, this accumulate error is now the sum, in absolute value, of the dif-
ference pixel by pixel between the original blocks and their respective prediction 
directions(in the pixel domain).  

As we will show in the following section, the proposed algorithm will significantly 
reduce the number of operations involved in the calculation of the intra predictors 
when compared to the full estimation of the H.264 standard.         

4   Performance Evaluation 

In order to evaluate our Fast Intra-Frame Mode Decision Algorithm (FIMDA), we 
have implemented the proposed approach based on the H.264 reference software [12] 
(version 9.3). The metrics we have been interested are the computational cost and rate 
distortion function. Throughout our experiments, we have used various video se-
quences (in 4:2:0 format) exhibiting different spatial characteristics and different size 
formats (CCIR, CIF and QCIF). We use Q factors from QP=0 to QP=50 (correspond-
ing to the full H.264 QP range). Every frame of each sequence was encoded as I-
frame in order to obtain results for intra-frame prediction only. 

Figure 4 shows the mean number of operations per MB used for the H.264 full es-
timation approach and for the two versions of our Fast Intra-Frame Mode Decision 
algorithm, showing the high gains on the reduction of computational complexity char-
acterizing our proposed scheme.  
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Figures 5 to 7 show the RD results of applying the full estimation algorithm and 
our proposed intra-frame prediction algorithm to six different video sequences.  As 
seen from the figures, the PSNR obtained when applying our algorithm deviates 
slightly from the results obtained when applying the considerable more complex full 
estimation procedure. As expected, the difference is less noticeable at lower bit rates: 
the blocking effect is more noticeable, i.e. the DC coefficient has a heavier weight. 
Based on the results depicted in Figures 5-7, depending on the image quality require-
ment, the use of the DC-ABS scheme may prove a viable solution when computa-
tional cost may be an issue. 

5   Conclusions 

In this paper, we have focused our attention on the intra-frame prediction: one of the 
most stringent tasks involved in the encoding process. In this work, we have studied 
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two versions of a new fast intra-frame mode decision algorithm to be used in the im-
plementation of MPEG-2 to H.264 transcoders. Our results show that the two versions 
of the proposed algorithm are able to maintain a good picture quality while considera-
bly reducing the number of operations to be performed. Based on the results obtained, 
depending on the image quality requirement, the use of the DC-ABS scheme may 
prove a viable solution when computational cost may be a very important require-
ment. The proposed algorithm can be used as basis for a full low complexity 
transcoder applicable in the full QP range. Our future plans include reusing the infor-
mation coming out from the MPEG-2 for speeding-up the inter frame prediction. 
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Abstract. Rate-distortion optimization is the key technique in video coding 
standards to efficiently determine a set of coding parameters. In the R-D 
optimization for H.264 I-frame encoder, the distortion (D) is measured as the 
sum of the squared differences (SSD) between the reconstructed and the original 
blocks, which is same as MSE. Recently, a new image measurement called 
Structural Similarity (SSIM) based on the degradation of structural information 
was brought forward. It is proved that the SSIM can provide a better 
approximation to the perceived image distortion than the currently used PSNR 
(or MSE). In this paper, a new rate-distortion optimization for H.264 I-frame 
encoder using SSIM as the distortion metric is proposed. Experiment results 
show that the proposed algorithm can reduced 2.2~6.45% bit rate while 
maintaining the perceptual quality. 

1   Introduction 

As the rapid development of digital techniques and increasing use of Internet, image 
and video compression plays a more and more important role in our life. The newest 
international video coding standard H.264 adopts many advanced techniques, such as 
directional spatial prediction in I-frame encoder, variable and Hierarchical block 
transform, arithmetic entropy coding, multiple reference frame motion compensation, 
deblocking etc. All these novel and advanced techniques make it provide 
approximately a 50% bit rate savings for equivalent perceptual quality relative to the 
performance of prior standards [1]. Except for the new techniques, the operational 
control of the source encoder is still a key problem in H.264, and it is still optimized 
with respect to the rate-distortion efficiency using Lagrangian optimization techniques, 
just like the prior standards, MPEG-2, H.263 and MPEG-4. In the R-D optimization 
function for H.264 intra prediction, distortion is measured as SSD between the 
reconstructed and the original blocks, which has the same meaning with MSE. 
Although Peak Signal-to-Noise Ratio (PSNR) and MSE are currently the most widely 
used objective metrics due to their low complexity and clear physical meaning, they 
were also widely criticized for not correlating well with Human Visual System (HVS) 
for a long time [2]. During past several decades a great deal of effort has been made to 
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develop new image quality assessment based on error sensitivity theory of HVS, but 
only limit success has been achieved by the reason that the HVS has not been well 
comprehended. 

Recently a new philosophy for image quality measurement was proposed, based on 
the assumption that the human visual system is highly adapted to extract structural 
information from the viewing field. It follows that a measure of structural information 
change can provide a good approximation to perceived image distortion [3]. In this new 
theory, an item called Structural Similarity (SSIM) index including three comparisons 
is introduced to measure the structural information change. Experiments showed that 
the SSIM index method is easy to implement and can better corresponds with human 
perceived measurement than PSNR (or MSE). Thus, in this paper we propose to 
employ SSIM in the rate-distortion optimizations of H.264 I-frame encoder to choose 
the best prediction mode(s). 

The remainder of this paper is organized as follows. In section II, the I-frame coding 
of H.264 and the idea of SSIM is summarized. The detail of our proposed method is 
given in section III. Section IV presents the experimental results to demonstrate the 
advantage of the SSIM index method. Finally, section V draws the conclusion. 

2   H.264 I-Frame Encoder and SSIM 

2.1   H.264 I-Frame Encoder 

In H.264 I-frame encoder, each picture is partitioned into fixed-size macroblocks  (MB) 
that cover a rectangular area of 16×16 samples of the luma component and 8×8 samples 
of each chroma component. Then each macroblock is spatially predicted using its 
neighbouring samples of previously coded blocks which are to the left and/or above the 
block, and the prediction residual is integer transformed, quantized and transmitted 
using entropy coding. The latest JVT reference software version (JM92) of H.264 [4] 
provides three types of intra prediction denoted as intra_16x16, intra_8x8 and 
intra_4x4. The intra_16x16 which supports 4 prediction modes performs prediction of 
the whole macroblock and is suited for smooth area, while the intra_8x8 and intra_4x4 
which performs 8×8 and 4×4 block respectively support 9 prediction modes and are 
suited for detailed part of the picture. The best prediction mode(s) are chosen utilizing 
the R-D optimization[5] which is described as: 

)|,,()|,,()|,,( QPMODERQPMODEDQPMODEJ MODE cscscs λ+=  . (1) 

In the above formula, the distortion D(s,c,MODE|QP) is measured as SSD between 
the original block s and the reconstructed block c, and QP is the quantization parameter, 
MODE is the prediction mode. R(s,c,MODE|QP) is the bit number coding the block. 
The modes(s) with the minimum J(s,c,MODE|QP) are chosen as the prediction mode(s) 
of the macroblock. 

2.2   Structural Similarity (SSIM) 

The new idea of SSIM index is to introduce the measure of structural information 
degradation, which includes three comparisons: luminance, contrast and structure [3]. 
It’s defined as 
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where ( )yx,l  is Luma comparison, ( )yx,c  is Contrast comparison and ( )yx,s  is 

Structure comparison.  They are defined as: 
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where x and y are two nonnegative image signals to be compared, xμ  and yμ  are the 

mean intensity of image x  and y  respectively, xσ  and yσ  are the standard deviation 

of image x  and y  respectively, xyσ is the covariance of image x and y. In fact, 

without 3C , the equation (5) is the correlation coefficient of image x and y, and C1, C2 

and C3 are small constants to avoid the denominator being zero. It’s recommended  
by [3]: 

( )2

11 LKC = , ( )2

22 LKC = , 2
CC 2

3 =  . (6) 

where K1,K2<<1 and L is the dynamic range of the pixel values (255 for 8-bit grayscale 
images). In addition, the higher the value of )( yx,SSIM  is, the more similar the image 

x and y are. 

3   The R-D Optimization Using Structural Similarity in H.264 

As the SSIM index method performs better as image quality measurement than MSE 
(SSD), we propose to replace the SSD with the SSIM index in the R-D optimization of 
H.264 I-frame encoder. The quality of the reconstructed picture is higher when its 
SSIM index is greater while the SSD performs the other way. Therefore the distortion 
in our method is measured as: 

( ) ),(SSIM1QPMODE,,D cscs −=  . (7) 

where s and c are the original and reconstructed image block respectively. 
Due to the change of distortion measure, the Lagrangian multiplier should be 

modified correspondingly. According to the relation between SSIM(s,c) and 
R(s,c,MODE|QP) and motivated by the theory in [6] and [7], the new Lagrangian 
multiplier in our algorithm is  
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5/)60(211.1 −∗= QP
MODEλ  . (8) 

where QP denotes the quantization parameter. Consequently, the new R-D cost 
function can be written as: 

)|,,(),(1)|,,( QPMODERSSIMQPMODEJ MODE cscscs λ+−= . (9) 

Our new algorithm is using SSIM index instead of SSD as the distortion measure in 
RDCost_for_4x4IntraBlock, RDCost_for_8x8IntraBlock and RDCost_for_macro- 
blocks, but the decisions of finding the best mode for Intra_16x16 which uses 
Hadamard transform remain unchanged. The SSIM indexes of all types of prediction 
blocks are computed within 4×4 nonoverlapping square windows, while slide window, 
which is of 16×16, is used to compute the whole reconstructed image quality MSSIM 
(mean SSIM). Furthermore, the parameter setting here is chosen as follows: K1=0.01, 
K2=0.03, L=255. 

4   Experimental Results 

Experiments are carried out using several 8 bit/pixel grayscale images of various sizes. 
They are Apple, Claire, MissA and Salesman of 176×144, Bridge and Camera of 
256×256, Airplane, Baboon, Lena and Sailboat of 512×512, Pentagon and Man of 
1024×1024. All the modifications are based on the JVT reference software JM92 
program [4]. Results in terms of total bits of the compressed image, MSSIM of the 
whole reconstructed image and the comparison between the two methods are listed in 
Table 1~3 under the Quantization Parameter (QP) equal to 10, 20 and 30 respectively.  

 
 

Table 1. Simulation results with QP=10 

H.264-JM92 Our method Comparison (%) 
Image 

Bits MSSIM Bits
Bit 

decrement
MSSIM 

decrement
Apple 53664 0.9980 50200 0.9973 6.45 0.07
Claire 39056 0.9976 37480 0.9973 4.04 0.03
MissA 42072 0.9965 40160 0.9959 4.54 0.06

Salesman 94760 0.9994 91800 0.9991 3.12 0.03
Bridge 335464 0.9997 327456 0.9995 2.39 0.02
Camera 227768 0.9976 218104 0.9968 4.24 0.08
Airplane 722888 0.9973 687392 0.9963 4.91 0.10
Baboon 1331024 0.9993 1294408 0.9990 2.75 0.03

Lena 874480 0.9982 835024 0.9973 4.51 0.09
Sailboat 1042040 0.9984 1003040 0.9978 3.74 0.06

Man 4068144 0.9986 3911080 0.9980 3.86 0.06
Pentagon 4589568 0.9991 4437472 0.9987 3.31 0.04
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Results in Table 1 to 3 show that the proposed algorithm can achieve about 
2.2~6.45% bits saving while maintaining almost the same MSSIM index. In order to 
illustrate the perceptual quality of the reconstructed image, this paper shows the 
original and reconstructed images with the largest MSSIM decreased in Figure 1, from 
which it’s clear that the visual difference between the two reconstructed images using 
H.264 JM92 (Fig.1 b) and our proposed algorithm (Fig.1 c) can hardly be found. That 
means the new R-D optimization algorithm can achieve about 2.2~6.45% bit saving 
while maintaining almost the same perceptual quality. 

 
 

   

(a) Baboon (original) (b) Encoded by H.264 I-frame 
encoder with QP=30 

(c) Encoded by our method 
with QP=30 

Fig. 1. The reconstructed image by the two methods 

 

Table 2. Simulation results with QP=20 

H.264-JM92 Our method Comparison (%) 
Image 

Bits
MSSI
M

Bits
Bit 

decrement
MSSIM 

decrement
Apple 16728 0.9889 15984 0.9879 4.45 0.10 
Claire 17800 0.9941 17088 0.9934 4.00 0.07 
MissA 16088 0.9898 15296 0.9885 4.92 0.13 

Salesman 51984 0.9951 50192 0.9938 3.45 0.13 
Bridge 209880 0.9968 203096 0.9958 3.23 0.10 
Camera 108824 0.9818 104976 0.9802 3.54 0.16 
Airplane 293744 0.9833 280152 0.9815 4.63 0.18 
Baboon 821424 0.9928 789032 0.9907 3.94 0.21 

Lena 366624 0.9813 349608 0.9790 4.64 0.23 
Sailboat 548400 0.9858 524272 0.9834 4.40 0.24 

Man 2039408 0.9859 1938360 0.9829 4.95 0.30 
Pentagon 2595528 0.9906 2477960 0.9878 4.53 0.28 
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5   Conclusion 

In this paper, we propose a new R-D optimization using the structural similarity (SSIM) 
instead of SSD for quality assessment in H.264 I-frame encoder. Experiments show 
that it can reduce approximately 2.2~6.45% bit rate while maintaining the same 
perceptual quality. The improvement of coding efficiency is not very large, but the new 
idea and the beginning results are inspiring.  Thus, even better results maybe obtained 
by deeply studying. Furthermore, the proposed R-D optimization can be transplanted 
easily into motion estimation of inter frame coding. 
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Abstract. A shape-adaptive search is defined based on the BISK sche-
me and it is applied to sign encoding and magnitude refinement of im-
ages. It can be generalized to a complete bitplane encoder whose perfor-
mance is comparable to that of other state-of-the-art encoders.

1 Introduction

Some competitive wavelet-based bitplane encoders, e.g. SPIHT [1] or SPECK [2],
have no specific method to encode the sign of recently found significant coeffi-
cients nor the magnitude refinement bits; other encoders, e.g. JPEG2000 [3],
EZBC [4], use an adaptive contextual arithmetic coder. From another perspec-
tive, Deever et al. [5] propose an alternative method that uses the wavelet trans-
form properties to encode the transformed coefficients sign. Here we propose to
adapt the notion of shape-adaptive coding [6] to define new methods to encode
both the sign and the refinement bits of the coefficients.

The aim of shape-adaptive coding is to compress an image with a non-regular
boundary assuming that both the encoder and the decoder know this boundary.
Usually the image is located within a larger rectangular frame; pixels belonging
to the image are named opaque pixels, pixels inside the frame but not belonging
to the image are named transparent pixels. Some of the bitplane encoders used
for shape-adaptive coding consist of well known regular-shape bitplane encoders,
but treating only those bits corresponding to the opaque zone. This is the case of
OB-SPIHT and OB-SPECK [7,8,9]. On the other hand, BISK [6,10] is a method
based on SPECK, with the novelty that it alternates set partitioning with opaque
zone shrinking. This shrinking step consists of reducing each partitioned subset
to the minimum rectangular set containing all its opaque coefficients.

The approach we present here consists of encoding the sign bits and the re-
finement bits as if they were the coefficients of an irregular-shape image. For the
case of sign encoding, from a whole image we consider opaques those coefficients
that have been found significant in the last significance pass; then we encode the
sign inside this opaque zone by using a BISK-based search. Similarly, to encode
the refinement bits in a given bitplane, we split all the previously found signifi-
cant coefficients in various opaque zones: two coefficients are placed in the same
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opaque zone if all the first bits of their binary representation (up to the bitplane
previous to the one currently being encoded) are the same; then, for each of these
opaque zones we encode the refinement bits using the BISK-based search again.

Although the proposed methods for encoding the sign and the magnitude
refinement bits may be considered independently and may be integrated to other
bitplane encoders, the search scheme suggests a new complete wavelet transform-
based bitplane encoder defined by a Repeated BISK-based search (REBISK).
We will see that for some experiments, REBISK may give similar or even better
results than other state-of-the-art encoders.

In Section 2 we define two-valued shape-adaptive search and describe both
the classical method and the BISK-based search. In Section 3 we show how
it can be applied to magnitude refinement and also to the significance pass. In
Section 3.2 the two-valued shape-adaptive search is applied to sign encoding and
the whole REBISK algorithm is stated. In Section 4 a performance comparison
for REBISK, BISK, SPECK, SPIHT and JPEG2000 is provided.

2 Two-Valued Shape-Adaptive Search

The framework for the two-valued shape-adaptive search problem (TVSAS) is
an irregular-boundary image with only two possible values (1/0 or +/−) where

procedure BBS(BF)
{

if BF is empty then
for each wavelet transf subband S

SS=Shrink(S)
#i.e. SS is the
#minimal rectangle
#containing S

if SS is not empty
append SS to BF

append empty block to BF

S = extract first block of BF
while S is not empty do

if a in S
emit 1
Partition (S,BF)

else
emit 0

S = extract first element of BF

while BF is not empty do
S = extract first element of BF
Partition (S,BF)

}

procedure Partition(S,BF)
{

horizontal split S into S1 and S2:
S1: size floor(y(S)/2) by x(S)

#where
#y(S) is the n. of rows of S
#x(S) is the n. of columns of S

S2: size (y(S)-floor(y(S)/2)) by x(S)
Shrink(S1)
Shrink(S2)

if S1 is not empty then
vertical split S1 into s1 and s2:

s1: size y(S1) by floor(x(S1)/2)
s2: size y(S1) by (x(S1)-floor(y(S1)/2)

Shrink(s1)
Shrink(s2)

if S2 is not empty then
vertical split S2 into s3 and s4:

s3: size y(S2) by floor(x(S2)/2)
s4: size y(S2) by (x(S2)-floor(y(S2)/2)

Shrink(s3)
Shrink(s4)

for i from 1 to 4
if si is not empty
if a in si then

emit 1
if si is not a single coefficient

append si to BF
else

emit 0
}

Fig. 1. Functions used by the BISK-based search
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the boundary is known by both the coder and the decoder. The aim is to define
a coding method that determines the value of each point in the image. This is
the case of determining the sign of recently found significant bits, or also the
case of determining the refinement bits at a given bitplane.

We say classical search (CS) when referring to the method that scans the
whole image in a predefined order and just sends the value of each point. On
the other hand, we consider a BISK-based search (BBS). Suppose that the two
possible values are a and b, and that positions with value a are to be determined.

We use a First-In-First-Out (FIFO) structure whose nodes are image blocks.
This FIFO structure of blocks, named BF, may be either initialized to an empty
FIFO, or to a FIFO containing somehow selected blocks. The blocks in BF have
to be evaluated and, if needed, partitioned. After the partitioning, each of the
resulting parts containing at least one a is appended back to the BF. An empty
block is inserted after the initial selected blocks to distinguish these blocks, which
must be tested for significance, from those appended after partitioning a block
(see Figure 3). Now, following the BISK scheme which alternates the SPECK
block partitioning with the shrinking step, we can define the BBS procedure
written down in Figure 1 and exemplified in Figure 3.

Notice that for the BBS, each block can be partitioned into 1, 2, 3 or 4
blocks, while for the original BISK, each block is partitioned into 1 or 2 blocks.
The elements in each set of 1, 2, 3 or 4 bits denoting the significance of the
corresponding blocks are encoded together to save bits using an ad hoc mapping.

3 TVSAS Applied to Encoding of Coefficients

3.1 Magnitude Encoding

E–Sets and E–TVSAS. Consider a wavelet transformed image as a set I of
coefficients. Let min, med and max be three values with min � med � max.
Define the following subsets of I:

E–opaques(min, med, max)= {x ∈ I | min � |x| < max}.
E–significants(min, med, max)= {x ∈ I | med � |x| < max}.
E–insignificants(min, med, max)= {x ∈ I | min � |x| < med}.

Denote E–TVSAS(min, med, max) a TVSAS method that classifies E–signifi-
cants and E–insignificants from the irregularly bounded set E–opaques. As exam-
ples of E–TVSAS methods, we consider:

E–CS: For each element in E–opaques, emit a 1 if it is in E–significants or a 0
otherwise.

E–SBBS: Determine the elements in E–significants among the ones in E–opaques
by using the BISK-based search.

E–IBBS: Determine the elements in E–insignificants among the ones in E–
opaques by using the BISK-based search.

E–comb: Shortest chain in { 0|E–CS, 10|E–SBBS, 11|E–IBBS }.
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Following the same ideas, one can define the sets E+-opaques, E+–signifi-
cants, and E+–insignificants (respectively E−–opaques, E−–significants, and E−–
insignificants) containing the positive (respectively negative) values of the analo-
gous E–sets. Then E+–TVSAS and E−–TVSAS methods can be defined as for
E–sets.

Significance Pass. Let MAX be the maximum absolute value among the
coefficients in I and threshold T = 2�log2(MAX)�. The following procedures
are consecutive significance passes: E–TVSAS(0,T,2T), E–TVSAS(0,T/2,T), E–
TVSAS(0,T/4,T/2),. . .

Notice that if E–SBBS is used as the E–TVSAS method, and at each step
the structure BF is initialized with the insignificant blocks from the previous
bitplane, these significance passes are approximately the significance passes of
SPECK. The unique difference is that SPECK uses its I sets while here we only
consider rectangular sets.

Refinement Passes. An E–TVSAS(T, 3T/2, 2T) procedure after the sec-
ond significance pass, namely E–TVSAS(0, T/2, T), gives the first magnitude
refinement pass. Similarly, the three procedures E–TVSAS(T/2, 3T/4, T), E–
TVSAS(T, 5T/4, 3T/2) and E–TVSAS(3T/2, 7T/4, 2T) after the third signifi-
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cance pass E–TVSAS(0, T/4, T/2) give the second magnitude refinement pass,
and so on. Thus, the following algorithm yields a coding method for the absolute
values in I.

for t from T to 1 by -1
for min from 0 to 2T-2t by 2t

E-TVSAS(min, min+t, min+2t);

Figure 2 shows the E–sets used for the significance pass and for the refinement
passes.

3.2 Sign Encoding

As before, let min and max be two values with min � max and define the
subset S–opaques(min,max)={x ∈ I | min � |x| < max}. We also denote
S–TVSAS(min,max) a TVSAS method that classifies the positive and nega-
tive values in the (irregularly bounded) set S–opaques(min,max). As S–TVSAS
methods, we consider:

S–CS: For each element in S–opaques, emit a 1 if it is positive or a 0 otherwise.
S–PBBS: Determine the positive values in S–opaques by using the BISK-based

search.
S–NBBS: Determine the negative values in S–opaques by using the BISK-based

search.
S–comb: Shortest chain in { 0|S–CS, 10|S–PBBS, 11|S–NBBS }.

3.3 Image Coding

Now, the following algorithm yields a complete quality progressive image coding
method.

for t from T to 1 by -1
E-TVSAS(0, t, 2t); /* Significance Pass */
S-TVSAS(t, 2t); /* Sign encoding */
for min from 2t to 2T-2t by 2t /* Refinement Pass */

E-TVSAS(min, min+t, min+2t);

The complete encoding algorithm that uses E+/E−–comb and S–comb as the
E–TVSAS and S–TVSAS methods is named REBISK because of the Repeated
E–BISK-based search.

4 Experimental Results

The lossy compression performance of REBISK is here compared to other coding
systems for some images of the ISO/CCITT Corpus.

The ISO/CCITT Corpus is the corpus taken by the Joint Photographic Ex-
perts Group to evaluate the performance of classical JPEG encoding method on
still images. It consists of 9 images (balloons, barbara1, barbara2, board, boats,
girl, goldhill, hotel and zelda) of size 720×576. The original images have been



BISK Scheme Applied to Sign Encoding and to Magnitude Refinement 447

b a a
b b a

b a
a b

b b a
b

a b a a
b b a b b

BF:
b

b
→ a →

a a
b a

b a
b

→

b

a b
b b a

→

b a
b

a a
b b

→ ∅

0

BF: a →

a a
b a

b a
b

→

b

a b
b b a

→

b a
b

a a
b b

→ ∅

1

BF:

a a
b a

b a
b

→

b

a b
b b a

→

b a
b

a a
b b

→ ∅

1 1101

BF:

b

a b
b b a

→

b a
b

a a
b b

→ ∅ → a
b
→ a

a

1 001

BF:

b a
b

a a
b b

→ ∅ → a
b
→ a

a
→ a b

b a

1 1011

BF: ∅ → a
b
→ a

a
→ a b

b a
→ b a → a

b b

BF:
a

b
→ a

a
→ a b

b a
→ b a → a

b b
10

BF:
a

a
→ a b

b a
→ b a → a

b b
11

BF:
a b
b a

→ b a → a
b b

1001

BF: b a → a
b b

01

BF:
a

b b
100

Fig. 3. Example of BISK based search. The positions with value a are to be determined
among the opaque positions of the irregular table at the top of the page.
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Table 1. PSNR performance comparison (in dB) for boats

Rate
in bpp REBISK BISK SPECK SPIHT JPEG2K

0.0015 17.51 17.15 17.12 16.56 14.15
0.0026 19.38 18.52 18.43 18.35 14.15
0.0056 20.82 20.42 20.38 20.18 14.15
0.0137 22.72 22.53 22.50 22.38 21.56
0.0386 25.16 25.15 25.14 25.03 24.85
0.1029 28.13 28.18 28.17 28.14 28.17
0.2446 31.74 31.81 31.84 31.82 32.05
0.4958 35.69 35.79 35.82 35.81 36.14
0.9214 39.81 39.93 39.96 39.95 40.30

Table 2. PSNR performance comparison (in dB) for barbara2

Rate
in bpp REBISK BISK SPECK SPIHT JPEG2K

0.0019 16.39 16.08 16.08 15.97 13.68
0.0032 18.34 17.81 17.84 17.76 13.68
0.0062 19.55 19.37 19.38 19.13 13.68
0.0152 21.05 20.97 20.97 20.87 20.03
0.0442 22.73 22.73 22.74 22.62 22.61
0.1592 25.86 25.84 25.84 25.71 26.02
0.3784 30.05 30.01 30.05 29.98 30.59
0.7481 34.54 34.52 34.56 34.53 35.27
1.3126 39.10 39.15 39.19 39.17 39.78

Table 3. PSNR performance comparison (in dB) for girl

Rate
in bpp REBISK BISK SPECK SPIHT JPEG2K

0.0017 18.37 17.10 17.10 16.76 14.37
0.0028 20.16 19.03 19.10 19.09 14.37
0.0052 21.81 21.30 21.38 21.16 14.37
0.0120 24.02 23.85 23.86 23.74 21.91
0.0287 26.20 26.19 26.19 26.06 25.55
0.0744 29.11 29.14 29.15 29.08 28.97
0.1748 32.37 32.43 32.45 32.41 32.46
0.3811 35.95 36.02 36.05 36.03 36.21
0.7685 39.70 39.80 39.83 39.79 40.04

cut to images of size 512×512 (centered in the original image) with 8 bits per
pixel resolution.

BISK, SPIHT and SPECK results are produced with QccPack [11], version
0.47. JPEG2000 results are produced with Kakadu [12], version v4.4. Both Qcc-
Pack and Kakadu are employed with the default parameters, except for the
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Original REBISK (25.86 dB)

BISK (25.84 dB) SPECK (25.84 dB)

SPIHT (25.71 dB) JPEG2000 (26.02 dB)

Fig. 4. Visual comparison for barbara2 at 0.16 bpp, compression factor about 50:1

type of DWT, the number of DWT levels and the transmission rate, selected
accordingly. For all coding techniques, five levels of the 9/7 DWT are applied.

The distortion has been measured using the Peak Signal to Noise Ratio
(PSNR), a measure accounting for the similarity between the original image
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I and the recovered image I∗, given in dB; for images with B bit-depth resolu-
tion per pixel, PSNR = 10 log10

(2B−1)2

MSE , where the Mean Square Error (MSE) is

given by MSE = 1
Nx

1
Ny

∑Nx

i

∑Ny

j (Iij − I∗ij)
2.

Tables 1, 2 and 3 show the rate distortion performance of the different coding
techniques when applied to boats, barbara2 and girl. The bit rates provided
correspond to the bit budget spent by REBISK for each successive bitplane.
Figure 4 allows to visually compare the reconstruction quality of the evaluated
coding systems. The depicted area, whose size is 128× 128, belongs to the rigth
bottom corner of barbara2. The transmission rate is 0.1592 bpp, which corres-
ponds to a compression factor of approximately 50:1.

5 Conclusions

In this paper we have introduced a new approach for encoding sign and refine-
ment bits. Each refinement pass and each sign encoding procedure is seen as
a two-valued shape-adaptive search. To proceed with each search we defined
BISK-based schemes which combine the block partitioning of SPECK with the
block shrinking of BISK. In addition, the significance pass can be treated also as
a two-valued search and, in this way, the whole bitplane encoder REBISK has
been defined by a repetition of the BISK-based scheme. For high compression
ratios, REBISK provides better coding performance than other state-of-the-art
coding techniques. For moderate bit rates (compression ratio 8:1 for 8 bpp im-
ages), REBISK is not as competitive as the other techniques, probably because
it is the single technique not employing any adaptive arithmetic encoder. The
behavior difference between high compression ratios and low compression ratios
may be due to the advantage of the correlation between magnitudes having the
same most significant bits up to a certain point, expected to be higher for the
first bitplanes.
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Abstract. This paper  presents a new concept of skeletonization which pro-
duces a graph containing all the topological information needed to derive a 
skeleton of noisy shapes, the proposed statistical method is based on Legendre 
moment theory controlled by Maximum Entropy Principle (M.E.P.). We pro-
pose a new approach for estimating the underlying probability density function 
(p.d.f.) of input data set. Indeed the p.d.f. is expanded in terms of Legendre 
polynomials by means of the Legendre moments. Then the order of the expan-
sion is selected according to the (M.E.P.). The points corresponding to the local 
maxima of the selected p.d.f. will be true points of the skeleton to be extracted 
by the proposed algorithm. We have tested the proposed Legendre Moment 
Skeletonization Method (LMSM) on a variety of real and simulated noisy im-
ages, it produces excellent and visually appealing results, with comparison to 
some well known methods. 

1   Introduction 

In the past several decades, a large number of skeletonization algorithms have been 
developed [1-5]. Of the many methods which can be used to generate these and other 
skeletal shape descriptors most can be put into four categories: iterative erosion of the 
shape boundary i.e. thinning [6], wave propagation from the boundary [7], detection 
of “local maxima” on a distance transform [8], and analytical methods, for simple 
shapes, following some form of function approximation, e.g. polygon approximation 
or spline fitting [9], [10]. These approaches present several advantages, however the 
main drawback of most of these methods is their noise sensitivity. 

In this paper a novel skeletonization approach, is developed using a statistical 
method based on the estimation of probability density function p.d.f. where the skele-
ton is defined as the local maxima of this p.d.f. 

Our proposed approach is based on the expansion of a multivariate function p.d.f. 
in terms of Legendre polynomials by means of Legendre moment. For this purpose 
the p.d.f. is approximated by a truncated series of polynomials. As the determination 
of the expansion order is a difficult problem in the framework of unsupervised classi-
fication we propose the determination of the optimal order for which the estimated 
p.d.f. has maximum entropy. 



 Skeletonization of Noisy Images via the Method of Legendre Moments 453 

As the solution to this problem is mathematically too complexe to be tractable, we 
introduce an exhaustive search for the optimal order. We propose to estimate the p.d.f. 
for different orders and to select the optimal one as the one for which the entropy 
reaches a maximum according to the Maximum Entropy Principal M.E.P. [11-15]. 
This latter has been used for clustering, see for example [16] and for image restoration 
[17]. Having the optimal p.d.f., the true points of the skeleton are the local maxima of 
the p.d.f. extraction of the local maxima of the p.d.f. is carried out using the last phase  
of the proposed algorithm. 

As a summary, our proposed LMSM skeletonization method based on the combi-
nation of the moment theory and MEP as a selection criterion, is composed of the 
three following steps: 

1- Computation the p.d.f. using the Legendre moment. 
2- Estimation of the optimal p.d.f. using MEP method. 
3- Extraction of the local maxima of the optimal p.d.f. taken as the skeleton points. 

    The most important advantages of our method are the following: 

1- No a priori information about the original image is required. 
2- High robustness against noisy images. 
3- The preservation of geometric properties of the original image. 
4- Avoid preprocessing techniques which are time-consuming procedure. 

The paper is organized as follows: the next section describes the basis of our statis-
tical model, using Legendre moment. The maximum entropy principal is given in 
section 3. The details of our skeletonization algorithm is presented in section 4. Sec-
tion 5 performs main results and performances of our skeletonization method. Finally 
section 6 deals with the summary of important results and conclusions of this work.  

2   Statistical Modelisation Using Legendre Moment  

2.1   Legendre Moments 

The Legendre moments of order ( )qp+  is defined for a given real image intensity 

function ( )y,xf  as in [18]: 

dxdy)y,x(f  (y)P  x)(P
4

)1q2)(1p2(
q

RR
pq,p

++=λ . (1) 

where ( )y,xf  is assumed to have bounded support.  

The aforementioned properties of the Legendre moments are valid as long as one 
uses a true analog image function. In practice, the Legendre moments have to be com-
puted from sampled data, i.e., the rectangular sampling of the original image function 

)y,x(f , producing the set of samples )y,x(f ji  with a )N,M(  array of pixels. The 

piecewise constant approximation of )y,x(f in (1), proposed recently by Liao and 

Pawlak [19] yields the following approximation of q,pλ : 
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)y,x(f)y,x(H ji
M

1i

N

1j
jiq,pq,p

= =

∧
=λ . (2) 

With the supposition that ( )y,xf  is piecewise constant over the interval 

]
2
xx,

2
xx[ ii Δ+Δ− × ]

2
y

y,
2
y

y[ jj
Δ+Δ−  and where  

Δ+

Δ−

Δ+

Δ−

++=
2
xx

2
xx

2
y

y

2
y

y

qpjiq,p

i

i

j

j

dxdy)y(P)x(P
4

)1q2)(1p2(
)y,x(H

. 
(3) 

represents the integration of the polynomial )y(P)x(P qp  around the )y,x( ji  pixel. 

This approximation allows a good quality of reconstructed image by reducing the 

reconstruction error. q,p
∧
λ Will be used  for the estimation of the image function in the 

next section.  

2.2   Estimation of the Probability Density Function 

The image function reconstructed from q,p
∧
λ  up to a given order θ can be defined 

as: 

)y(P)x(P)y,x(f jqiqp
0p

p

0q
qpji −

θ

= =
−

∧
θ

∧
λ= . (4) 

The estimated probability density function p.d.f. for a given order θ  denoted 

)y,x(p ji
∧
θ  is obtained by normalizing )y,x(f ji

∧
θ  [13], [15]:  

Ω∈

∧
θ

θ
∧

∧
=θ

ji y,x
ji

ji
ji

)y,x(f

)y,x(f
)y,x(p

. 
(5) 

where 

1)y,x(p
ji y,x

ji =
Ω∈

∧
θ . (6) 

and  1)y,x(p0 ji ≤≤
∧
θ , Ω  is the image plane. 

The estimated p.d.f. depends only on the expansion order θ , a criterion for choos-
ing this order is explained in the next paragraph according to the maximum entropy 
principal 

3   Optimal Order Moments Selection Using MEP 

We introduce the maximum entropy principle M.E.P. for the search of this optimal 
order, this automatic technique can estimate the optimal number of moments directly 
from the available data and does not require any a priori image information specially 
for noisy images. 
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Let wG  be a set of estimated underlying probability density function for various 
Legendre moment orders θ :  

}........1/p{Gw ω=θ= θ
∧ . (7) 

By applying the maximum entropy principle for noisy images, we deduce that 
among these estimates of the probability density function, there is one and only one 

probability density function denoted )y,x(p ji

∗

θ
∧

 whose entropy is maximum [13],[17] 

and which represents the optimal probability density function, and then gives the 
optimal order of moments. 

The Shannon entropy of )y,x(p ji

∗

θ
∧

 is defined as: 

Ω∈
θ

∧
θ

∧
θ

∧
−=

ji y,x
jiji ))y,x(plog()y,x(p)p(S . (8) 

and the optimal 
∗

θ
∧
p  is such that  

}Gp/)p{S(MAX)p(S W∈= θ
∧

θ
∧∗

θ
∧ . (9) 

The process of determinating the optimal order θ  consists in estimating the p.d.f. 
for different orders and selecting the optimal one as the one for which the entropy 
reaches maximum. The following is basic algorithm which consists in an exhaustive 

search to determine the optimal order which maximises )p(S
∗

θ
∧

: 

1- Initialise  θ  

2- Compute the p.d.f. θ

∧
p  and its corresponding Shannon entropy )p(S θ

∧  

3- If  θ

∧
p  is maximum, then θ  is optimal and θ

∧
p = 

∗

θ

∧
p , else   1+θ=θ  and go to 2. 

Then, having 
∗

θ
∧
p , we assign to each point of the optimal p.d.f. )y,x(p ji

∗

θ
∧

 defined by 

(5). In this case, the “good data” are the set of points belonging to the mode of 
∗

θ
∧
p . By 

extracting the local maxima of 
∗

θ
∧
p , we can determine the exact points of the skeleton. 

In the next section the details of our skeleton extraction algorithm is presented. 

4   Skeleton Extraction Algorithm Using the Legendre Moment 

We define the skeleton as the local maxima of the estimated probability density func-
tion selected in the previous section. The extraction of these local maxima allows us 
to determine the skeleton associated to the shape. The general idea of this algorithm 
consists of a successive points extraction presenting a local maxima of the selected 
optimal p.d.f.. 
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The procedure consists in making a sweep mask of size 3x3 on all the image. The 
comparison of the p.d.f. estimated for the central pixel of the mask with its close eight  
neighbours following the eight directions, allows to confirm if this central pixel is a 
point of the skeleton or no. 

Indeed two types of comparison are undertaken, a comparison following lines and 
columns and a comparison following the diagonal. A pixel is a point candidate if it 
presents a local maximum compared to its four neighbours following the lines and 
column direction (fig.1c ) or if it present a local maxima compared to its four 
neighbours following the diagonal direction (fig.1d). 

 

Fig. 1. Rectangle shape skeleton obtained by LMSM approach: a) rectangle shape, b) optimal 
p.d.f. corresponding to order 11, c) the mask w1 following lines and columns direction, d) the 
mask w2 following diagonal direction, e) extracted skeleton following lines and columns, f) 
extracted skeleton following the diagonal, g) resulting skeleton of the rectangle shape 

5   Experimental Results  

In this section, a comparison study is carried out on simulated and real images. The 
proposed LMSM skeletonization method is compared to Distance Transform and 
Parallel Thinning Algorithms.  

To see the performance of the proposed skeletonization algorithm when applied to 
Hand-written characters, the LMSM is experimented with a hand-written word “moi” 
scanned and binarised on (100x100) image matrix (Fig.2a), then corrupted by an 
impulsive noise affected 10% of pixels (Fig.2b). Figure 1e illustrates the resulting 
skeleton generated by LMSM. The comparison of the skeletons generated by our 
method with distance transform and parallel thinning algorithm demonstrates clearly 
the high performance of the proposed skeletonization method against noise. 

Figure 3 shows the performance and the potential of the proposed approach and its 
insensitivity to different noise values. The LMSM approach is applied to hand-written 
digit ‘3’, ‘9’ with image size 60x60 and ‘61’ with image size (80x80), the presented 
figures show that our method performs well even with high noise levels. 

Another example investigating the behaviour of the LMSM method is presented 
applied to a ‘plane’ scanned and binarized on 100x100 image matrix (Fig.4a) cor-
rupted by an gaussian noise having a (Signal to Noise Ratio ) SNR=10db. The p.d.f. 
obtained by M.E.P. corresponding to optimal moment order is presented in Fig.4f. 
The skeleton obtained by our approach LMSM demonstrates the consistency of our 
algorithm against high level gaussian noise. 
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                                                    (f) 

Fig. 2. Skeletonization of Hand-written word ‘moi’ by the proposed approach. a) original im-
age. b) input noisy image with impulsive noise affecting 10% of pixels. c) skeleton obtained 
using the Distance Transform. d) skeleton obtained using the Parallel Thinning Algorithms. e) 
skeleton obtained using the proposed LMSM. f) estimated p.d.f. for optimal order 45. 

           
          (a)                          (b)                             (c)                       (d)                       (e)                                 (f) 

               
                                                  (g)                                                                                            (h) 

 
(i) 

Fig. 3. Skeletonization of Hand-written digit ‘3’, ‘9’and ‘61’ by the proposed approach. The 
input noisy images, with impulsive noise affecting 15% of pixels (a), 25% of pixels (c), 35% of 
pixels (e), corresponding skeletons obtained with LMSM method for orders 27 (b), 30 (d), 38 
(f) and obtained p.d.f. for those optimal orders. 
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                                                                                                                                               (f) 

Fig. 4. Skeletonization of ‘plane’ shape by the proposed LMSM. a) original image and b) corre-
sponding  gaussian noisy image with SNR=10db. c) Skeleton for the noisy ‘plane’ shape by the  
proposed LMSM. f) estimated p.d.f. for optimal order 13. 

6   Conclusion 

In this work, we have proposed a statistical technique for skeletonization noisy im-
ages using the Legendre moment theory and the Maximum Entropy Principal. This 
skeletonization method based on the combination of the moment theory and M.E.P. 
are conceptually articuled into three steps. In the first one, the computation of p.d.f. 
using Legendre moment is carried out. In the second, the estimation of optimal p.d.f. 
is selected using M.E.P. criterion. Finally, the subset of local maxima pixels of the 
optimal p.d.f. are selected as belonging to the skeleton. The advantages of our algo-
rithm is that no a priori information about the original image is required. Conse-
quently, the practical implementation of the approach does not require any parameter 
setting. Through a comparative study with conventional methods, it performed quite 
well in experimental tests and the skeletonization has been greatly improved which 
demonstrates the robustness of the proposed approach against different and high noise 
levels. 
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Abstract. This paper presents an application of the Hough transform to the 
tasks of identifying irregular patterns. The presented method is based on the 
Hough transform for irregular objects, with a parameter space defined by trans-
lation, rotation and scaling operations. The technique may be used in a robotic 
system, identification system or for image analysis, directly on grey-level im-
ages. An example application of the Hough transform to a robot monitoring 
within computer vision systems is presented. A hardware implementation of the 
Hough technique is introduced which accelerates the calculations considerably. 

1   Introduction to the Hough Transform 

The Hough transform was patented in 1962 as a method for detecting complex pat-
terns of points in a binary image [4]. It introduced the possibility of determining a set 
of parameters circumscribing the searched pattern. The problem of complex pattern 
detection in an image is converted into one that searches for local maxima in a pa-
rameter space. This method has become very popular.  

We may assume that the Hough transform is based on a representation of a given 
image I  into the accumulator array A , which is defined as follows 

 NP:A → , where p21 PPPP ×⋅⋅⋅××= .        (1) 

The symbol NPi ⊂  determines the range of i -parameters of a p -dimensional 

space P . Determining array A  is conducted through the calculation of partial values 
for points of an object in image I  and adding them to the previous ones which consti-
tutes a process of accumulation. Initially, all elements of array A  are set to zero.  

This paper presents an application of the Hough technique to the tasks of irregular 
grey-level pattern recognition in the case of a robot monitoring within computer vi-
sion systems. It is based on the Hough transform with a parameter space defined by 
translation, rotation and scaling operations. A fundamental element of this method is a 
generalisation of the Hough transform for grey-level images. The Hough transform 
has been already described by the author in details [7]. Nevertheless a short introduc-
tion to the generalised form of the technique will be given in this paper too.  
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2   The Hough Transform for Irregular Objects 

In 1981 Deans noticed [2] that the Hough transform for straight lines was a specific 
case of the more general Radon transform known since 1917, which is defined as (for 
function )y,x(Ι  in two-dimensional Euclidean space): 

dxdy))sin(y)cos(x()y,x(),(H α−α−ρδΙ=αρ
∞

∞−

∞

∞−

,        (2) 

where δ  is the delta function. This result shows that the function )y,x(Ι  is integrated 

along the straight line determined by the parametric equation )sin(y)cos(x α+α=ρ . 

The Radon transform is equivalent to the Hough transform when considering binary 
images (i.e. when the function )y,x(Ι  takes values 0  or 1 ). The Radon transform for 

shapes other than straight lines can be obtained by replacing the delta function argu-
ment by a function, which forces integration of the image along contours appropriate 
to the shape.  

The existing algorithms usually apply to the Hough transform operation on binary 
images. The Radon transform is affirmed to be equivalent to the Hough transform 
only in the case of binary images. In the case of grey-level or colour images the issue 
becomes more complicated. Equations defining the Hough transform limit the appli-
cation to binary images only. A set of transforms are applied which are aimed at con-
verting the initial image into a binary image with minimal loss of information. In the 
case of analysing grey-level images, it is not always admissible to loose important 
information in the process of binarisation. Usually information loss is not harmful 
only in the case of images that include high contrast objects. 

If we consider equation (2), which defines the Radon transform, we may state that 
there are no limitations on the value of function )y,x(Ι . It means that it may be ap-

plied directly to grey-level images. However, the following statement is raised: how 
do we modify the Hough transform for irregular patterns? The problem lies in the 
process of accumulation in the accumulator array (1).  

3   Generalisation of the Hough Transform for Grey-Level Images 

Let us first define the concept of a grey-level image, an object appearing in such an 
image and the concept of a grey-level pattern in a computer vision system. 

Definitions 
An image with 256 grey levels means a set of points, which have a value or “shade” 
from the set }255,...,0{ . Such an image may be presented as follows 

}255,...,0{D:IG → , where  2N]K,...,1[]W,...,1[D ⊂×= .      (3) 

Object )I(b G  in image GI  is any fragment of that image which may be recorded 

in terms of 
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}255,,0{D:Q QG → , where  2
Q N]K,...,1[]W,...,1[DD ⊂×=⊂ .      (4) 

Remark: Identifying an object with an image fragment is a consequence of a set of 
values taken by function GI .  

Pattern PM  means an image (square matrix) of size PP NN ×  which is as 

}255,...,0{D:M PP → , where  2
PPP N]N,...,1[]N,...,1[D ⊂×= .      (5) 

The Hough transform ),y,x(H TT α  for grey-level image )y,x(IG  in the process 

of identification of pattern PM  is given by 

∈
α=α

Pii M)y,x(
TTiiTT ),y,x,y,x(h),y,x(H ,        (6) 

where 

)y,x(M)y,x(I255),y,x,y,x(h iiPiiGTTii −′′−=α ,       (7) 

and the values ii y,x ′′  are calculated from 

+α−+α−+=′
+α−−α−+=′

Tririri

Tririri

y)cos()yy()sin()xx(yy

x)sin()yy()cos()xx(xx
.       (8) 

The above equations relate to the schematic diagram given in Fig. 1. 

(xr,yr)

(xi,yi)

(x’
i,y

’
i)

α

 pattern
[xT,yT]

 

Fig. 1. Rotation and translation of pattern PM  with respect to an arbitrary point )y,x( rr  

As the above formulas show, the implementation of this definition of the Hough 
transform does not differ from the standard definition. However, it enables us to apply 
the method directly to grey-level images. The parameter space is defined by transla-
tion and rotation as ]1L,...,0[]K,...,1[]W,...,1[PPPP 321 −××=××= , and 

)l,k,w(Amax)l,k,w(A
P)l,k,w(

000 ∈
= . 
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It is necessary to note that the local similarity function (7) can be introduced in a 
number of ways. The one proposed is not a unique possible solution, but directly 
suggests what to do in the case of grey-level images. 

An Example Result 
Fig. 2 shows the initial image, identified pattern and content of accumulator array for 
the best angle of pattern rotation and the effect of the identification denoted by a cir-
cle in the initial image. The processing time took several seconds. 

 

 

Fig. 2. Object location in a satellite image (the arrow points out calculated localisation) 

Presented example confirms that the method provides correct results without bi-
narisation of the initial image. The success rate achieved in a collection of dozens of 
images was over 80%. This method seems to be promising for any form of object 
identification; for example, in camera pictures, photos taken from aerospace vehicle 
or satellite and astronomical pictures.  

Application of the Histogram Function 
To improve this elaborated method we wish to find a characteristic of the pattern that 
is invariant under rotation. The histogram is the obvious characteristic especially for 
diverse images (of 256 grey levels). The histogram of pattern PM  is determined once 

only and compared with the histograms of fragments of image GI , determined at all 

possible locations of the pattern PM . A histogram of a grey-level image defines a 

function that maps for any grey level (from 0 to 255) the number of image pixels that 
have that level and may be denoted by 

N}255,...,0{: →Φ .         (9) 
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Algorithm – Histogram Analysis 

Step 1: Determine histogram PΦ  of the identified pattern PM . 

Step 2: Determine histograms )j,i(QΦ  for all fragments )j,i(I
G
GQ  of size PP NN ×  of 

image GI  where 1NW,...,1i P +−=  and 1NK,...,1j P +−= . 

Step 3: Compare the received histogram )j,i(QΦ  with the histogram PΦ  using the 

following value  

=
Φ−Φ

⋅π
=

255

0k
P)j,i(Q2

P

)j,i( )k()k(
N

4
d ,       (10) 

where the factor 4/π  results from the relation of a circle area inscribed into 
a square. 

Step 4: If )j,i(d  is higher than a threshold value tresholdd  then it is excluded when calcu-

lating the accumulator array A .  

    This simple method reduces the complexity in terms of the calculation performed 
for the whole process (often by more than 50%). 

4   The Use of the Hough Transform in a Robot Monitoring System 

In a computerised robot monitoring system the identification of manipulated objects is 
carried out with the use of previously learned patterns.  

 
 

NP

NP

 

Fig. 3. Graphical illustration of pattern PM  

Fig. 3 shows the content of matrix PM  for a hypothetical object. Elements in PM  

that are not taken into consideration in the process of identification are located outside 
the circle and marked grey. Such an approach is a result of the observation that these 
elements are not important when the pattern PM  is rotated (see 10). However, pixels 
marked white are very important for the process of identification. This may be 
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justified by the observation that the complement of object )M(b P  to PM  (i.e. “nega-

tive” )M(b P ) carries a lot of information about the object itself. 

 
 
 
 
 
 
 
 
 
 
 

 

  ROBOT controller 

Hardware HT 

video camera 

 

Fig. 4. Computer monitoring work station for a robot 

The task is aimed at identifying (determining the location and rotation angle) a 
given object in the image of the scene (see Fig. 4). We assume that a given object is 
represented by the pattern PM . Before we start to calculate the Hough transform, we 

must scale image I  of a given scene in a way determined by the scale of  PM .  

The task to identify pattern PM  in image SI  may be regarded as determining pa-

rameters ),k,w( α  which uniquely describe its location )k,w(  and orientation α  in a 

given image. In this sense the parameter space is defined as follows 

]1L,...,0[]K,...,1[]W,...,1[PPPP 321 −××=××= , )
L

2
(

π=αΔ .    (11) 

To identify pattern PM  with an object in image SI  the Hough transform of 

NP:A →  must be calculated. As a result of this algorithm we obtain an accumulator 
array A . The most important thing is its maximum element 

  )l,k,w(Amax)l,k,w(A
P)l,k,w(

000 ∈
= .      (12) 

Parameters 00 k,w  are the result of location )k,w(  of the object searched in the 

image and the angle of its rotation is αΔ⋅=α 0l . It is necessary to establish the re-

quired threshold value for )l,k,w(A 000  and to take into account the possibility that 

the searched object in the analysed scene may not exist.  
An example result obtained for this method is given in Fig. 5, which shows a scene 

observed by a robot camera and the result of analysis (location of the object and the 
accumulator array A ). The processing time was a few seconds; Np=25. 
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Fig. 5. Identification for the scene including objects connected to each other 

5   Hardware Implementation of the Hough Technique [8] 

This section describes a hardware implementation of the generalised Hough transform 
based on a powerful development board made by Altera®. The most important prob-
lem is the implementation of the function ),y,x(H TT α  - see equation (6).  

 

 

Fig. 6. Block diagram of the structure implemented for function ),y,x(H TT α  

The implemented structure has only one aim; to calculate the difference between 
the given fragment of the input image and the given pattern. The image fragment and 
the pattern are indicated by the arguments of function ),y,x(H TT α . This means that 

the PC sends to the hardware co-ordinates ),y,x( TT α  of the accumulator array and 
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waits for the result, i.e. value of function ),y,x(H TT α . This is a single cycle of the 

whole process of the accumulator array calculation which starts by sending signal 
RESET. Signal RESET clears the main elements of the implemented structure: 
COUNTER, BUFFER, SUBTRACTER and COMPARATOR. This is the initial step 
for the process and after that the device is ready to calculate accumulator array cells 
one by one. In order to describe precisely the basic cycle for the implemented struc-
ture the following algorithm will be useful. 

 
Algorithm 

Step 0: The APEX device receives (subsequent) co-ordinates ),y,x( TT α  and indi-

cates adequate fragment of the input image (by TT y,x ) and adequate pattern 

(by α ). 
Step 1: At the j-th step the BUFFER receives the j-th pixel (i.e. 8 bits) of the input 

image fragment and the SUBTRACTER receives the j-th pixel (i.e. 8 bits) of 
the pattern. 

Step 2: The COUNTER sends the SUBTRACTER signal that begins the calculation 
process of the difference between the pixels. The obtained difference is added 
to the previous one stored in the SUBTRACTER. 

Step 3: If there is any pixel of the pattern left, then 1j:j +=  and go to step 1. If there 

is no more pixels of the pattern, the COMPARATOR receives value 
),y,x(H TT α  from the SUBTRACTER and compares it with the previous one. 

Step 4: The COMPARATOR sends out value ),y,x(H TT α  to the PC with informa-

tion whether it is the temporary minimum or not. 
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Abstract. Variational image segmentation combining boundary and re-
gion information was and still is the subject of many recent works. This
combination is usually subject to arbitrary weighting parameters that
control the boundary and region features contribution during the seg-
mentation. However, since the objective functions of the boundary and
the region features is different in nature, their arbitrary combination may
conduct to local conflicts that stem principally from abrupt illumination
changes or the presence of texture inside the regions. In the present pa-
per, we investigate an adaptive estimation of the weighting parameters
(hyper-parameters) on the regions data during the segmentation by using
a Bayesian method. This permits to give adequate contributions of the
boundary and region features to segmentation decision making for pixels
and, therefore, improving the accuracy of region boundary localization.
We validated the approach on examples of real world images.

1 Introduction

Image segmentation is one of the most studied topics in computer vision and
still is the focus of many recent researches. It is considered as a basic operation
for many applications based on image content analysis, such as medical image
processing, object recognition and tracking. The goal of the segmentation is
to divide an image into distinct homogeneous regions, or underlying structures,
delimited by smooth boundaries. To distinguish between different regions, image
features such as the gray level, color or texture are the mostly used. Yet, most of
the segmentation techniques are based on two main properties of the image: the
similarity between pixels inside the regions (homogeneity) and the discontinuity
of the features in the regions boundaries (contrast).

To enforce the precision and the robustness of the segmentation, several
methods integrated boundary and region features in the segmentation, where
an excellent survey on the exiting methods was presented in [7]. Two main ap-
proaches were investigated in the field. The first approach relies on fusing the
results of initial boundary and region segmentations by exploiting their dual
information to improve the final segmentation [5,8]. The boundary information
can be used especially to refine the result of region-based methods, that might
over-segment the image or yield poor localization of the region boundaries. The
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second approach to combine region and boundary information, that is the con-
cern of this paper, consists of embedding the boundary and region features to
provide a unified segmentation process. Here, the boundary and region features
are used jointly to provide a new decision criterion for the segmentation. This
aims to bring accuracy to the segmentation which is critical for many image-
based domains, like surveillance or diagnosis in medical images.

In this field, active contours segmentation has emerged in a very suitable
way to combine region and boundary information. Active contours embodies
various good properties, like the smoothness of the region contours and the
ability to combine easily boundary and region information into one objective
function [4,11]. Yet, this combination is subject to free hyper-parameters that
fix the contribution of each feature in pixel segmentation decision making. Most
of methods set the hyper-parameters to equal values in order to give equivalent
contributions for the used features. However, even if the boundary and region
information are complementary in their nature, they differ in their objectives.
Region information is based on the homogeneity of features and boundary infor-
mation is based on the discontinuity of the same features. According to this, local
ambiguities for the segmentation may arise if boundary and region information
do not agree in the segmentation decision. These ambiguities arise essentially
when a contour encounters abrupt illumination changes or a local texture. In
the first case, the homogeneity of the region changes even if the object remains
the same; that is, the real region boundaries are not reached yet. In the sec-
ond case, the strength of the gradient response can stop the evolution of the
contour even if the the real region boundary is not reached. One suitable solu-
tion for the problem resides in calculating adaptively the hyper-parameters in
order to control the contributions of the region and boundary features in the
segmentation.

In the present paper, we investigate such an approach to estimate adaptively
the hyper-parameters that fix the contribution of boundary and region features.
Specifically, we combine the boundary and region segmentations, where the con-
tribution of each feature is based on the neighboring information of each pixel.
We reformulate the segmentation by maximizing the joint probability of bound-
ary and region segmentation. By assuming the hyper-parameters locally con-
stant, a local segmentation map is derived for each pixel neighborhood and the
hyper-parameters are, then, estimated by maximizing the Bayesian evidence of
the local segmentation map. We show on various examples that the approach
overcomes the conflicts induced by local texture and illumination changes.

This paper is organized as follows: In section (2), after stating the problem, we
present the model combining region and boundary information. This is followed
by the treatment for estimating adaptive hyper-parameters for segmentation. In
section (3), some examples of the approach are presented and commented. The
paper ends with a conclusion and some perspectives.
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2 Problem Statement and Formulation of the Model

Let I be an image that is defined on the domain Ω = Z+ × Z+, where Z+

denotes the set of positive integers. For simplicity, we assume the domain of the
image I is composed of the region R and a complementary backgroundRc, where
each region is described by its mean parameter. We aim to track the foreground
region by a deformable contour C, which is formulated by the following energy
functional:

E(C, θ1, θ2) = α

∮
C

(1 − |(D(s) ·N (s))|)ds︸ ︷︷ ︸
Eb

+ β

[∫ ∫
R

(I − θ1)2dxdy +
∫ ∫

Rc

(I − θ2)2dxdy
]

︸ ︷︷ ︸
Er

(1)

The first term of the functional (1) represents the boundary information,
where s is the arc-length parameter. The vector N designates the unit normal
to the curve C, while D is the local direction of the edge. In an intensity image,
D is the gradient vector of the image and in multi-valued image, the vector
will correspond to the direction of the strongest first order directional derivative
[6]. In the second term of the functional (1), θ1 and θ2 represent respectively
the mean parameter of the region R and the background Rc. To understand
the meaning of each term in the functional (1), the first term vanishes when
the normal of the curve is aligned with image gradient vector (see figure (1),
where the absolute value permits to take into account only the direction of the
vectors and not their sense. That is, the boundary term is insensible to whether
the contour lies in the dark or the bright part of a region boundary. The second
term of the functional minimizes the Euclidian distance between the regions data
and its mean. α and β are the hyper-parameters that control the contribution
of the energy terms. Following the Euler-Lagrange minimization, we obtain the
following motion equation for the curve C:

Fig. 1. An example of alignment of the curve normal with the image gradient vector
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dC

dt
=

(
α[κ− sign(D ·N)div(D)]− β[(I − θ1)2 − (I − θ2)2]

)
N (2)

Where κ is the curvature of the curve C and sign() is the function that returns
the sign of its operand. The operator div denotes the divergence of a vector.
To have adaptive region parameters in the segmentation, the updating of the
mean parameters is obtained by minimizing the functional (1) according to the
parameters θ1 and θ2. This is performed by using Euler-Lagrange equations and
leads to the following functions:

θ1 =

∫ ∫
R
I(x, y)dxdy∫ ∫

Ω dxdy
, θ2 =

∫ ∫
Rc I(x, y)dxdy∫ ∫

Ω dxdy
(3)

By setting the hyper-parameters to α = β = 0.5 in equation (2), we give
equivalent contribution for the region and boundary terms. However, since the
objective of the boundary and region information is different, local conflicts may
arise for the decision making of pixel membership, when the the interior of a
region contains spurious edges induced by texture or illumination changes. The
objective of this work is to give each term of the energy functional a contribution
when the conditions are favorable to play its expected and exact role. Namely,
when the contour is situated inside a region, it is natural for the homogeneity
information to prevail over the boundary information. The vice-versa should
happen when the contour is in the vicinity of a region boundary.

2.1 Adaptive Estimation of the Hyper-Parameters α and β

Coming back to the energy functional (1), to derive the hyper-parameters esti-
mation we re-write, firstly, the segmentation as the maximization of a probability
function. That is, we consider the expected segmentation as the posterior prob-
ability of the contours localization with respect to boundary and region energies
Eb and Er, weighted respectively by the hyper-parameters α and β . The for-
mulation of this is given as follows:

min
C,Θ

[E] ≡ max
C,Θ

[p(C/Eb, α)p(C/Er, β)] (4)

= max
C,Θ

[αexp{−α · Eb}βexp{−βEr}] (5)

Here, Θ denotes the set of region statistical parameters {θ1, θ2}. In function
(5), we have formulated the boundary and region segmentation probabilities
by using two exponential distributions. The exponential distribution come out
as a natural and suitable choice for the segmentation probability distribution.
Firstly, as the segmentation is given by minimizing the energy functional, the
exponential distribution reflects this fact by giving the maximum probability for
segmentation when the boundary and region energies are minimized. Secondly,
for practical regards, the unknown hyper-parameters α and β play now the role
of scale parameters for the boundary and region segmentation pdfs, which are
statistically well defined and easy to deal with. To make the segmentation inde-
pendent of the hyper-parameters, a correct Bayesian treatment is to integrate
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them out over any prediction. That is, the evidence of the contours localization
that defines the segmentation is given by the following integrals:

P (C/Eb, Er) =
∫ ∞

0

∫ ∞

0

p(C, α, β/Eb, Er)dαdβ

∝
∫ ∞

0

∫ ∞

0

p(Eb, Er/α, β,C)p(α, β,C)dαdβ

∝
∫ ∞

0

∫ ∞

0

p(Eb/C, α)p(Er/C, β)p(C/α, β)p(α, β)dαdβ (6)

where the third line comes out by assuming the independence of the boundary
and region information. This permits to separate the likelihoods of the region
and boundary segmentations in the integral. Furthermore, we assume the inde-
pendence of the hyper-parameters α and β that will yield separate priors; that
is, p(α, β) = p(α)p(β).

The calculation of the above integrals requires choosing specific priors for the
hyper-parameters. Since we assume that no information is available in advance
about the hyper-parameters, one proper choice is to use non-informative priors.
Noting that α and β represent scale parameters imposes for the priors to be
scale invariant [2,9], the appropriate priors are given by:

P (α) ∝ α−1, P (β) ∝ β−1 (7)

Thus far, the formulation in function (6) relies on the assumption that the hyper-
parameters α and β have the same value for the pixels lying on the contour at
a given time in the segmentation. As the membership decision is made indepen-
dently for each pixel according the pixel boundary and region information, one
should calculate specific hyper-parameters for each pixel. In our work, we assume
a configuration where the hyper-parameters are constant in a local neighborhood
Nx surrounding each pixel x = (x, y). We define a neighborhood by a square
window centered at the pixel in concern and having m pixels in each side (m is
an odd number), see figure (2). The local hyper-parameters are denoted by αl

Fig. 2. An illustration of the neighborhood system used to calculate the hyper-
parameters
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and βl and we refer to the boundary and region energies in the local area re-
spectively by Nx(Eb) =

∑
x∈N(x) Eb(x) and Nx(Er) =

∑
x∈N(x) Er(x). Then,

we can write the following local segmentation probability function:

p(C(x)/Eb, Er, αl, βl) =
∏

x∈N(x)

p(C/Eb(x), αl) × p(C/Er(x), βl)

= (αlβl)M · exp{−αlNx(Eb)− βlNx(Er)} (8)

According to the integral (6), we can derive for each pixel the probability
of the localization of the contour, based the boundary and region information.
This is given by the following:

P (C/Nx(Eb)) =
∫ ∞

0

p(Nx(Eb)/C, αl)dαl

=
∫ ∞

0

(αl)M−1exp{−αlNx(Eb)}dαl =
Γ (M)

(Nx(Eb))M
(9)

and in the same manner, we calculate for β:

P (C/Nx(Er)) =
Γ (M)

(Nx(Er))M
(10)

Now by putting into logarithm, then summing and differentiating equation (9)
and (10), we obtain:

∇log(P (C/Nx(Eb), Nx(Er))) = M2 (∇log(Nx(Eb)) +∇log(Nx(Er))) (11)

Note that the differentiation is performed according to the contour. Now, by
performing the same differentiation to function (5), we obtain:

∇log(P (C/Eb, Er) = α∇Eb + β∇Er (12)

and by comparing equations (11)and (12) term to term, we obtain the values of
α and β as following:

α̂ = (Nx(Eb))−1, β̂ = (Nx(Er))−1 (13)

The obtained results for the values α and β sound natural and expected in
various regards and can be interpreted as follows. The increasing of some features
energy functional should penalize its segmentation probability and decrease the
corresponding hyper-parameters to diminish the feature contribution. Moreover,
we can view the hyper-parameters as measuring the local variance of the energy
functional in the vicinity of a pixel. That is, by adapting this variance to data, one
diminishes the overlapping region between the region and boundary probability
segmentation and, therefore, eliminate ambiguities in the membership decision
making.
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3 Experiments and Discussion

To validate the above model, we conducted experiments that relates to the
segmentation of two region images. To allow automatic topology changes for
the curves, the implementation of the curve evolution is based on the level-set
narrow-band algorithm [1,10]. In the examples, we initialized the contour man-
ually inside the object to be segmented from the image background. In figure
(3), we show three examples for contour evolution, where the initializations are
shown in the first row for all the examples. In the second row (b), the contours
were evolved by using the Geodesic active contours model [3] that uses solely
the boundary information (α = 1, β = 0). In the examples, the contour was
stopped by pixels showing a contrast due to a change of illumination (see the
elephant) or texture (see the bird). These results are due to the absence of region
information to distinguish, by global homogeneity, between the tracked region
and the background. By converse, using only the regions information to evolve
the contours (α = 0, β = 1) resulted in a poor alignment of the final contours
with the regions boundaries (see the third row(c)). In the fourth row (d), we
show the evolution of the contours by using adaptive hyper-parameters. Clearly,
the final contours were aligned with the real region boundaries, while the overall
homogeneity of the regions was preserved. These results can be explained as fol-

(a)

(b)

(c)

(d)

(e)

Fig. 3. Three examples of image segmentation by using respectively: (b) (α = 1, β = 0),
(c) (α = 0, β = 1), (d) adaptive hyper-parameters and (e) equivalent hyper-parameters
(α = 0.5, β = 0.5). The contour initializations are shown for each image in the row (a).
For all the segmentations, the parameter m is fixed to 7 pixels.



A Bayesian Approach for Weighting Boundary and Region Information 475

lows: By using only the region information, the contour can be stopped by false
boundaries induced by change of illumination, see the elephant example. Since
the boundary information contributes at these parts of the image, the contours
surpassed the false edges and the included pixels in the region contributed to
update the statistical parameters of the regions. This naturally augments the
membership score for the shadowed pixels to the tracked region. Finally, we
show in the last row (e) a combination of the energy and boundary information
by using an arbitrary weighted sum, where (α = 0.5, β = 0.5). Clearly, conflict-
ing situations arise in parts there is change of illumination or an appearance of
texture. Instead of giving a priority to only one of the features, the boundary
and region modules act simultaneously on the contours, which arises in opposite
forces that pushed away the contour from the real region boundaries (see the
elephant and bird examples).

4 Conclusion

In the present work, a novel framework was proposed to the integration of the
boundary and region information in image segmentation. Based on active contours
model, a method is proposed to calculate adaptively the hyper-parameters weight-
ing the boundary and region information. The method showed its performance
through various examples where the accuracy and robustness of the segmentation
was significantly enhanced. In future work, an improvement of the approach can
be obtained by combining texture and color features to describe the regions.
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Abstract. In this paper we present a new implementation of a rain-
falling watershed segmentation algorithm. Our previous algorithm was a
one-run algorithm. All the steps needed to compute a complete water-
shed segmentation were done in one run over the input data. In our new
algorithm we tried another approach. We separated the watershed algo-
rithm in several low-complexity relabeling steps that can be performed
sequentially on a label image. The new implementation is approximately
two times faster for parameters that produce visually good segmenta-
tions. The new algorithm also handles plateaus in a better way. First we
describe the general layout of a rainfalling watershed algorithm. Then
we explain the implementations of the two algorithms. Finally we give a
detailed report on the timings of the two algorithms for different param-
eters.

1 Introduction

Image segmentation is the process of partitioning a digital image in meaningful
segments, i.e. segments that show a certain degree of homogeneity. Image seg-
mentation can be interpreted and implemented in many ways. The division into
edge detection and region growing algorithms could be a rough classification of
segmentation algorithms. The watershed transform can be attributed properties
of both classes, i.e. it tries to find the homogeneous closed regions by using an
edge indication map as input. In case of intensity segmentation, the edge indi-
cation map can be created by calculating the gradient magnitude of the input
image. The watershed transform then regards the edge indication map as a to-
pographic landscape in which “valleys” correspond to the interior of segments,
whereas the “mountains” correspond to the boundaries of segments. The wa-
tershed algorithm derives the “mountain rims” from the landscape and those
mountain rims then delineate the segments in the image.

Watershed algorithms can be divided in two classes depending on the method
that is used to extract the mountain rims from the topographic landscape. The
first class contains the flooding watershed algorithms. These algorithms extract
the mountain rims by gradually flooding the landscape. The points where the
waterfronts meet each other constitute the mountain rims. This process is dis-
played chronologically in Fig. 1. A well-known example of this class is the discrete
Vincent-Soille flooding watershed algorithm [1,2]. The second class contains the
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rainfalling watershed algorithms. These type of algorithms will be discussed in
this paper. Examples of this class are the algorithms described in [3,4] and our
previous algorithm [5]. In Sect. 2 we describe the general layout of a rainfalling
watershed algorithm. In Sect. 3 we explain the implementations of our two rain-
falling watershed algorithms. First we will describe the implementation of our
previous algorithm [5]. All the steps needed to do a complete watershed segmen-
tation were done in one run over input data, hence the name one-run algorithm.
Next we will describe the implementation of our new algorithm. We separated
the watershed algorithm in several low-complexity relabeling steps that can be
performed sequentially on a label image, hence the name sequential algorithm.
We give a detailed report on the timings of the two algorithms for different
parameters in Sect. 4. Finally we draw some conclusions in Sect. 5.

Fig. 1. Chronological stages in the flooding process

2 General Layout of a Rainfalling Watershed Algorithm

A rainfalling watershed algorithm exploits a different concept (compared to the
flooding watershed) to extract the mountain rims. For each point on the topo-
graphic landscape an algorithm tracks the path that a virtual droplet of water
would follow if it would fall on the landscape at that point. All droplets or points
that flow to the same local minimum constitute a segment. This concept is de-
picted in Fig. 2 for the two-dimensional case. The lowest mountains (weakest
edges) can be suppressed by drowning them. All the mountains below a certain
drowning threshold will not be taken into account. This is shown in Fig. 3.

In the implementation, the rainfalling concept is carried out by calculating
the steepest descent direction for each pixel. The directions are limited to the
pixels neighboring the central pixel. For a four-neighborhood configuration this
results in searching for the lowest neighboring pixel, for an eight-neighborhood
configuration we have to take into account an additional 1/

√
2 factor for the

diagonal directions. A visualization of the steepest descent directions for an
image of 10×10 pixels is given in Fig. 4 (eight-neighborhood). The pixels marked
with a circle in the middle are pixels from where there is no descent possible.
Hence, they are the local minima of the topographic landscape. Every group of
pixels that is connected by the same tree of arrows leading to a local minimum
must now make up one segment.
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Fig. 2. Rainfalling concept Fig. 3. Drowning threshold

Fig. 4. Steepest descent directions

3 Description of the Rainfalling Watershed
Implementations

The input matrix G for both algorithms is the floating point gradient magnitude
of an image containing n pixels. The drowning threshold dt and the neighborhood
nbh ∈ {4, 8} are the two input parameters. The drowning threshold can also
be expressed by the relative drowning threshold rdt, this is dt divided by the
maximum value of G. The output data for both cases is a segment label image
S, i.e. an image with for each pixel a label of the segment to which the pixel
belongs.

First we describe our previous one-run rainfalling watershed segmentation
algorithm which has been available publicly. The main data structures are:
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– The segment label image, a matrix S of labels. S is initialised in the following
way: for each i the algorithm sets S(i) := i, with i being the one-dimensional
index into S, in video scanning order (from left to right, top to bottom).

– An array P of pointers to pixels. For each segment, P contains a singly linked
list of pixels belonging to that segment. To be more precise, P (i) gives the
next pixel in the list of pixels of the segment to which pixel i belongs. The
start of the list of pixels of the segment with label i is given by P (i). The last
pixel i of a list is indicated by P (i) := −1. P is initialised with −1 indicating
that initially each pixel is a separate segment.

The only operation that will be applied on these two data structures is the
merge(labela, labelb) operation. This operation will merge the segments with
labela and labelb by relabeling one of the two segments with the other label in
S. P is needed to efficiently locate the pixels with a certain label during the
relabeling process. After the relabeling, the lists in P of the two segments are
updated by linking the tail of one list with the head of the other list.

The algorithm visits all pixels i in G in video scanning order. If the central
pixel i is below dt then all neighboring pixels nb (depending on nbh) are inves-
tigated; if nb is below dt then the algorithm executes merge(S(i), S(nb)). If the
central pixel is above dt then the steepest descent direction (depending on nbh)
is calculated. If there is a steepest descent pixel (direction) steepest then the al-
gorithm executes merge(S(i), S(steepest)). By applying these merge operations
the algorithm ensures that after investigating the last pixel, S is in the desired
state. Every group of pixels that is connected by the same tree of arrows will
now have the same unique label (cfr. Fig. 4).

Now we describe our new sequential rainfalling watershed segmentation al-
gorithm. The main data structures are:

– The segment label image, a matrix S of pointers to pixels, or labels depending
on the interpretation.

– The local minima image, a matrix M of labels. M is initialized with 1.

In the first step the algorithm visits all pixels i in G in video scanning order. If
the central pixel i is below dt then S(i) := i. If the central pixel is above dt then
the steepest descent direction (depending on nbh) is calculated. If there is no
steepest descent (local minimum) then S(i) := i. If there is a steepest descent
pixel steepest then S(i) := steepest and M(i) := 0. The visual interpretation
of the state of S after the first step is shown in Fig. 4. After the first step M
indicates the locations of the local minima (the pixels below dt are included
here).

In the second step the pointers in S are propagated until each pixel points to
one of the local minima. For each pixel i the algorithm repeats next := S(next)
starting with next := i until it reaches a local minimum, i.e. until next =
S(next), then the algorithm sets S(i) := next. This step thus implements the
tracking of the virtual droplet described above.

In the third step the algorithm applies a connected components algorithm
directly on the local minima image M . This connected components algorithm
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assigns a different label to each separately connected group of local minima. This
step is necessary to be able to merge the connected local minima.

In the final step the algorithm incorporates the new labels given by the
connected components algorithm by doing the following relabeling: for each pixel
i the algorithm sets S(i) := M(S(i)). S is now in the desired state.

Assuming that the labels and pointers all take up 4 bytes, then the one-
run algorithm uses approximately 8n bytes and the sequential algorithm uses
approximately 9n bytes. These n bytes extra are used up by the connected
components algorithm.

Theoretically these two implementations are identical, except for the han-
dling of plateaus. A plateau is a group of connected local minima above the
drowning threshold. In the sequential algorithm these plateaus are handled
by the connected components step. Consequently, the individual pixels of the
plateau are merged to one segment. In the one-run algorithm these plateau
pixels will not be merged and therefore will form individual segments. If the
topographic landscape is created by calculating the gradient magnitude of the
input image, then linear gradients in the input image will result in plateaus in
the landscape. Perceptually it is more appropriate to segment a linear gradient
into one segment instead of individual pixel segments.

4 Results

To compare the performance of our two rainfalling watershed algorithms, we
tested them on the well-known test image PEPPERS 512x512. The algorithms
were implemented in C, compiled with gcc 3.4.2 with optimization parameter -O3
and run on an Intel Pentium 4 2.8 GHz. To obtain very accurate and reliable
timings, we measured the time needed to execute 1000 watershed runs. The
results for one watershed run are displayed in Fig. 5 for an eight-neighborhood
configuration and Fig. 6 for a four-neighborhood configuration. We can see that
the new implementation is approximately two times faster for parameters that
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Fig. 7. PEPPERS 512x512, segmented with rdt = 0.001, nbh = 8

produce visually good segmentations. An example segmentation result is given
in Fig. 7. The difference in computation time can be explained by the more
efficient merging of a group of connected pixels below the drowning threshold.
The difference clearly shows when we test the algorithms on the specific test
pattern depicted in Fig. 8. The one-run algorithm needs 48.9 ms to segment
the pattern, the sequential algorithm only needs 11.6 ms. Almost all pixels in
this pattern are below the drowning threshold, thus the running time is almost
completely dominated by the part that merges the connected pixels below the
drowning threshold.

Fig. 8. Test pattern
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For a comparison of our one-run algorithm with a Vincent-Soille based flood-
ing watershed algorithm we refer to our previous paper [5]. That paper showed
that the one-run algorithm is significantly faster than the flooding watershed
algorithm.

5 Conclusion

In this paper we presented a new implementation of a rainfalling watershed
segmentation algorithm. We separated the rainfalling watershed algorithm in
several low-complexity relabeling steps that can be performed sequentially on a
label image. The new algorithm handles plateaus in a better way and is approx-
imately two times faster than our previous implementation for parameters that
produce visually good segmentations. This is mostly due to the more efficient
merging of a group of connected pixels below the drowning threshold. With exe-
cution times of approximately 20 ms (for images of size 512x512), this algorithm
can be used to perform real-time video segmentation with a normal PC.
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Abstract. Active contours are useful tools for segmenting images. The
classical formulation is given in the spatial domain and is based on a sec-
ond order system. The formulation based on a frequency-domain analysis
offers a new perspective for studying the convergence of the snake. This
paper addresses an analysis and optimization for a snake-based segmen-
tation algorithm. The study allows us to choose optimum values of the
system dynamic parameters in the design of the active contour for im-
proving its speed of convergence in a segmentation problem.

1 Introduction

The effectiveness of active contours in image processing for segmenting images
is well known. The classical formulation [1] is given in the spatial domain and it
is based on a second order linear system. Rigidity and elasticity are the static
parameters and mass and damping the dynamic parameters for its characteriza-
tion. Apart from the original formulation, several variants of deformable models
have been proposed [2,3]. In [4], the original formulation is translated into the
frequency domain which leads to a simple formulation and design, offering an
important computational saving in comparison to the original one.

The basic principle behind active contours is the ability to draw a smooth
parametric curve constrained to internal and external requirements, in an adap-
tive way by means of an iterative mechanism. As any adaptive system, the
iterations required by the contour to delineate the target is of importance [5].
The speed of convergence depends specially on the second order dynamic pa-
rameters and on the distance between attracted nodes [6]. This paper uses the
� This work is partially supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa,

under grant TIC2002-03033.
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frequency based formulation in order to study the convergence of the snake in
the iterative adjustment of this contour until it outlines the tracked object. It
also shows the analysis for choosing the optimum values of the dynamic param-
eters in the design of the active contour for improving its speed of convergence
in a segmentation problem.

2 Frequency Based Formulation

A snake is a time varying contour v = v(s, t) whose shape is governed by an
energy functional of internal and external forces,

E(v) = S(v) + P (v). (1)

The internal deformation energy is defined as

S(v) =
1
2

L∫
0

α(s)
∣∣∣∣∂v∂s

∣∣∣∣2 + β(s)
∣∣∣∣∂2v
∂s2

∣∣∣∣2 ds. (2)

The term of external energy P (v) comprises the effect of external forces like
the gradient of an image or the internal nonlinear forces like those that keep the
contour length constant. For the practical implementation of the minimization
of the energy functional, the parametric domain 0 < s < L is divided into
subdomains and v is divided into snake elements, which are constructed by
means of a shape function f(s) and a shape parameter vector u(t). This is
achieved by the Lagrange equations of motion and leads to the second order
differential equation

M
d2u(t)
dt2

+ C
du(t)
dt

+ Ku(t) = g(u(t)), (3)

where K is the stiffness matrix, M and C are respectively the mass and damp-
ing matrices, and g is the external forces vector, whose value is determined by
the position of the contour at time t [1]. The stiffness matrix K is assembled
according to the shape function f(s) and to the rigidity and elasticity values. All
the previous elements confer the snake its dynamic and shape characteristics.

Although from a general point of view K is a symmetric banded square
matrix, in several applications, tension and rigidity (α(s) and β(s)) are s-in-
dependent and take the same values for all snake elements. This simplification
of the model opens up the possibility to formulate the minimization of energy
functional (2) in the frequency domain[4].

2.1 Closed Contours

The frequency-based formulation is applicable initially to closed contours, which
can be considered as periodic signals, the period being the contour length. Let
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us define the following signals: v̂(s) is a periodic signal of period L defined
by v̂(s) = v, 0 ≤ s < L; û(s) is the periodic version of u(s), defined as follows

u(s) =
N−1∑
n=0

un δ(s− sn), (4)

where N is the number of nodes of the snake, un is the value of the n-th node,
and sn are their positions (in a closed snake, sn = nL/N). U(Ω) is the Fourier
transform of u(s). The snake is closed and can be represented by the periodic
signal defined by v̂(s) = û(s) ∗ f(s), where ∗ denotes linear convolution on
the s domain and f(s) is the shape function, which determines the type of
interpolation among the snake nodes. Since it was assumed that α and β are
s-independent, the energy functional (2) can be written as

S =
α

2

L∫
0

|ŷ1(s)|2 ds+
β

2

L∫
0

|ŷ2(s)|2 ds, (5)

where ŷa(s) = ∂av̂(s)/∂sa. By using Parseval’s rule, equation (5) can be ex-
pressed in the frequency domain

S =
L

2

∞∑
k=−∞

α |d1(k)|2 + β |d2(k)|2. (6)

where da(k) is the Fourier series of ŷa(s). Then

S =
1

2L

∞∑
k=−∞

|U(Ω)|2 |Ks(Ω)|
⌉

Ω=k 2π
L

, (7)

where
Ks(Ω) =

(
α |Ω|2 + β |Ω|4

)
|F(Ω)|2. (8)

where F(Ω) is the Fourier transform of the shape function f(s). According to
(4), U(Ω) is a periodic spectrum of period defined in the frequency interval
[0, 2πN

L ], and then (7) can be further simplified as

S =
1

2L

N−1∑
k=0

|U(Ω)|2 |K(Ω)|
⌉

Ω=k 2π
L

, (9)

where

K(Ω) =
∞∑

k=−∞
Ks(Ω − kN

L 2π). (10)

From the previous statement it is clear that the energy functional has been
translated into a frequency and also a discrete domain, and N frequency-based
values contain the relevant information. Given this discrete scenario in both
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spatial and frequency domain, let us translate (9) to the discrete space, i.e.,
sn → n, which implies Ω → ω, ω being the frequency counterpart of n. Equation
(9) becomes

S =
1

2N

N−1∑
k=0

|U(ω)|2 |K(ω)|
⌉

Ω=k 2π
L

, (11)

where K(ω) is called the frequency stiffness spectrum

K(ω) =
∞∑

k=−∞

(
α |Ω|2 + β |Ω|4

)
|F(Ω)|2

⌉
Ω=ω−2πk

. (12)

Thus by taking the derivative in (11) respect each of the N relevant values
of U(ω), we obtain the Lagrange equation of motion of the snake formulated in
the frequency domain

M
∂2U(ω, t)

∂t2
+ C

∂U(ω, t)
∂t

+ U(ω, t)K(ω) = G(ω), (13)

where M and C are the mass and damping of the time-based second-order dif-
ferential system, and are considered invariant throughout the snake. G(ω) is the
Fourier transform of the external forces. Note that in (13) only values of ω that
are multiples of 2π/N are relevant. The implementation of (13) is feasible by as-
suming a time step Δt, which leads to the discrete-time implementation where
ξ is discrete time, b = 2M/Δt2 +C/Δt and c = −M/Δt2. The explicit equation
of the snake motion is

(b+ c+K(ω))Uξ(ω) = bUξ−1(ω) + cUξ−2(ω) +Gξ(ω), (14)

This equation can be translated to the space-domain as

η−1(η + k[n]) � uξ[n] = b uξ−1[n] + c uξ−2[n] + η−1gξ[n], (15)

where η = M + C is the global mass, b = 1 + (1 + γ)−1 and c = −(1 + γ)−1

are the second-order dynamic parameters, γ = C/M is the damping-mass ratio,
and � denotes circular convolution between equal length discrete sequences.

The spectrum K(ω) is the frequency kernel of the deformable model, and
its discrete-space counterpart k[n] corresponds to the first column (or row) of
the stiffness matrix K from the original snake formulation [1]. Note that (15)
is equivalent to the equation of motion of the original formulation: there the
pseudo-inverse of the stiffness matrix is the kernel of the process, and, if the
stiffness parameters are assumed to be spatial-invariant, the resulting matrix
is circulant, that is, each column is constructed by shifting in one element the
previous one. A circulant matrix is the algebraic representation of a circular
discrete convolution.

3 Segmentation Process

In a classical problem of segmentation with active contours, at a certain point
of the process, some nodes are ”attached” to some high energy regions and the
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rest of the nodes are free. This scenario can be expressed as a non-uniform
interpolation problem by reshaping (15) into

zξ[n] = b uξ−1[n] + c uξ−2[n], (16)

yξ[n] = zξ[n] + (xξ[n]− zξ[n])
∞∑

k=−∞
δ[n−Nk], (17)

uξ[n] = h[n] ∗ yξ[n], (18)

where xξ[n] = η−1gξ[n], Nk are the positions of the nodes attracted by the
external forces and h[n] is the pseudo-inverse kernel of k[n], i.e., its Fourier
transform is

H(ω) =
η

η +K(ω)
. (19)

Assuming initially for the analysis Nk = kN and initial repose, then Xξ(ω) =
Xξ(ω − kω0) with ω0 = 2π/N , Uξ(ω) = Qξ(ω)Xξ(ω), and equations (16)-(18)
can be translated into the frequency domain,

Qξ(ω) = bH(ω)Qξ−1(ω) + cH(ω)Qξ−2(ω) (20)

−H(ω)
b

N

N−1∑
k=0

Qξ−1(ω − k ω0) −H(ω)
c

N

N−1∑
k=0

Qξ−2(ω − k ω0) +H(ω).

Equation (20) shows that for a given ω, the equivalent filter Qξ(ω) depends
on its own values at frequencies equal to ω + kω0. By considering frequencies
ω = iω0 +Δω (i = 0, ..., N − 1, and |Δω| ≤ ω0/2), (20) yields to

qξ = h + H (bqξ−1 + cqξ−2) , (21)

where qξ = [Qξ(Δω), Qξ(ω0 + Δω), . . . , Qξ((N − 1)ω0 + Δω)]T , h defined ac-
cordingly, and matrix H is

H = diag(h) − 1
N

h [1
N· · · 1]. (22)

In the steady state (ξ = ∞), equation (21) leads to q = (I−H)−1 h, which
describes the equivalent kernel in the steady state. The inverse process, that is,
drawing kernel H(ω) from a desired final situation Q(ω) has no easy explicit
formulation. Generally speaking, Q(ω) depends on the stiffness parameters, and
on the overall mass η (19). This means that for constant η, the solution reached
in the steady state is the same regardless of the ratio damping-mass γ, however,
the speed of the snake toward that final situation does depend on γ [6].

3.1 Convergence Analysis

Subtraction of the final value in the recursion (21), that is, rξ = qξ − q∞, gives
rise to the linear difference equation that describes the residual evolution of the
active contour

rξ = bHrξ−1 + cHrξ−2. (23)
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Matrix H can be expressed as H = LDL−1, D being a diagonal matrix
of eigenvalues λ1, ..., λN , and L a matrix whose columns are the corresponding
unitary orthogonal eigenvectors, vi. Then, (23) becomes

cξ = bDcξ−1 + cDcξ−2, (24)

where cξ = L−1rξ. The decoupled difference equation (24) can be analyzed in
the Z-plane domain. Then, solving the decoupled quadratic equations provides
the poles of the vibration modes,

z1,2
i =

bλi

2
± 1

2

√
b2λ2

i + 4cλi, (25)

Depending on the sign of the discriminant, Δi = b2λ2
i + 4cλi, the resulting

orthogonal mode can be underdamped (Δ < 0), critical damped (Δ = 0) or
overdamped (Δ > 0).

The fastest speed of the slowest mode is reached when the poles associated
to the largest eigenvalue meets the critical damping condition and then

γ0 = 2λ−1
max

(
1 − λmax +

√
1 − λmax

)
. (26)

Figure 1 describes the behavior of the eigenvalues and the associated poles.
Note that when the eigenvalue is bigger than threshold, the corresponding com-
plex poles evolve into two real poles. Simulation parameters are N = 4, α = 0
and β = 1 and finite differences.

3.2 Complexity Analysis and Optimum Parameters

When the eigenvalues are near the unity, it is difficult to appreciate differences
between their system velocities. Another way to express the speed of convergence
is by means of the system complexity, defined as

Ne = (1 − λmax)−1 (27)
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Fig. 2. Variation of system complexity Ne with the global mass η for different values
of the largest gap in the node set N

where λmax is the largest eigenvalue of matrix H (22). Figure 2 contains, in
solid line, the relation between mass η and method complexity Ne for different
values of largest gap between attracted nodes N . Each curve is confined by two
asymptotic lines (in dotted line), defined by

Ne = N (28)
log10(Ne) = log10(η) + σ (κ1 log10(N) + κ2) (29)

where κ1 = 1.97, κ2 = −0.95 and σ is the derivative order (σ = 2 is equivalent
to α=0, β=1 in the original formulation). The crossing point between both
asymptotes is described then by the following equation

log10(η0) = (1 − σκ1) log10(N) − σκ2 (30)

Table 1. Algorithm for the optimum design of dynamic parameters of active contours

η = N (1−σk1)10(−σk2)

Ne = max
{

N, ηN (σk1)10(σk2))
}

λ = 1 − 1/Ne

γ = 2λ−1((1 − λ) +
√

1 − λ)
b = 1 + (1 + γ)−1

c = − (1 + γ)−1

K = αKα + β Kβ

H = η (η + K)−1

repeat
u = DFT−1{H (bUξ + cUξ−1)} + η−1gξ

Uξ−1 = Uξ

Uξ = DFT{u}
until ||U − Uξ|| < tol
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Then, given a non uniformly distributed dataset, the algorithm would start
by detecting the length of the largest gap in the dataset, then the optimum mass
value is computed according to (30), and from there Ne is obtained and then the
necessary second order system parameters: λ, γ, b and c. This optimum snake
algorithm is described in Table 1.

4 Conclusions

The final contour shape of the segmentation is dependent on the sum of mass and
rigidity, η, and is independent of the damping-mass ratio γ. The value of mass η
used to achieve a certain interpolation degree is theoretically infinite, or at least
very high. From a practical point of view, given η and N , one would be interested
in setting γ so that the snake achieves its maximum speed of convergence.

According to the previous results, the fastest interpolating snake could be
based on using such a low value of mass η that corresponds to a low value of
method complexity Ne = N . The mass of the inflexion point (30), ηo, achieves
a fair final interpolation, but if a finer segmentation is required, the mass value
has to be increased. An increase in an order of magnitude in η implies the same
increase in Ne and this could give rise to an prohibitive slow convergence.
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Abstract. A new segmentation strategy is proposed to precisely extract moving 
objects in video sequences. It is based on the automatic detection of the static 
elements, and its classification as background and foreground using static dif-
ferences and contextual information. Additionally, tracking information is in-
corporated to reduce the computational cost. Finally, segmentation is refined 
through a Markov random field (MRF) change detection analysis including the 
foreground information, which allows improving the accuracy of the segmenta-
tion. This strategy is presented in the context of low quality sequences of sur-
veillance applications but it could be applied to other applications, the only re-
quirement being to have a static or quasi static background. 

1   Introduction 

One of the key steps of many segmentation algorithms is the background’s estimation 
process. Various characteristics of the sequence can be used with different levels of 
complexity. In [1], exclusively temporal correlation is used to detect the background 
pixels; motion analysis is introduced in [2] while other works use edge information 
associated, for example, with color analysis [3] to detect moving objects. Currently, 
the algorithm, proposed in [4], is very popular, using a mixture of gaussians for each 
pixel to represent the distribution of its value along the sequence. 

All these processes are often used to extract moving objects on static background. 
Nevertheless, the results applying directly this strategy are quite limited in specific 
situations. This is the case of the sequences where motionless objects are located in 
foreground. Moving objects are hidden by the foreground static elements, and the 
segmentation algorithms can not extract the detected objects. The detection of these 
foreground static elements would highly improve segmentation and tracking perform-
ances, allowing occlusion prediction. Additionally, another limitation comes from the 
computational requirements, which have to be reduced for many applications. 

To overcome the above mentioned limitations, a new segmentation strategy, incor-
porating automatic detection of static elements in foreground is presented in this pa-
per. It is designed to deal with low quality images, keeping at the same time a reason-
able computational cost. A detection of static elements and a coarse segmentation, 
including a morphological analysis are performed based on a modified version of the 
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algorithm presented in [4]. These operations, which are the most computational de-
manding ones in our strategy, are carried out one every P frames of the sequence (key 
frames). The result of this process is used to separate the scene foreground and back-
ground combining: (i) static differences based analysis of the moving objects areas; 
(ii) segmentation of the reference image based on a basic region growing strategy. 
This coarse segmentation for the key frames is refined through a Bayesian algorithm 
using Markov Random Fields (MRF) [6] with multi-resolution differences [1]. For the 
images between key frames, tracking information obtained through a Kalman filter 
[5] is used to predict the evolution of the moving objects areas and segment them 
accordingly with the MRF strategy. 

2   System Description 

A block diagram of the proposed segmentation algorithm is presented in figure 1. The 
input is a sequence I of images, where In is the image at the instant n, and In;t the pixel 
indicated by the vector t of coordinates (x,y) in In. First, a simplified version of the 
algorithm developed in [4] followed by a morphological analysis, is applied on one of 
every P frames to create reference images In

ref (i.e. images gathering only the static 
elements of the environment without any moving object), and perform a first coarse 
segmentation of the moving objects Sn. These results are used in a back-
ground/foreground segmentation phase composed of two steps: a pixel-based analysis 
and the introduction of contextual information using a region-growing strategy. 

Tracking

...I In+1

n ...n+1R R

n+PSSn ...

...n+PInI ref ref

n ...n+PM MStatic Elements
Estimation

Segmentation
Refinement

Morphological
Analysis

Foregr/Backgr
Segmentation

n

 

Fig. 1. Block diagram of the proposed algorithm 

A tracking process through a structured Kalman filter [5] allows to reduce the final 
area of search of the moving object. Finally, the segmentation refinement is per-
formed by a Bayesian algorithm using MRF [6] with multi-resolution differences [1]. 
The result of the algorithm is a multilevel mask image Rn where each pixel is labeled 
either as “background”, “foreground”, or “belonging to a moving object”. The follow-
ing sections describe in detail each processing block. 

2.1   Static Elements Estimation 

The aim of the estimation of static elements is to create a low resolution mask indicat-
ing which pixels of the analyzed image are static. To detect the static elements, a 
modified version of the method presented in [4], is used. It is based on a combination 
of several gaussians for each pixel to model the distribution of its gray level value 
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along the sequence. It offers a good trade-off between computational costs, adaptabil-
ity to slow illumination changes, and robustness with respect to the noise. To reduce 
the computational requirements and the noise in the images, operations are carried out 
on subsampled versions of the images filtered using a bilinear filter to limit aliasing. 

Matched Component Identification. For each pixel t, the distribution of its gray 
level values f(In;t ) is modeled as a mixture of K (3  K  5) gaussians: 

( ) ( )itnitn

K

i
itntn tIf ;;;;

1
;;; ;;* σμηω

=

=  (1) 

where n;t;i represents the weighting factor associated to the i-th component, with the 
condition i n;t;i = 1, and  (t ; μn;t;i ; n;t;i ) is the i-th gaussian component with mean 
value μn;t;i and standard deviation n,t,i. For each input pixel In;t, it is determined which 
one of the K gaussians, the so called ‘matched component’, corresponds to the current 
pixel’s value: The gaussian i is considered as the ‘matched component’ if | In;t - μn-1;t;i 
| < M * n-1;t;i with M, being a threshold defining a certain accepted deviation. Once 
identified the ‘matched component’, its values are updated as: 
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where  is a parameter defined by the user  (0<  < 1), that influences directly the 
update rate of the background. In this approach, the updating process is significantly 
simplified through the use of  instead of ρ (proposed in [4], complex and computa-
tionally intensive to estimate) with good results. The other (K-1) gaussians keep the 
same values μn;t;i and n,t,i but their weighting factors are updated through: 

( ) itnitn ;;1;; *1 −−= ωαω  (3) 
If none of the gaussians corresponds to the ‘matched component’, the gaussian 

with the lower value of the weighting factor is replaced by a new gaussian with a 
mean value fixed to the pixel value (i.e. μn;t;i = In;t), an initial standard deviation 0 
quite high and an initial low value of the weighting factor 0, then normalized. 

Pixel Classification. This processing phase classifies each reference image pixel as 
either static (belonging to a background or foreground object) or dynamic (belonging 
to a moving object). For each pixel t, if the ‘matched component’ determined in the 
previous phase is one of the gaussians associated to the pixel when it represents a 
static element, the processed pixel is considered as a static element.  

To determine the gaussians representing static elements, the K gaussians are first 
ranked by decreasing values of n;t;i/ n;t;i: as low variance and high weighting factor 
are typical characteristics of static elements, the number N of gaussians (N≤K) repre-
senting a static element is determined with the following criterion: 

 

N=argmin (  n;t;i > T ) (4) 
k 

k 

i=1
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where T is a threshold defined by the user (0< T <1). It gives the opportunity to repre-
sent a static element with several components, which would result very useful in case 
of small repetitive movements of the background (quasi-static background ). 

This reference image mask can be computed for each one of the images in the se-
quence. Nevertheless, this operation has a high computational cost and it is only re-
quired when extremely fast changes appear in the sequence. This is not the case in 
most of the applications, so this process is only carried out on 1 every P frames of the 
sequence (key frames). For the examples provided in this work, P=4. Moreover, it 
must be stressed that the proposed strategy is able to deal with large lighting varia-
tions, only requiring a certain adaptation period to the new scene characteristics. 

2.2   Morphological Analysis 

The low quality of the highly compressed images provided by the cameras in this 
application, increases the number of wrong pixel classifications. A pixel labeled erro-
neously as static, generates an error in the updated reference image, while a pixel 
labeled erroneously as dynamic only delays its correct update in the reference image. 
Therefore, a morphological analysis is carried out which favors the re-classification of 
static pixels as dynamic when neighboring pixels are classified as dynamic. A filter is 
applied on every pixel classified as static in the image: if a certain portion of the pix-
els in the connected neighborhood are considered as dynamic elements (two in our 
implementation), the analyzed pixel classification will be changed to dynamic. Then, 
a dilation expands the regions associated to the moving objects to avoid errors appear-
ing mainly in the limits of the detected object masks. After these operations per-
formed on subsampled images, the full-resolution mask gathering the static and dy-
namic pixels is obtained through pixel duplication. 

Based on this full-resolution mask, the update of the reference image is carried out 
as follows: if pixel t in the mask is labeled as static, the pixel t in the reference image 
is set to the current pixel’s value (In;t

ref = In;t), and the coarse segmentation removes 
this pixel (Sn;t=0 ); otherwise, the pixel t in the reference image keeps the same gray 
level value than in the previous reference image (In;t

ref = In-P;t
ref ), and in the coarse 

segmentation, the pixel is set to the current’s pixel value (Sn,t=In,t). It should be 
stressed again that the update of the characteristics of the gaussians is performed for 
every image, while pixel classification, reference image creation, and the coarse seg-
mentation are only carried out for the key frames. 

2.3   Background / Foreground Segmentation 

The aim of this processing phase is the identification of the background and fore-
ground static elements using the reference image In

ref and the coarse segmentation Sn. 
It is carried out by a pixel-based analysis using static differences, and the introduction 
of contextual information with a region growing strategy. Finally, a multi-level mask 
Mn is created where pixels are labeled either as belonging to the“background” or 
“foreground” areas. 

Pixel-Based Analysis Using Static Differences. It performs an identification of the 
static elements belonging to the background and those belonging to the foreground. 
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For the first reference image computed I1
ref, all its pixels are considered as belonging 

to the foreground. For each new updated reference image In+P
ref, for every pixel t 

classified as dynamic in Sn+P, the static difference |In+P;t
ref- Sn+P;t| is computed and 

compared with a threshold. If the value is above the threshold, it means that this dif-
ference is too high to be only due to the noise present in the images, and therefore t is 
likely being visited by a moving object. This implies that the moving object is occlud-
ing the static element represented in the reference image, and therefore the pixel in the 
reference image belongs to the background.  For the pixels whose static difference are 
below the threshold, and for those considered as static elements after the morphologi-
cal analysis, they keep the same label as in the previous computed mask. 

Contextual Information Based on Gray Level Values. The pixel-based analysis 
introduced previously constraint the correct background/foreground identification to 
those pixels visited by a moving object. Effectively, if no moving objects visit a pixel, 
it will be considered as foreground even if there is no evidence. To relax this con-
straint, a region analysis on the reference image is incorporated. It is based on a sim-
ple region growing strategy - the single linkage region-growing [7] algorithm - with a 
homogeneity criterion based on pixel gray level differences below a threshold. After, 
a median filter is used to eliminate isolated regions in the segmented reference image.  

For each segmented region in the reference image, if a certain portion of the pixels 
are already labeled as “background”, the entire homogeneous region is labeled as 
background. The computational cost of these operations depends on the number of 
regions in the segmented image, directly related to the threshold value used in the 
region-growing strategy. This threshold has been set to 5 in our implementation as it 
keeps fine details in the reference image, while it reduces the computational cost. 

(b)(a) (c)  

Fig. 2. Separation of background / foreground before (a) and after (b) the introduction of con-
textual information 

Figures 2.(a) shows an image from a surveillance sequence where moving objects 
are passing in front of a shopping window full of sales advertisements in the fore-
ground. The result after the pixel based analysis previously introduced is presented in 
(b). It can be observed that the bottom-left area is full of pixels which can not be clas-
sified as background (although they are par of it) because no moving object visits 
them. The introduction of contextual information increases the number of regions that 
are now considered background (as it can be seen in (c)), although this region based 
analysis imply some loss of detail as, for example, part of the “e” on the shop window 
glass is now considered as part of the background.  
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2.4   Tracking 

Up to now, all the information extracted about the location of moving objects is rela-
tive to the key frames for which the first coarse segmentations are built (…, Sn-2P, Sn-P, 
Sn). The segmentation refinement described in the next section is applied to those 
moving objects detected, removing previously the static foreground regions identified. 
For those intermediate images (In-P+1,…,In-1,In+1….) for which no coarse segmentation 
is created, the same final segmentation algorithm is applied but restricted to the image 
areas covered by the moving objects predicted bounding boxes.  

Prediction is achieved through a structured Kalman filter [5], based on the centroid 
of the moving objects position computed in the previous coarse segmentations (Sn-2P, 
Sn-P, Sn). The location of the moving objects bounding boxes in the intermediate im-
ages are predicted by the regions speed and acceleration provided by the Kalman 
filter: The last bounding box computed with a coarse segmentation is moved in the 
direction and amplitude described by speed and acceleration vectors of its centroid. A 
segmentation refinement is applied to the image area covered by the predicted bound-
ing boxes having eliminated those pixels identified as foreground static elements. 

2.5   Segmentation Refinement 

This step is to segment accurately the moving objects in the sequence. The segmenta-
tion strategy proposed in [1] is applied using a MRF change detection operating on a 
combination of static and dynamic differences at different resolutions: a static differ-
ence image is computed as the difference between the reference image and the frames 
under analysis (|In-In

ref|); a dynamic difference image is computed as the difference 
between the two consecutive frames (|In-In-1|) to profit of the motion information. 
Then, the sum of these differences is used in the change detection. 

Change Detection. The change detection is based on the relationship between the 
neighborhood of the pixel analyzed and a threshold v(j) defined as follows: 

v(j)= ts+16*B+4*B*j (5) 

where ts is the so-called ‘anchor threshold’, B is called ‘potential value’, and the vari-
able j represents the number of ‘changed pixels’ in a 3*3 window centered at the pixel 
analyzed [6]. The values of the threshold v(j) and the sum of the differences previ-
ously computed are compared: If the sum is above the threshold, the current pixel 
belongs to a moving object; otherwise, the pixel is labeled as ‘background’. To reduce 
the computational cost, this strategy is applied on low resolution images. 

Refinement. To obtain the final segmentation at full resolution, direct interpolation 
based on pixel duplication is carried out on the previous results, followed by a re-
segmentation, applying the same change detection strategy but constrained to the 
contours of moving objects and foreground static elements: the areas where accuracy 
in the segmentation is lost due to the projection process. Finally, pixels corresponding 
to foreground static elements are removed from the segmentation. 
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3   Results 

The proposed system has been used in surveillance applications where the acquisition 
device must be located within the premises. So, the camera is placed in the upper 
corner of the shop window as it can be seen in figure 3.(a). Besides avoiding the use 
of public domain areas, the location offers the advantage of physical protection. The 
acquired image has three different areas according to their distance to the camera: the 
moving objects to be analyzed, the background and the slogans on the glass (fore-
ground), that occlude meaningful parts of the moving objects.  

(b)(a) (c) (d)  
Fig. 3. Results of estimation of static elements 

After several tests conducted of different environment conditions, the following 
values were selected to generate the best reference image with the most appropriate 
update rate: K=3; M=2,5;  = 0,03; 0 = 2,5; 0 =0,03 and T=0,6. Moreover, the use 
of a relative low value (0,6) for the threshold T usually reduces the representation of 
the static component to just one gaussian. 

The application of the proposed scheme of estimation of static elements to the im-
age of the figure 3.(a) is displayed in figures 3.(b)-(d). Figure 3.(b) shows the com-
puted reference image In

ref. Figure 3.(c) and (d) present the detected moving object 
areas before and after the morphological analysis. They show the improvement of the 
coarse segmentation result, so that the whole moving object is segmented, and the 
number of wrong classified pixels is reduced. 

 

 

(a) (c) (b) 

(d)

(a) (c) (b) 

 

Fig. 4. Processing phases results 

    The foreground/background segmentation process is shown in figure 4.(a)-(c) To 
get these results, ts is experimentally set to 55 and B to 2,2. Figures 4.(a)-(c) display 
the identified foreground pixels (in black) at three different instants. In the first image 
(a), most of the static elements are considered foreground: only those visited by a 
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moving object are correctly segmented (right side of the image). In (b) and (c), the 
correct identified areas have increased as most of the image pixels have been visited 
by a moving object. Figure 4.(d) presents the final segmentation results at different 
instants in the sequence. This final segmentation improves very significantly the 
coarse segmentation exposed in figure 3.(d). Although some parts of the moving ob-
ject are hidden by the foreground detected areas, the resulting segmentation, even if 
broken into non-connected areas, is considered to belong to the same moving object. 
Occlusion detection is applied to keep temporal coherence of the detected moving 
regions. 

4   Conclusions 

A new moving objects segmentation strategy incorporating the automatic identifica-
tion of the static elements in the foreground has been presented. Several tests have 
been conducted on different scenarios showing its usefulness and examples of one of 
these tests have been presented here. It must be stressed that the unique requirement is 
the presence of a static background, or at least a quasi static one with a change rate 
slower than the reference image refresh rate. Although average quality of the se-
quences is far from good, it shows typical scenarios for this type of surveillance. The 
proposed algorithm is being upgraded to provide better tracking accuracy, and 
achieve a more precise refinement block. 
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Abstract. Piecewise constant Mumford-Shah segmentation [17] has
been rediscovered by Chan and Vese [6] in the context of region based ac-
tive contours. The work of Chan and Vese demonstrated many practical
applications thanks to their clever numerical implementation using the
level-set technology of Osher and Sethian [18]. The current work proposes
a Γ -convergence formulation to the piecewise constant Mumford-Shah
model, and demonstrates its simple implementation by the iterated inte-
gration of a linear Poisson equation. The new formulation makes unnec-
essary some intermediate tasks like normal data extension and level-set
reinitialization, and thus lowers the computational complexity.

1 Introduction: The Mumford-Shah Segmentation Model

The Mumford-Shah segmentation model [17] is built upon a generic image model
into which the edge feature is explicitly incorporated as in [10]. Consider the
following image generation model:

Γ −→ u
⊕n−→ u0,

where in the reverse order, u0 denotes an observed image, n an additive Gaussian
noise field, and u piecewise smooth (or cartoonish) image patches consistent with
a given edge layout Γ .

From Bayesian point of view [10,16], segmentation is to estimate the posterior
probability

p(Γ, u | u0), or equivalently, p(u0 | u,Γ )p(u,Γ )/p(u0).

In the Markovian setting [7], the joint prior can be expressed by

p(u,Γ ) = p(u | Γ )p(Γ ).

Thus by putting aside the constant p(u0) and working with the energy function
(or the logarithmic likelihood function) E = − log p, one obtains the structure of
the Mumford-Shah model up to an ineffectual constant:

E[Γ, u | u] = E[Γ ] +E[u | Γ ] +E[u0 | u,Γ ].
� Research is supported by the NSF (USA) under the grant number DMS-0202565.
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The full Mumford-Shah model [15,17] is in fact explicitly expressed by:

E[Γ, u | u] = σlength(Γ ) + β

∫
Ω\Γ

|∇u|2dx+ λ

∫
Ω

(u− u0)2dx,

where dx = dx1dx2 denotes the area element of a 2-D domain Ω. The model
has become a classic and been studied by numerous researchers (e.g., the mono-
graph [15]).

For images made of piecewise homogeneous stochastic patches, only their
constant averages can be identified as the cartoonish pieces, i.e.,

u(x) ≡ Ci, x ∈ Ωi, and Ωi ∈ π(Ω | Γ ).

Here the notation π(Ω | Γ ) denotes the partitioning of the entire image domain
Ω given an edge layout Γ , or the collection of connected components of Ω \ Γ
topologically speaking. The original Mumford-Shah model is then reduced to the
piecewise constant model, or simply, the reduced Mumford-Shah model:

E[(C′
is),Γ | u0] = σlength(Γ ) + λ

∑
Ωi∈π(Ω|Γ )

∫
Ωi

(u(x) − Ci)2dx.

Mathematically this reduced model is a proper asymptotic limit of the full
Mumford-Shah model, as discussed in the original paper of Mumford and Shah
[17], or Chan and Shen [5]. Recently in the award-winning paper [6,21] (2003
Best Paper of IEEE Signal Processing Society), Chan and Vese rediscovered this
model in the context of region based active contours. As in [6], we shall mainly
focus on the 2-phase model to illustrate our primary contributions:

E[C+, C−,Γ | u0] = σlength(Γ )+λ

∫
Ω+

(u(x)−C+)2dx+λ

∫
Ω−

(u(x)−C−)2dx,

(1)
where Γ partitions Ω into the interior Ω+ and exterior Ω−. As remarkably
demonstrated by Chan and Vese [6,21], such a 2-phase model has already wit-
nessed numerous intriguing applications in astronomy and medicine.

Chan and Vese have successfully implemented the above model using the
level-set computing technology invented and continuously advanced by Stan Os-
her and James Sethian [18]. Multiphase frameworks have also been developed
by Chan and Vese [21], and lately by Lie, Lysaker, and Tai [13].

The current work is complementary to the above level-set approach. Inspired
by the Γ -convergence approximation to the full Mumford-Shah model developed
by Ambrosio and Tortorelli [1], we propose a new Γ -convergence formulation of
the reduced Mumford-Shah model, and its robust and fast computational im-
plementation. As in [1], the new formulation overcomes the fundamental theo-
retical and computational difficulties resulting from the free-boundary nature of
the Mumford-Shah model (both the full and the reduced). The computation is
reduced to the iterated integration of a linear Poisson equation, which can be
easily and efficiently implemented in Matlab in a uniform code, without extra
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intermediate processing steps (e.g., normal extension and reinitialization in the
level-set approach) [21].

The organization of the paper goes as follows. Section 2 briefly reviews the
essence of the Γ -convergence approximation to the full Mumford-Shah model.
In Section 3, we introduce our new Γ -convergence approximate model to the
reduced (i.e., piecewise constant) Mumford-Shah model. Efficient computational
schemes and examples of generic test images are presented in Section 4.

2 Γ -Convergence Approximation to the Full M.-S. Model

Γ -convergence has its rigorous mathematical definition in metric spaces [1]. The
intuition in the current context could be easily revealed by phase-field modelling
in superconductors, as in the the works of Ginzburg and Landau [11]. We now
briefly explain the core idea in terms of approximation theory, which will then
naturally bring out the new model.

In the Γ -convergence setting [1,8,14], a curve Γ (in 2-D) is instead represented
by a 2-D function z = zε(x1, x2) ∈ [0, 1], depending upon a small scale parameter
ε. The energy associated with such a phase field z is defined as

Lε[z] =
∫

Ω

ε|∇z|2dx+
∫

Ω

(1 − z)2

4ε
dx.

Since ε� 1, under any finite energy bound, the second term demands the phase
field z = zε(x1, x2) to be as close to 1 as possible almost everywhere on the
image domain Ω.

Suppose in addition that along some narrow bands (intended to be the ε-
neighborhoods of a curve Γ ) the field z sharply drops down to zero. The graph
of z then looks like a canyon along its valley line Γ . The entire Γ -convergence
machinery is built upon the following remarkable approximation result:

Lε[z] � length(Γ ). (2)

Rigorous mathematical analysis is more involved but a qualitative glimpse is not
too far beyond the level of Advanced Calculus as presented below.

Applying the generic inequality 2AB ≤ A2 +B2, one has

Lε[z] ≥
∫

Ω

|∇z||z − 1|dx =
1
2

∫
Ω

|∇w|, w = (1 − z)2,

where the graph of w = (1 − z)2 looks like a set of walls. Most contributions to
the integral come from a narrow band along Γ since w is flat away from it. With
smooth Γ , the narrow tubular neighborhood can then be parameterized by the
tangential (arc length) and normal coordinates s and n. Since w remains almost
constant along the tangential direction, we have |∇w(s, n)| � |∂w/∂n|, and

1
2

∫
Ω

|∇w| �
∫

Γ

∫ ε

−ε

1
2

∣∣∣∣∂w∂n
∣∣∣∣ dnds =

∫
Γ

1
2
TV(w(s, ·))ds.
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For any fixed s, the total variation TV(w(s, ·) along the normal direction is
ideally 2, since each shoulder of the wall contributes 1 (by ascending from 0 to
1 and then descending from 1 to 0). Hence we have shown qualitatively that

Lε[z] ≥ length(Γ ).

Assisted with a suitable ordinary differential equation [1], one can further show
that the lower bound can indeed be approached.

Notice that the above analysis crucially relies upon the assumption that z
does touch down to the zero along Γ . But the energy form Lε[z] alone does
not guarantee it. In Ambrosio and Tortorelli’s approximation [1], it is explicitly
enforced through the second term of the Mumford-Shah model:

Eε[z] = σ

(∫
Ω

ε|∇z|2dx+
∫

Ω

(1 − z)2

4ε
dx

)
+ β

∫
Ω

z2|∇u|2dx+λ

∫
Ω

(u− u0)2dx.

Along the jump (edge) set Γ , ∇u is not classically defined, or remains very large
(or expensive) even after discrete sampling or continuous blurring. Thus the
second term forces z to touch down to zero along Γ to bound the total energy.

3 Γ -Convergence Form of the Reduced M.-S. Model

For the reduced (piecewise constant) Mumford-Shah model, the lack of the gra-
dient term loses the control factor that forces the field z to drop near edges. In
the current paper, therefore, we propose a proper variation of Ambrosio and Tor-
torelli’s original formulation for the full Mumford-Shah model [1]. As in Chan
and Vese [6], we shall primarily focus on the 2-phase model, and multiphase
extensions can be similarly accomplished as in Vese and Chan [21], and in par-
ticular, in the recent work of Lie, Lysaker, and Tai [13].

To explicitly enforce two-phase separation without turning to the gradient
information ∇u, we propose to replace the original phase field energy by

Lε[z] =
∫

Ω

(
9ε|∇z|2 +

(1 − z2)2

64ε

)
dx.

The range of z is restricted within [−1, 1]. Since ε � 1, a bounded energy will
force z = 1 or z = −1 almost everywhere. Following the similar inequality in the
preceding section, one has

Lε[z] ≥
3
4

∫
Ω

|∇z||1 − z2|dx =
3
4

∫
Ω

∣∣∣∣∇(
z − z3

3

)∣∣∣∣ dx � 3
4

∫
Γ

∫ ε

−ε

TV(w)dnds,

where w = w(z) = z(1 − z2/3) is a monotone function on z ∈ [−1, 1], and the
local curvilinear coordinates have been applied along the transition medial line
(where z = 0), as in the preceding section. Since w(−1) = −2/3 and w(1) = 2/3,
one has TV(w(z(s, ·))) = 4/3 locally along each s-normal line. Thus we have
qualitatively established the lower bound:

Lε[z] ≥ length(Γ ).



Γ -Convergence Approximation 503

Further elaborate study shows that the hyperbolic tangent transition:

z(s, n) = tanh
( n

24ε

)
can approach the lower bound as ε→ 0. Thus Lε[z] well approximates the length
of Γ .

In the ideal scenario of two pure phases, one then defines their associated
regions separately:

Ω± = {x ∈ Ω | z = ±1}.
The associated indicator functions are ideally given by

1+(x) =
(

1 + z

2

)2

, 1−(x) =
(

1 − z

2

)2

.

(The square is mainly for computational stability in case that z strays away from
[−1, 1].) Then, ∫

Ω±
(u0 − C±)2dx =

∫
Ω

(
1 ± z

2

)2

(u0 − C±)2dx.

In combination, we thus propose to approximate the reduced Mumford-Shah
model (1) by the following Γ -convergence energy:

Eε[z, C+, C− | u0] = σ
∫

Ω

(
9ε|∇z|2 + (1−z2)2

64ε

)
dx+

λ
∫

Ω

(
1+z
2

)2 (u0 − C+)2dx+ λ
∫

Ω

(
1−z
2

)2 (u0 − C−)2dx.
(3)

One minimizes the energy by some optimal phase field z and means C±’s.
Notice that all the four terms involve the field function z, but only the last

two contain the mean fields C±’s. Denote the sum of the last two terms by the
“conditional” energy E[C+, C− | u0, z] given any z. Then the standard property
of weighted least square approximation explicitly yields the conditional optima.

Theorem 1 (Optimal Means). Given any square integrable phase field z on
a finite domain Ω, as long as z is not constant, the optimal means C±’s to a
given image u0 in terms of E[C+, C− | u0, z] are given by:

C± = C±[z] =

∫
Ω

(1 ± z(x))2u0(x)dx∫
Ω

(1 ± z(x))2dx
. (4)

On the other hand, by the direct method of Calculus of Variations using
minimizing sequences [9], one can establish the existence of minimizers to (3).

Theorem 2 (Existence of Optimal Phase Fields). Let u0 be a square in-
tegrable image on a bounded domain Ω. Then there exists an optimal triple
(z∗, C∗

+, C
∗−) which achieves the minimum energy of Eε[z, C+, C− | u0] among

the admissible class of Sobolev phase fields [9].
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To compute an optimal minimizer, one could apply the conditional mean
field formulae (4) to reduce the triple energy Eε[z, C+, C− | u0] to an energy
solely depending upon z:

Eε[z | u0] = Eε[z, C+[z], C−[z] | u0].

But this energy is no longer quadratic in z and complexities multiply due to the
denominators involving z.

Thus in practice, one employs the alternating minimization technique pre-
vailing in multivariable optimization problems [8,20]. For given zn at step n,
one computes the optimal means Cn± = C±[zn] by the formulae (4), and then
updates zn to zn+1 by treating C±’s as known and minimizing

Eε[z | u0, C+, C−] = σ
∫

Ω

(
9ε|∇z|2 + (1−z2)2

64ε

)
dx+

λ
∫

Ω

(
1+z
2

)2 (u0 − C+)2dx+ λ
∫

Ω

(
1−z
2

)2 (u0 − C−)2dx.
(5)

4 Fast and Robust Numerical Implementation; Examples

Computationally, the optimization problem (5) is solved via its Euler-Lagrange
equation. Write e± = u0 − C± as the residuals on Ω±, which are independent
of z since C± are given. Let μ = λ/(4σ). Then the Euler-Lagrange equation of
Eε[z | u0, C+, C−] is given by

0 = −9εΔz − (1 − z2)z
32ε

+ μe2+(1 + z)− μe2−(1 − z), (6)

with the Neumann adiabatic boundary condition. One further rewrites it to:

−9εΔz +
(
z2

32ε
+ μ(e2+ + e2−)

)
z = μe2− − μe2+ +

z

32ε
,

or simply −9εΔz + R(z)z = f(z) with R and f denoting the corresponding
terms. The latter can be solved iteratively by having the z’s in R and f frozen:

zm → zm+1 : −9εΔzm+1 +Rmzm+1 = fm, (7)

where Rm = R(zm) ≥ 0 and fm = f(zm). Thus at each step it suffices to
solve this linear Poisson equation on zm+1(x1, x2), which can be implemented
efficiently in Matlab due to many fast elliptic solvers. Our computational ex-
periments show that even ordinary Guass-Jacobi type of iteration schemes [12]
lead to fast and robust convergence, including starting from any random initial
guess.

The following flow summarizes our entire algorithm:

↪→ zn by(4)−→ [Cn
+, C

n
−] →

[
zn+1

m

by(7)
↪→ zn+1

m+1

]
→ zn+1 →

The examples in the next section have all been generated from this algorithm.
Below we briefly discuss how to properly choose the parameters in the model.
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(a) The Γ -convergence parameter ε should be in the order of O(h), where h
denotes the grid scale of a discrete image domain, for example ε = 4h.

(b) Generally σ (or the tension parameter) is of order O(1), while the fitting
Lagrange multiplier λ should be inversely proportional to the variance of
the Gaussian noise embedded in the observed image u0 [2,3,4,5,19].

In Figure 1, we have demonstrated the performance of our new model and al-
gorithm on three generic test images: peppers, the Milky Way, and the Pathfinder
on the Mars by NASA (USA). For the images of peppers and the Pathfinder,
we have shown the Γ -convergence output z’s, while for the Milky Way in the
middle, the zero level curve (i.e., the sharp transition curve) of the output z has
been superimposed upon the original image u0. (The associated mpeg movies
are available from the author upon request.) The numerical performance (e.g.,
topological merging and splitting) is comparable with Chan and Vese’s level-set
approach [6], while the computational complexity is substantially lower without
intermediate tasks like normal extension and level-set reinitialization [6,18].

Fig. 1. Left: three generic images u0’s: peppers, the Milky Way, and the Pathfinder
landed on the Mars (NASA, USA); Right: the output z’s or their zero-level curves
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Abstract. A fully unsupervised image segmentation algorithm is presented in 
this paper, in which wavelet-domain hidden Markov tree (WD-HMT) model is 
exploited together with the cluster analysis and validity techniques. The true 
number of textures in a given image is determined by calculating the likelihood 
disparity of textures using the modified partition fuzzy degree (MPFD) function 
at one suitable scale. Then, possibilistic C-means (PCM) clustering is per-
formed to determine the training sample data from different textures according 
to the true number of textures obtained. The unsupervised segmentation is 
changed into self-supervised one, and the HMTseg algorithm is used to achieve 
the final segmentation results. This algorithm is applied to segment a variety of 
composite texture images into distinct homogeneous regions and good segmen-
tation results are reported. 

1   Introduction 

Image segmentation is an important and highly challenging task in many image 
analysis applications. In practice, texture plays an important role in low level image 
analysis. The problem of segmenting an image via textural information is referred to 
as texture segmentation, which deals with the identification of non-overlapping dis-
tinct homogeneous regions in a given image. The key step in texture segmentation is 
the feature characterization of textures within an image. As yet, a great variety of 
approaches have been presented to address this problem in the existing literature.  

In this paper, wavelet-domain hidden Markov tree (WD-HMT) model is exploited 
to characterize the texture features on which the image segmentation is performed 
based. The WD-HMT models [1], pioneered by Crouse et al. as a type of wavelet-
domain statistical signal models to characterize signals by capturing the inter-scale 
dependencies of wavelet coefficients, have gained more and more attention from 
signal and image processing communities due to its effectiveness in performing vari-
ous tasks. On the basis of the WD-HMT model, a supervised multi-scale image seg-
mentation algorithm, HMTseg [2], was developed by Choi et al. to address image 
segmentation problem. Meanwhile, HMTseg algorithm was modified to apply to 
synthetic aperture radar (SAR) image segmentation where a “truncated” HMT model 
[3] was proposed in order to alleviate the effect of speckle noise present at fine scales 
and a modified multi-scale fusion process was also provided to achieve better results. 
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More recently, a variety of unsupervised segmentation algorithms [4, 5, 6, and 7] 
have emerged to extend the supervised methodology to the unsupervised one based on 
the WD-HMT models. Zhen [4] integrated the parameter estimation and classification 
into one using a multi-scale Expectation Maximization (EM) algorithm to segment 
SAR images on the coarse scales. In [5], Song exploited HMT-3S model [8] and 
JMCMS approach [9] to provide another unsupervised segmentation algorithm, where 
K-means clustering was used to identify the corresponding training samples for un-
known textures based on the likelihood disparity of HMT-3S. Subsequently, Sun 
adopted an effective soft clustering algorithm, possibilistic C-means (PCM) clustering 
to further improve the unsupervised segmentation performance. Alternatively, Xu et 
al. also extended the supervised HMTseg to an unsupervised algorithm, where the 
dissimilarity between image blocks was measured by the Kullback-Leibler distance 
(KLD) between the corresponding WD-HMT models, followed by a hierarchical 
clustering in the image blocks at the selected scale. It should be noted that all the 
unsupervised segmentation algorithms above are implemented under the assumption 
that the number of the textures in a given image is beforehand provided, which is 
unpractical for automatically segmenting images in many particular application areas, 
such as the content-based image retrieval where thousands of images need to be seg-
mented without any a priori knowledge provided. 

In this paper, we present a fully unsupervised image segmentation algorithm by 
combing the WD-HMT models with the cluster analysis, i.e. PCM clustering [10], 
and cluster validity (by the MPFD function [11]) techniques. Firstly, a global WD-
HMT model is obtained using the EM training algorithm in consideration of the 
whole image to be segmented as one texture. This model contains information from 
all distinct regions, and the different goodness of fit between the global model and 
local texture regions exists. Secondly, the likelihood disparity is conducted at one 
suitable scale J  by the MPFD with the true number of textures in an image as the 
output. Thirdly, PCM clustering is used to determine the training sample data based 
on the true number of textures. Compared with the hard clustering approach, K-means 
clustering [5], PCM clustering, as one soft clustering method, can achieve reliable and 
stable clustering results. Finally, WD-HMT models for different textures are retrained 
with the extracted sample data, and the supervised segmentation procedures of the 
HMTseg algorithm [2] are carried out to achieve the final results. 

2   Related Works 

2.1   Wavelet-Domain Hidden Markov Tree Models 

It is well known that the discrete wavelet transform (DWT) is an effective multi-scale 
image analysis tool because of its intrinsic multiresolution analysis characteristics, 
which can represent different singularity contents of an image at different scales and 
subbands. In Fig. 1 (a), one quad-tree structure of wavelet coefficients is shown, 
which demonstrates the dependencies of wavelet coefficients at three subbands. 

For multi-scale singularity characterization, one statistical model, hidden Markov 
tree (HMT) model [1], was proposed to model this structure. The HMT associates 
with each wavelet coefficient a “hidden” state variable, which determines whether it 
is “large” or “small” (see Fig. 1 (b)). The marginal density of each coefficient is then 
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modeled as one two-density Gaussian mixture model: a large-variance Gaussian for 
the large state and a small-variance one for the small state. Thus, the Gaussian mix-
ture model (GMM) can closely fit the non-Gaussian marginal statistics of coefficient. 

 

 
    (a)                              (b) 

Fig. 1. (a) Quad-tree structure of 2-D discrete wavelet transforms. (b) A 2-D wavelet-domain 
hidden Markov tree model for one subband. Each wavelet coefficient (black node) is modeled 
as a Gaussian mixture model by a hidden state variable (white node). 

Grouping the HMT model parameters, i.e. state probabilities for the root nodes of 
different quad-trees, state transition probabilities and mixture variances, into a vec-
tor , the HMT can be considered as a high-dimensional yet highly structured 

GMM ( )f w  that approximates the joint probability density function of the wavelet 

coefficients W. For each coefficient, the overall pdf ( )f w of W can be formulated as 

( ) ( )  ( ),
M

W S W S
m=1

f w = p m f w S = m
 

(1) 

where M is the number of states and S is the state variable. The HMT model parame-
ters can be estimated using the iterative EM algorithm. 

It should be noted that the HMT has one nesting structure that can match the multi-
scale representation of an image shown in Figure 2(a). Each subtree of the HMT is 
also an HMT, with the HMT subtree rooted at node i modeling the statistical charac-
teristics of the wavelet coefficients corresponding to the dyadic square di   in the origi-
nal image. In Figure 2 (b), we demonstrate the correspondence of quadtree structure 
of wavelet coefficients with the multi-scale representation of an image. 

2.2   Supervised Image Segmentation  

One Bayesian segmentation algorithm, HMTseg [2], was proposed to implement 
supervised image segmentation in which WD-HMT model is applied to characterize 
texture and a context vector is used to capture the dependencies of the multi-scale 
class labels. 

Multi-scale segmentation obtains the dyadic image squares at different scales by 
recursively dividing an image into four equal sub-images. HMTseg can capture the 
feature of each dyadic square by WD-HMT model. More, contextual information is 

described by a vector jv , which is derived from a set of  dyadic squares at its parent 

scale. Denote a dyadic square and its class lable by j
id and j

ic respectively, and j  is 

the scale index. Each context vector j
iv consists of two entries, the class label of the 

parent square and the dominat class label of the parent and its eight neighbors. 
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(a)                                            (b) 

Fig. 2. Multi-scale representation of an image (b) Correspondence of quadtree structure of 
wavelet coefficients with multi-scale representation of an image 

The HMTseg algorithm relies on three separate tree structures: the wavelet trans-
form quad-tree, the HMT, and a labeling tree [2]. As a complete procedure, it includes 
three essential ingredients, i.e. HMT model training, multi-scale likelihood computa-
tion, and fusion of multi-scale maximum likelihood (ML) raw segmentations. 

1) Train WD-HMT models to characterize each texture using homogeneous train-
ing images. To obtain pixel-level segmentation, Gaussian mixture model (GMM) is 
used to train a pixel intensity pdf model. 

2) Calculate the likelihood of each dyadic image square j
id at each different scale. 

The conditional likelihoods ( )j j
i if d c for each j

id are obtained in this step. 

3) Fuse multi-scale likelihoods using the labeling tree to form the multi-scale 
maximal a posterior (MAP) classification. Choose a suitable starting scale J  such 

that a reliable raw segmentation Jc can be obtained at the scale. The contextual vec-

tor 1J −v is calculated from the class labels Jc of the J-th scale. Moreover, EM algo-

rithm is applied to estimate 1 -1( )J J
i ip c − v  by maximizing the likelihood of the image 

given the contextual vector 1J −v . In this step, each iteration updates the contextual 

posterior distribution ( )i i ip c d ,v . When the process of iteration converges, determine 

ic  which maximizes the ( )i i ip c d ,v . The fusion is repeated in the next finer scale 

based on the contextual vector 2J −v computed from 1J −c . Continue the multi-scale 
fusion across scales until the finest scale is reached. 

3   Fully Unsupervised Segmentation Combining WD-HMT Models  
     with Cluster Techniques 

Fully unsupervised segmentation means identifying all the non-overlapping homoge-
nous regions within an image without the knowledge on either the texture features or 
the number of textures. Our proposed segmentation algorithm consists of three 
phases: the determination of the true number of textures via the modified partition 
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fuzzy degree (MPFD), the extraction of training sample data from different textures 
with the possibilistic C-means (PCM) clustering as well as the supervised segmenta-
tion mentioned above. 

3.1   Determination of the True Number of Textures 

Unlike most existing unsupervised texture image segmentation methods, the true 
number of textures in a given image, in this paper, is not assumed in advance, but 
determined using the likelihood results of image blocks at a certain suitable scale J 
via an effective cluster validity approach, namely MPFD in [11], which could accu-
rately find the optimal cluster number of numeric data set by combining the fuzzy 
partition entropy (FPE) and the partition fuzzy degree (PFD). 

Let { }, , , nX x x x1 2= denote as a data set, and , , ,
T

i i i ipx x x x1 2= represent 

the p features of the i-th sample. The fuzzy clustering can be represented as the fol-

lowing optimization problem 

min ( , ) , .
c n c

m
m ij ij ij

i j i

J U L u d subject to u for all j2

=1 =1 =1

= = 1  (2) 

In (2), ( , , )cL β β1= is a c-tuple of prototypes, ijd 2  is the distance of feature point 

jx  to prototype iβ , n  is the total number of feature vectors, c  is the number of 

classes, and ijU u=  is a c n×  matrix, called fuzzy partition matrix. Here, iju  is the 

grade of membership of the feature point jx  in cluster iβ , and [ , )m ∈ 1 ∞  is a weight-

ing exponent called the fuzzier, empirically taken as 2. 
For a given cluster number c  and fuzzy partition matrixU , the fuzzy partition en-

tropy (FPE) is defined as 

( ; ) lo g ( ),
c n

ij a ij
i j

H U c u u
n =1 =1

1= −  (3) 

and the definition of partition fuzzy degree (PFD) is 

( ; ) ( )
c n

f ij ij H
i j

P U c u u
n =1 =1

1= −       with  { }max
( ) ,ij i c ij

ij H

u u
u

otherwise

1≤ ≤1 =
=

0
 (4) 

where ( )ij Hu  is the defuzzifying version of U . 

Based on the expressions of FPE and PFD, the MPFD of a data set is denoted as 

( ; )
( ; ) ,

( ; )
f

p f

P U c
M U c

H U c
=  (5) 

where ( ; ) ( ( ; ))H U c smoothing H U c= is the smoothed FPE, typically obtained by the 

3-point smoothing operator or median filter. The true number of textures can be found 
by the minimum of ( ; )pfM U c  for the likelihood results of image blocks. 
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3.2   Extraction of Training Sample Data 

The key step for a fully unsupervised segmentation is the extraction of sample data 
for training different textures to obtain their HMT models used for the following su-
pervised procedure. The input is the true number of textures in an image, which has 
been obtained by the MPFD function above. Herein, an effective soft clustering algo-
rithm, PCM clustering [10], is exploited to extract the sample data of different tex-
tures. PCM algorithm differs from the classical K-means and fuzzy C-means (FCM) 
algorithms since the membership of one sample in a cluster is independent of all other 
clusters in the algorithm. The objective function of the algorithm is given by 

2

( ) ( )
,

1 1

( , ) ( ) ( ) ( ) (1 ) ,

k k

N N
J Jm m

m ij ijk l k
k l k l

J U L u f y f y i uη
= ∈Γ = ∈Γ

= − + −  (6) 

where ,U L  and m  have the same meanings as (2), iη  is a certain positive number, 

and ( )( )J
kf y is the likelihood mean of class k at the suitable scale J , ( )

,( )J
k lf y  

the likelihood of an image block l regarding the class k. The iju  is updated by 

1
2 1( ) ( )

,

1
,

( ) ( )
1

ij

mJ J
k l k

i

u

f y f y

η

−

=

−
+

 

(7) 

where iη  is defined as  

( ) ( )
,( ) ( )

.

N
J Jm

ij k l k
j

i N
m
ij

j

u f y f y

u

η

2

=1

=1

−

=
 

(8) 

By PCM clustering, the resulting partition of data can be interpreted as degrees of 
possibility of the points belonging to the classes, i.e., the compatibilities of the points 
with the class prototypes, which is the key difference with the K-means and FCM 
clustering [10]. We refer the reader to [6] for the complete steps to extract the image 
sample data. 

3.3   Supervised Segmentation Using HMTseg Algorithm 

With the PCM clustering implemented at the scale J , reliable training samples for 
different textures can be extracted. Thereafter, HMT model parameters for different 
textures can be obtained through training of HMT models with the extracted sample 
data. Thus, the final results can be achieved HMTseg procedures in Section 2.2. 

4   Experimental Results and Analysis 

We tested our segmentation algorithm on several images of composite textures with 
size of 256 × 256  pixels. Textures from the Brodatz album [12] are used to constitute 
the composite texture images. Before segmentation, all the images are decomposed 
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into four levels by Haar wavelet basis. The likelihood disparity is given by the MPFD 
function at the suitable scale J = 4 , which is the coarsest scale with the size of 
16 ×16 . The number of cluster is assumed from 2 to 10, which is used to determine 
the true number of the textures in an image by finding the minimum of the ( ; )pfM U c . 

Also, the PCM clustering is implemented at the scale J . 
Fig. 3 shows four composite texture images, which are made up of 2, 3, 4 and 5 

classes of homogeneous textures from the Brodatz album, respectively. 

 

Fig. 3. Four composite texture images consisting of 2, 3, 4 and 5 textures  

In Fig. 4, the plots on the determination of the true number of textures above are 
demonstrated. The minimum of ( ; )pfM U c  indicates the true number of textures. 

From left to right, all the true number of the four textures is correctly determined.  
Fig. 5 gives the final segmentation results for the four composite textures using our 

fully unsupervised segmentation algorithm. The segmentation results are satisfactory 
on the whole, and only a few regions are misclassified.  

5   Conclusions  

In this paper, we have developed a fully unsupervised segmentation algorithm by 
characterizing the texture features using WD-HMT models, determining the number 
of textures by the MPFD function, and extracting their sample data with PCM cluster-
ing. Experimental results demonstrate that the proposed method can detect correctly 
the number of textures and give effective segment results on the composite textures.  

 

Fig. 4. Plots of the ( ; )pfM U c vs. c to determine the true number of the four texture images 

 

Fig. 5. Segmentation results for the textures in Fig. 3 with the proposed algorithm 
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Abstract. This paper describes a clustering approach for color image 
segmentation using fuzzy classification principles. The method uses 
classification to group pixels into homogeneous regions. Both global and local 
information are taken into account. This is particularly helpful in taking care of 
small objects and local variation of color images. Color, mean and standard 
deviation are used as a data source. The classification is achieved by a new 
version of self-organizing maps algorithm . This new algorithm is equivalent to 
classic fuzzy C-mean algorithm (FCM) whose objective function has been 
modified. Code vectors that constitute centers of classes, are distributed on a 
regular low dimension grid. In addition, a penalization term is added to 
guarantee a smooth distribution of the values of the code vectors on the grid. 
Tests achieved on color images, followed by an automatic evaluation revealed  
the good performances of the proposed method. 

1   Introduction 

Image segmentation is an important step in image  analysis and pattern recognition. It 
is the first essential step in low level  vision. Segmentation is a process of partitioning 
an image into some non-intersecting regions such that each region is homogeneous, 
but the union of any two adjacent regions is not [1], [2], [3], [4]. It is applied in a 
variety of domains. The choice of segmentation technique depends widely on  images 
and domain application.  Literature concerning color segmentation methods is not as 
rich as that of gray level images. Human eye can distinguish thousand of color 
nuances but only about twenty gray levels. Often an object that is not extracted in 
gray levels, can be extracted while using the color information. Generally, 
monochromatic segmentation techniques are extended to color images. However, all 
these techniques have advantages and inconvenients. Most method of segmentation 
are combination of classic techniques and/or fuzzy logic notions,  neural networks,  
genetic algorithms etc… [5]. 
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Clustering methods are often associated to fuzzy approaches to cope with  
ambiguity and uncertainty in images. Fuzzy C-means algorithm (FCM) is the most 
widely used fuzzy partitioning method[6]. FCM restriction is   the  clusters number 
which  must be known a priori.  

Artificial neural networks (ANN) are applied in different domains. Parallel 
processing  and linear features that they offer make the ANN used a lot in 
classification and clustering. Self organizing maps of Kohonen (SOM) is a powerful 
tool for partitioning data [7]. SOM have the property of preserving the topology of 
data as well as the relation of distance between them. The space of data is projected 
on a regular grid whose dimension constitutes the number of clusters for the FCM.  

In this work, we propose a hybrid segmentation method. It is based on a global 
information produced by fuzzy clustering in  which the number of clusters is 
optimized by self-organizing map algorithm, and a local information given by  the 
mean and the standard deviation. Objective function of fuzzy C-mean algorithm has 
been modified so that code vectors are distributed on a regular low dimension grid 
and, by the addition of a penalization  term to guarantee an uniform distribution of 
code vectors [8].  

For color images, I1I2I3 is the color space chosen because it offers a better quality 
of segmentation than the others [9]. The obtained results are evaluated using three 
automatic functions proposed in [10].  

The present study is organized as follows. In section 2, the proposed method is 
described. The optimisation algorithm of the new objective function is presented. 
Section 3 will be devoted to the application of the proposed method to color images 
and to evaluation results. They are compared to results provided by SOM and FCM 
algorithms. Conclusion and perspectives of our work are developed.  

2   Proposed Approach 

2.1   Color Space  

Color is perceived by humans as a combination of tristimuli R (red), G (green) and B 
(blue) which are usually called primary colors. Components R, G, B are highly 
correlated. So, RGB system is suitable  for visualization but not good for color scene 
segmentation and analysis [11], [12]. Several color spaces are built from RGB system 
by linear or no linear transformations (YIQ , YUV, I1I2I3, HSI,  Nrgb, CIE (L*u*v*) 
or CIE(L*a* b*), XYZ) . Each space has its advantages and inconvenients [5]. 
Selecting the best color space is still one of the difficulties in color image 
segmentation. In this work, we have chosen I1I2I3 space. In [9], I1I2I3 have been 
compared to other spaces. It has been proven that I1I2I3 is more efficient in terms of 
quality of segmentation and the computational complexity of the transformation. The 
three components I1I2I3 are given by : 

I1=(R+G+B)/3 . 
I2=(R-B)/2 . 

I3=(2G-R-B)/4 . 
(1) 

For color images, every pixel will be characterized by its color given by (I1 + I2 + I3).  
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 2.2    Parameters  

Classic spatial clustering techniques use only the color of the pixel [3]. Cluster 
analysis does not use any spatial information. Often, clustering approaches are 
combined to other methods like region growing and spatial linkage techniques [6]. In 
the suggested approach, two parameters are considered that characterize local spatial 
information: the mean and standard deviation. This latter measures the contrast in a 
local region. It informs on the degree of homogeneity of this region [1].  

For a pixel Pij  standard deviation is calculated on a window wij of size d x d and  
centered at (i,j).  

.)(1
2

1

2
1

2
1

2
1

2
1

2
−=

−+

−−=

−+

−−=

ijpq

dj

djq

di

dip

ij g
d

v μ  (2) 

where 0 −≤≤ Mpi, 1,  0 −≤≤ Nqj, 1 
d : odd integer > 1  
 M x N : image size 

ijg  : gray level of  pixel Pij at (i,j). 
ijμ  is the mean of the gray levels within dxd window  wij,  and calculated as : 
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Thus, The new self organizing network is composed of an orthogonal grid of N 
cluster units, each associated to five internal weights for data which are : I1, I2, I3, 
mean and standard deviation.  

2.3   Smoothly Distributed Fuzzy C-Means 

Process of the proposed segmentation is inspired of FCM modified version 
which represents a new self organizing map [8]. It consists in minimizing an 
objective function given by :  

 

0ϑ >  represents a parameter that will guarantee smoothness of spatial distri-
bution of the code vectors  on the grid. Smoothness is necessary to ensure an 
ordered mapping, cf  Fig. 1 
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 D = 1/4  
 
 
 
 
 
 
 
 
 

V : Code vectors matrix, tr : Trace of square matrix, T : vector or matrix transpose. 
 
In this case, centers of the  clusters are calculated as : 

 

(5) 

Code vectors updating reflects SOM characteristic that will be influenced by the data 
values and the nearest code vector in the grid. 

Referring to Fig. 1, iV  are calculated as follow: 
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The following algorithm finds a solution that converges to a local minimum of the 
functional  in eq. (4)  

1. Initialise V randomly. Initialise U randomly  satisfying the constraints:  
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until   convergence 
6. Stop when the overall difference in the jiU ’ between the current and the previous 
iteration is smaller than ε ; otherwise  go to step 4.  

Algorithms based on clustering principle are very sensitive to  initial conditions [8]. 
Therefore, the local minimum to which the algorithm converges depends on  initial 
values of  clusters centers. To reach the global minimum, a strategy developed in [13] 
is used. It consists in iterating stages 5 and 6 of the algorithm for a linear decrease of 
the fuzzy parameter m between two values m2 and m1.  

3    Results Evaluation and Discussion 

The suggested method can be used for any RGB images acquired with any captor 
because of the use of a special data structure. We have not applied any pre-process to 
uniformize the color scale but image histograms of the three components RGB are 
used. The used statistics are efficient for various acquisition conditions but they 
would more efficient if the window size is larger than 3x3 and taking into account 
spatial consideration. The proposed method has been applied on a large variety of 
monochromatic and  color images example : peppers and house (Fig.3a and Fig. 4a). 
We have used different types of color images taken from the GDR-ISIS and Berkeley 
databases. For the defuzzification process, we have considered the decision by 
maximum membership. A pixel is assigned to a cluster i if its membership degree  to 
this cluster is largest  and  superior to a threshold β . 

The proposed method has been compared to FCM and SOM algorithms. However, 
ITU is used and developed for video quality evaluation. In this work, still images and 
three evaluation functions of region color segmentation proposed in [14]and improved  
in [10] are used. 
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Where I is the segmented image. 
NxM : image  size.  
R : number of regions in the segmented image.  Ai  area of the ith region.  
ei  : average color error  of the ith region; ei is defined as the sum of the Euclidian 

distances between the RGB color vectors of the pixels of region i and the color vector 

attributed to region i  in the segmented image . In the F function, the term R  

penalizes segmentations that form too many regions, the term 
=

R

1i i

i

A
e penalizes 

segmentations having non-homogeneous regions. Since the average color error of 
small regions is often close to zero, the function tends to evaluate  very noisy 
segmentation favourably. Function F ' is the function F  modified in such a  way that 
small region contribute by the exponent  (1+1/A). Q function is constructed to 
penalize both small regions and regions having a large color error.  

Fig.2a , Fig. 3a. Original images, Fig. 2b, Fig. 3b. SOM algorithm segmentation, Fig.2c , 
Fig.3c. FCM algorithm segmentation, Fig.2d , Fig.3d.  Proposed  method segmentation 

Two further modifications of F are made to obtain Q. The first term in the sum also 

differs from its corresponding in F. iA has been replaced by ( )iAlog1+ to obtain a 

stronger penalisation of non-homogeneous regions. Smaller values of the criterion 
Q(I) produce more satisfactory segmentation results. 

Table .1 shows that proposed method yields better results than FCM and SOM 
algorithms. Values given by the three functions agree with the human judgment. 
Indeed, images of Fig. 2b and Fig. 3b that are the result of the SOM present a very 
bad quality of segmentation compared to images of Fig. 2c and Fig. 3c that are  
 

 

 

 
Fig.2a Fig.2b Fig.2c 

 

Fig. 2d 

Fig. 3a Fig. 3b 

 

Fig. 3c 

  

Fig.3d 
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Table 1. Comparative study between SOM, FCM and the proposed approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
segmented by FCM. Images of Fig. 2d and Fig. 3d are segmented by the proposed 
method. It is noticed a substantial clarity of the details on “ peppers ” image and a 
better segmentation of the house with regard to the two roofs, to the facade as well as 
the door. It is validated by values found by the Q function . 

For each test image, we applied our segmentation algorithm, varying the input 
parameters ( such as the number of clusters C, fuzziness  and smoothness parameters 
m and ϑ and convergence value ε ). The plot of Fig.4 shows that the fuzzy parameter 
m varies between the two values m2 and m1 set to 2 and 1,5. Q function (Fig. 5) is 
minimal in the interval [0,5 0,7] of the domain of the smoothing parameter. Finally, 
quasi-constant shape of Q function (Fig. 6) shows that the segmentation is not very 
sensitive to the convergence threshold. 

4   Conclusion  

In this paper, we proposed a new approach for image segmentation. It is based on a 
new version of the algorithm of self-organizing maps of Kohonen, that consists in a 
modified version of fuzzy C-means. The new map preserves topological structure of 
the SOM and distances between data. Code vectors are forced to be very near from 

 
        Algorithms  
 
 
Images 

SOM 

N=5 

 

FCM 
m=1.5, c=6 
ε= 0.00005 

Proposed Approach 
m1=2 ; m2 =1.5, c=6   

ϑ=0,55 
maxstep = 500 , maxiter 

=100 
 

House 
 

F=334889.43 
F’= 190415.99 
Q = 159512.35

F =  166794.08 
F’ = 102630.91
Q = 96 549.56 
 

F =  11612.69 
F’ = 86804.42 
Q = 51 244.16 

 

Peppers 

F = 224180.38 
F’ =211711.31 
Q =185800.28 

F =  145573.85 
F’ = 26917.19 
Q = 11603.46 
 

F =  3254.17 
F’ =1876.67 
Q = 1325.67 

 

 
 

Fig. 4.  Influence of  m Para-
meter on color segmentation 

 
 

Fig. 5. Influence of paramet-
er ϑ  on color segmentation 

 
 

Fig. 6. Influence of  par-
ameter ε on color seg-
mentation 
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data and to change slowly on the grid ensuring an ordered mapping. These properties 
have been exploited for color image segmentation. Because of the strong correlation  
between R, G and B components, we used I1I2I3 space which is more suitable for  
segmentation problems. The quality of the segmentation result is improved by 
identifying significant local information more efficiently. Optimal tuning of 
parameters has been realized by the study of variations of evaluation functions. These 
are automatic. They include no parameter to initialise and constitute in fact a good 
means to evaluate a color image segmentation .  

Finally, the proposed fuzzy-neural  method presents a new approach in image 
segmentation, combining fuzzy set theory to manipulate uncertainty and ambiguity 
and neural networks for their robustness , to model the human cognitive activity. 

In perspective to our work, we think that the method can be improved by 
introducing other homogeneity or texture parameters. These will be used in input 
layer of the SOM map. Markov fields associated to the proposed method would give 
an interesting results. 
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Abstract. In this paper, we present an affine image coregistration tech-
nique for Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) data
sets based on mutual information. The technique is based on a multi-
channel approach where the diffusion weighted images are aligned ac-
cording to the corresponding acquisition gradient directions. Also, in
addition to the coregistration of the DT-MRI data sets, an appropriate
reorientation of the diffusion tensor is worked out in order to remain con-
sistent with the corresponding underlying anatomical structures. This re-
orientation strategy is determined from the spatial transformation while
preserving the diffusion tensor shape. The method is fully automatic and
has the advantage to be independent of the applied diffusion framework.

1 Introduction

Image coregistration, also referred to as matching or warping, is the process of
aligning images in order to relate corresponding features. The objective of any
coregistration technique is therefore finding the transformation that maps these
images into a common reference frame in which direct comparison is possible.
For instance in medicine, it is often desirable to combine multiple data sets of
the same patient (follow up), or even to merge intersubject information (con-
trol versus pathology). Only then, abnormalities can be quantified based on a
statistical analysis of these multiple data sets.

Due to the rapid development of many image acquisition devices and the
growing diversity of imaging modalities during the last decades, coregistration
has become an important application in many fields of image analysis (e.g.,
multispectral classification in remote sensing, combining computer tomography
(CT), positron emission tomography (PET), and magnetic resonance imaging
(MRI), cartography, etc.). This diversity of images to be registered impedes the
design of a universal method applicable to all registration tasks, resulting in an
ever-increasing number of publications on the topic each year [1, 2, 3].
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In this research, we focus on diffusion tensor magnetic resonance imaging
(DT-MRI), a recently developed MRI technique that allows one to study brain
connectivity in vivo and which is becoming an important diagnostic tool for
various neuropathological diseases [4,5]. A technical overview regarding DT-MRI
acquisition, theory, and data analysis can be found in [6].

In the work of Alexander et al., a multiresolution elastic matching algorithm
has been proposed using similarity measures of the diffusion tensor in order to
manage DT-MRI data instead of scalar data [7]. Ruiz-Alzola et al. extended the
intensity-based similarity coregistration to the tensor case and also proposed an
interpolation method by means of the Kriging estimator [8, 9]. Their work is
based on template matching by locally optimizing the similarity function. The
work of Guimond et al. and Park et al. indicated the importance of channel
information used for matching and introduced a multiple channel registration
for tensor images by using, for example, all components of the tensor simulta-
neously in the registration process with successively updating the tensor orien-
tation [10, 11]. Xu and colleagues applied the ”Hierarchical Attribute Matching
Mechanism for Elastic Registration” (HAMMER) approach, a high dimensional
elastic transformation procedure, to DT-MRI data sets [12].

In this work, we developed a three-dimensional (3D) affine (rotation, trans-
lation, scale, and skew) DT-MRI coregistration technique based on the work of
Maes et al. [13] using mutual information as a similarity measure. To preserve
the orientational information of the diffusion tensor after affine transformation,
an appropriate tensor reorientation must be applied in order to remain consistent
with the alignment of the underlying anatomical structures. Current reorienta-
tion strategies (RS) for such an affine transformation, e.g. preservation of prin-
cipal direction (PPD), require calculating several rotation matrices to reorient
the diffusion tensor [14]. Here, a direct diffusion tensor reconstruction approach
is developed without the need to calculate these rotation matrices, resulting in
a lower computational cost.

2 Theory

2.1 Spatial Normalization

Mutual Information (MI) has already proven to be of high value for multimodal-
ity image registration since its development in the mid nineties and could be
considered as the current gold standard [13, 15, 16]. For scalar images, the reg-
istration solution, i.e. the final transformation Φ, is determined by maximizing
the MI between the reference image R and the source image S:

Φ = arg max
φ

MI
[
φ(S), R

]
, (1)

where φ represents the affine transformation.
Specifically for DT-MRI, we apply a k-channel MI registration approach, where

k = 0, . . . , K represents the number of Diffusion Weighted Images1(DWI’s):
1 In our experiments, K = 60, where k = 0 represents the non-DWI.
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Φk = arg max
φ

MI
[
φ(Sk), Rk

]
, (2)

where Rk and Sk denote the reference and source DWI’s, respectively. It is
important to note that the assumption is made that the DWI’s, derived from a
single acquisition, are already mutually aligned with the non-DWI, i.e.

∀k = 1, . . . , K : arg maxφ MI
[
φ(Rk), R0

]
= 1

∀k = 1, . . . , K : arg maxφ MI
[
φ(Sk), S0

]
= 1 , (3)

where 1 represents the unity transformation.
From Eq. (2), the final transformation Φ can be calculated as a weighted

function of the transformations Φk with the corresponding MI values as weight-
ing factors, i.e.

Φ =
1
Ω

K∑
k=0

ωk Φk with ωk = MI
[
Φk(Sk), Rk

]
and Ω =

K∑
k=0

ωk . (4)

Using Eq. (4) to calculate Φ, one can also obtain the registration precision SΦ:

SΦ =

√√√√ 1
ΩK

K∑
k=0

(Φ −Φk)2 , (5)

which is a valuable measure to evaluate the quality of the registration technique.

2.2 Diffusion Tensor Reorientation

It is obvious that there are no difficulties in transforming scalar images. The
image value from a specific voxel is transferred, via the spatial transformation, to
the reference image, where a posteriori an interpolation method must be applied
to reconstruct the reference grid. For rank one (and higher) tensors, a specific
reorientation should be applied in order to keep the orientational information
intact. For diffusion tensors (rank two), an extra condition is required, i.e. the
shape should also be preserved [14].

Consider the real-valued symmetric diffusion tensor D. After eigenvalue de-
composition, D can be written as D = E · Λ · Et, where the matrix E defines
the orthonormal eigenvectors ei and the diagonal matrix Λ represents the eigen-
values λi of D. Extracting the linear transformation matrix ΦL of Φ, the new
eigenvectors ni are calculated as follows:

n1 =
ΦLe1

‖ΦLe1‖
, n2 =

ΦLe2 − (n1
tΦLe2) n1

‖ΦLe2 − (n1
tΦLe2) n1‖

, n3 = n1 × n2 (6)

The reoriented diffusion tensor DΦ can now be reconstructed as DΦ = N ·Λ·N t,
where the matrix N defines the transformed eigenvectors ni. Notice that the
diffusion tensor shape is fully defined by the eigenvalue matrix Λ and is equal
for DΦ and D.
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4 Results

4.1 Coregistration of Simulated DT-MRI Data Sets

As shown in Fig. 2 (a,b,c), rotating a DT-MRI data set 90 degrees clockwise,
as if considered to be scalar data, results in a loss of directional information of
the underlying fiber tissue. Applying the RS corrects for both the shape and the
predominant diffusion direction.

A second, less trivial example, is elucidated in Fig. 2 (d→g): a skew has been
applied to the horizontal direction. After coregistration, a significant difference
exists between the reoriented and non-reoriented diffusion tensor field.

Both qualitative results indicate that the proposed RS effectively reorients
the diffusion tensor field, preserving the directional information of the underlying
fiber direction.

FAmin max

(a) (b) (c)

(d) (e) (f) (g)

Fig. 2. Ellipsoidal representations of synthetic DT-MRI data sets using FA color-
encoding. Example 1: (a) source image; (b) 90 degrees rotated (source) image without
RS and (c) with RS. Example 2: the ground-truth data sets (d) reference image and
(e) source image (=skewed reference image); the registered images without RS (f) and
with RS (g).
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4.2 Coregistration of Experimental DT-MRI Data Sets

Figure 3 shows the results when applying the registration method to experimen-
tal DT-MRI data. A specific part of the brain, i.e. the corpus callosum (CC),
is zoomed in to properly visualize the (bidirectional) first eigenvector of both

???
??? ???

(a) reference image (b) source image 

(c) registered image without RS (d) registered image with RS 

(e) principal diffusion vectors: reference – registered without RS – registered with RS 

Fig. 3. The experimental DT-MRI images (three orthogonal slices of the volume data):
color-encoding again provides directional information, which is reflected by the colored
axes (notice the question marks in (c) due to the unknown directional information).
Note that in (e), the principal diffusion vectors of the registered image with RS are
better aligned with the reference image, than when the RS is omitted.
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the reference (red), the registered without RS (blue), and the registered with RS
(orange) images. Although these results are qualitatively, they strongly indicate
feasibility of the proposed coregistration technique to align experimental data.

5 Future Work

In this paper, we have presented qualitative results and feasibility of the new
registration technique. The next step is providing quantitative results about the
registration precision, accuracy, reproducibility, etc. Also deformable transfor-
mations, i.e. more than the 12 affine degrees of freedom, will be investigated.

6 Conclusions

A new 3D affine DT-MRI coregistration technique has been developed using a
direct diffusion tensor reconstruction approach to preserve the underlying ori-
entational information. This multi-channel matching method applies mutual in-
formation as a similarity measure for the multi-valued DT-MRI data sets. Sim-
ulations have been performed, demonstrating the applicability of the diffusion
tensor shape preserving reorientation strategy. Also, an in-vivo coregistration
example has been worked out, indicating feasibility of the proposed technique
to register experimental data.
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Abstract. In this paper we introduce a system for assisting the analysis of cap-
sule-endoscopy (CE) data, and identifying sequences of frames related to small 
intestine motility. The imbalanced recognition task of intestinal contractions 
was addressed by employing an efficient two-level video analysis system. At 
the first level, each video was processed resulting in a number of possible se-
quences of contractions. In the second level, the recognition of contractions was 
carried out by means of a SVM classifier. To encode patterns of intestinal mo-
tility a panel of textural and morphological features of the intestine lumen were 
extracted. The system exhibited an overall sensitivity of 73.53% in detecting 
contractions. The false alarm ratio was of the order of 59.92%. These results 
serve as a first step for developing assisting tools for computer based CE video 
analysis, reducing drastically the physician’s time spent in image evaluation and 
enhancing the diagnostic potential of CE examination. 

1   Introduction 

Conventional endoscopic techniques for examining the small intestine (SI) are limited 
by its length (3.5-7.0 m) and by its complex looped configurations [1]. The current 
methods for imaging the SI include, primarily, barium X-rays and enteroscopy. How-
ever, the diagnostic value of radiographic means for lesions such as angiodysplasias, 
and neoplasms is low [2]. On the other hand, direct visual inspection by enteroscopy, is 
highly invasive and is associated with discomfort and occasionally complications [3]. 

Capsule endoscopy (CE) is a new wireless endoscopy examination of the entire SI 
[1-4]. Moreover, CE is a technological invention designed to aid the gastroenterolo-
gist in diagnosing SI diseases with higher sensitivity. The CE system is composed of 
the ingestible capsule, the data recorder, and the work station supplied with the ap-
propriate image-visualization software. The capsule acquires two images per second 
and during a typical 8-hour examination, the recording device of the capsule stores 
about 50,000 images. After examination, images are downloaded to a PC workstation 
[4]. An expert physician is needed to inspect visually the video and to diagnose the 
presence (or absence) of abnormality.  

However, the visualization of the whole study (video) is a burden and time con-
suming procedure. In most of the cases the time it takes for a physician to review the 
capsule study is between one and two hours. This is quite a heavy load for the physi-
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cian that renders the diagnostic task difficult and subject to variations in individual 
interpretation [5]. Subsequently, it would be particularly useful for physician to have 
an adjunctive tool able to short the reading time of a study and to automatically rec-
ognize sequences of frames meaningful for analysis.  

Digital image processing and analysis techniques offer potential solutions to endo-
scopic images understanding and objective interpretation. Several researches have 
reported that endoscopic images carry rich information which, if quantified in terms 
of textural, color or other morphological features such as the lumen region, can allow 
the diagnosis of certain types of colon cancer [6-11]. However, as far as we know no 
preceding work has been reported on computerized analysis of CE data for the auto-
matic identification of intestinal motility events. 

In the present study, we introduce a CE video analysis system for detecting specific 
patterns related to intestine motility. The frequency and the type of contractions are of 
main interest and seemed to be correlated to the presence of several SI diseases [12]. 
The value of the proposed system relies on its ability to highlight special patterns of 
intestinal activity which might carry diagnostic information, reducing significantly the 
reading time of a CE study. 

2   Material and Methods 

Our clinical data consisted of a set of videos obtained by CE from six volunteers, in 
Digestive Diseases Dept., Hospital General “Vall D’Hebron” in Barcelona, Spain. 
The endoscopic capsule used, was developed by Given Imaging Limited, Israel [13]. 
Measuring 11x26 mm, the capsule contains 6 light emitting diodes, a lens, a color 
camera chip two batteries, a radio frequency transmitter, and an antenna. The capsule 
acquires two images per second at 256x256x24-bit resolution and transmits the data 
via radiofrequency to a recording unit located outside the body. Upon completion of 
the examination the data is transferred to the workstation for further visualization. 
Contractions were considered as dynamic events occurred in sequences of nine frames 
in the intestinal part between duodenum and cecum. Six videos were analyzed and 
labeled manually by an expert, specifying the time interval between duodenum and 
cecum and indicating the central frame in each sequence of contraction. Table 1 
shows the number of frames per video registered between duodenum and cecum and 
the number of findings in this interval. Typical sequences of contractions are illus-
trated in Fig. 1. Each row corresponds with a contraction sequence. The contraction 
event occurs in the central frame. 

Table 1. Number of frames and findings per video 

 Number of frames
for analysis 

Number of 
findings 

Video_1 29424 716 
Video_2 28783 487 
Video_3 27796 524 
Video_4 38865 718 
Video_5 17599 347 
Video_6 27156 911 
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Fig. 1. Examples of sequences of intestinal contractions 

The automatic recognition of contractions in a CE video is a highly skewed classi-
fication problem on the order of 50 to 1(Table 1), which hardly can be tackled with a 
conventional direct classification process.  Class imbalance is a well known issue for 
several real pattern recognition applications and has been addressed mainly by assign-
ing distinct costs to training samples [14], by re-sampling the original dataset [15] or 
using cascade classifiers [16]. In this work, we addressed the imbalanced recognition 
task of small intestinal contractions by means of an efficient two-level video analysis 
process. At the first level of the system, each video was processed resulting in a num-
ber of possible sequences of contractions, under the hypothesis that contractions 
might be described as a rapid closing and opening of the intestinal lumen and subse-
quently could be characterized by a sharp variation of the grey-level intensity. The 
feature used to capture the intensity variation in a sequence was the locally normal-
ized mean intensity of the image IN given by:   

III
N

−=  (1) 

where, I is the mean grey-level intensity of the frame, and I  is the averaged intensity 
estimated over a  sequence of 9 frames:  

9

I
I

9

1i
i

==  
(2) 

This sequence length was chosen in accordance with the experts’ assessment, in order 
to incorporate dynamic information for encoding the contraction event. Following this 
estimation, the intervals of sequential frames with positive IN were extracted from the 
whole series of the study. The frame with the maximum value IN in each interval was 
considered as the central frame of a possible sequence of contraction. An example is 
illustrated in Fig.2. 
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Fig. 2. Example of 32 sequential video frames; the indicated frames were selected during the 
first level of analysis as central frames of candidate sequences of contractions  

In the second part of the system, the final recognition of contractions sequences 
was carried out by means of a support vector machine (SVM) classification algorithm 
[17]. To encode the patterns of intestinal motility a panel of textural and morphologi-
cal features was extracted. Textural descriptors comprised features from first order 
statistics (mean value, standard deviation, skewness and kurtosis, estimated from the 
image histogram), second order statistics [18] (energy, entropy, inertia, local homo-
geneity, cluster shade, and cluster prominence), and Rotation Invariant Uniform Local 
Binary Units operator (LBPriu2) [19] applied in a circular symmetric neighbourhood 
P of radius R (P=16, R=2), using the eighteen bins histogram of the LBP riu2 operator 
output (P+2=16+2).  Morphological features of the intestinal lumen comprised meas-
urements of blob area, blob shape (solidity), blob sharpness and blob deepness. 

To estimate the lumen area, frames were processed by a Laplacian of Gaussian fil-
ter [20]. This filter has a high response at valleys that are dark regions surrounded of 
brighter regions. In our case, the region of interest in a frame was the lumen area. 
Dark areas were extracted by applying a greater-than-zero-threshold in the Laplacian 
image. The resulting binary image was superimposed to the Laplacian image. In the 
new image the blob sharpness was estimated by summing the pixel values of Lapla-
cian image in the extracted objects. The object with the greater sum was selected as 
the blob area (Fig. 3). Blob deepness is the minimum of the Laplacian valley in the 
blob area. 

 

Fig. 3. Segmentation of blob area (top to down): original sequence of frames, estimated lapla-
cian images, extracted blob areas, and blob contours superimposed to the original images 
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Following the feature extraction, each sequence was represented by a 37x9 dimen-
sional feature vector. For feature reduction, a sequential forward selection method 
was used based on the performance of the system [21]. To evaluate the performance 
of the classifier, we used the leave-one-out technique. We run the classifier several 
times, and for each run all the videos except one were used for learning, and the one 
kept out was used for testing. For each video, the performance was evaluated in terms 
of sensitivity, specificity and False Alarm Ratio (FAR), taking into account the true 
and false positives and negatives as shown in Table 2. We used FAR as a false posi-
tive error measure since specificity by itself is not informative enough for skewed 
datasets. The sensitivity, specificity and FAR definitions used are the following: Sen-
sitivity = TP/(TP+FN), Specificity = TN/(FP+TN), FAR= FP/(FP/TP+FN) 

Table 2. Truth table 

 Manual Identification 
System Identification Contractions Non-Contractions 

Contractions True Positives  (TP) False  Positives (FP) 
Non-Contractions False Negatives (FN) True Negatives (TN) 

3   Results and Discussion 

CE technology offers a safe, painless and effective method of diagnosing abnormali-
ties in the SI. Current methods can be uncomfortable, or might be of limited diagnos-
tic ability [2]. Although CE provides an excellent view of inaccessible parts of intes-
tine, the amount of information registered during the capsule’s transport time through 
the gastrointestinal tract is huge. Consequently, analyzing a CE study visually and 
qualitatively is a difficult and time consuming procedure, coupled with subjective 
interpretations. In the present study, we introduced a CE video analysis system based 
on computerized image analysis techniques. According to this system, data were ana-
lyzed in a cascade way in which redundant information was removed gradually. In 
this way, the reading time shorten significantly, without considerable loss of diagnos-
tic information related to intestine motility. The detection of contractions is a primary 
feature, assessed visually by the experts during the CE visual inspection. 

At the first level, the system reduced drastically the amount of data by removing 
89.17% of them as redundant and missing 3.04% of the labeled findings (Table 3). 

Table 3. First level processing of CE data 

 Sequences passing 1st stage Lost Conts. Conts. Non-
Conts. 

Video_1 3220/29424 (10.94%) 26/716 (3.63%) 690 2530 
Video_2 3072/28783 (10.67%)  25/487 (5.13%) 462 2610 
Video_3 3194/27796 (11.49%) 11/524 (2.09%) 513 2681 
Video_4 4056/38865 (10.43%) 15/718 (2.08%) 703 3353 
Video_5 1869/17599 (10.61%) 7/347 (2.01%) 340 1529 
Video_6 2950/27156 (10.86%) 30/911 (3.29%) 881 2069 
MEAN                10.83%                 3.04%    
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At the second level the system refined the recognition of contractions by receiving 
only 10.83% of the initial data volume. The SVM classifier exhibited a performance 
of 75.81% in correct recognizing contractions and of 85.69 % in correct identifying 
non-contraction sequences (Table 4). The resulting best feature vector consisted of the 
following parameters: four morphological descriptors of the intestine blob (blob area, 
local normalized intensity, blob sharpness and blob deepness), and two textural fea-
tures (energy and local homogeneity). The system yielded an overall sensitivity of 
73.53% and an overall specificity of 98.76% (Table 5). However, in highly skewed 
classification problems with a very small number of positive instances the specificity 
by itself is a rather obscuring measure of performance [15]. For this reason we have 
used FAR, which is an indicative measure of the ability of the system to avoid false 
positives, taking into account the total number of existing contractions. The overall 
FAR of the system was of 59.92%. It means that in a practical case where the experts 
would have to analyze a video with 100 real contractions, our system would provide 
60 false contractions and 74 real contractions. Now, the efforts of the physicians 
could be focused entirely in the analysis of these 134 sequences, discriminating be-
tween them which are the true and the false contraction sequences. This suppose a lot 
of save in visualization time, with acceptable performance values.  

4   Conclusions and Future Work 

The results from the present study might be promising in the development of assisting 
tools for computer based CE video analysis, reducing drastically the physician’s time 
spent in image evaluation and enhancing the diagnostic potential of CE examination 
by introducing qualitative descriptors in diagnostic assessments. Further work is to be 
oriented to the problem of finding the optimal set of descriptors, deepening in the 
 

Table 4. Second level processing of CE data 

 TP    TN     FP FN 
Video_1 580 2082 448 110 
Video_2 319 2272 338 143 
Video_3 369 2395 286 144 
Video_4 575 2711 642 128 
Video_5 268 1343 186 72 
Video_6 610 1796 273 271 

Table 5. Overall system performance in correct identifying sequences of SI contractions 

 Overall sensitivity Overall specificity Overall FAR 
Video_1 580/716 (81.00%) 28976/29424 (98.47%) 448/716 (62.56%) 
Video_2 319/487 (65.50%) 28445/28783 (98.82%) 338/487 (69.40%) 
Video_3 369/524 (70.41%) 27510/27796 (98.97%) 286/524 (54.58%) 
Video_4 575/718 (80.08%) 38223/38865 (98.34%) 642/718 (89.41%) 
Video_5 268/347 (77.23%) 17413/17599 (98.94%) 186/347 (53.60%) 
Video_6 610/911 (66.95%) 26883/27156 (98.99%) 273/911 (29.96%) 
MEAN:       73.53%                        98.76%               59.92% 
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feature selection stage. In a parallel way, our group is focusing its efforts in the re-
search for a better understanding of the intestinal contraction event, working alto-
gether with the physicians in order to develop different paradigms. This represents a 
challenging line of work which we expect to be the target for future publications. 
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Abstract. Functional magnetic resonance (fMRI) data are often cor-
rupted with colored noise. To account for this type of noise, many pre-
whitening and pre-coloring strategies have been proposed to process the
fMRI time series prior to statistical inference. In this paper, a gener-
alized likelihood ratio test for brain activation detection is proposed in
which the temporal correlation structure of the noise is modelled as an
autoregressive (AR) model. The order of the AR model is determined
from experimental null data sets. Simulation tests reveal that, for a fixed
false alarm rate, the proposed test is slightly (2-3%) better than current
tests incorporating colored noise in terms of detection rate.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a noninvasive technique used
to detect brain activity. By utilizing the fact that the magnetic resonance signal
intensity is correlated with neural activity [1], fMRI can localize brain regions
that show significant neural activity upon stimulus presentation. fMRI data sets
typically consist of time series associated with the voxels of the brain. For each
voxel, the significance of the response to the stimulus is assessed by statistically
analyzing the associated fMRI time series. In this way, brain activation maps, or
statistical parametric maps (SPMs), reflecting brain activity can be constructed.

Nowadays, the most common approach is to model the time series of fMRI
data by a general linear model (GLM) disturbed by Gaussian distributed noise
[2,3]. Potential time trends can be included in the linear model by adopting extra
linear terms. The model contains one or more activation related parameters of
interest as well as nuisance parameters. Statistical parametric maps (SPMs) are
obtained by testing the significance of the activation related parameter(s) of the
linear model using standard statistical tools such as the (two-sided) t-test (in
the one parameter case) or the F -test (in the case of more than one parameters).

Current methods deal with temporally correlated noise by prewhitening the
data based on the estimated correlation matrix of the noise [3]. This correlation
matrix is estimated by fitting an autoregressive (AR) time series model to the
residuals obtained after fitting the general linear model to the fMRI time series
in least squares sense [4]. Since an estimate of the correlation matrix instead of
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the (unknown) true correlation matrix of the noise is used for prewhitening the
data, the assumption that the test statistic has a Student’s t distribution (upon
which inference on the significance of the response is based) is only approximately
valid. Obviously, this fact may harm the performance of the test.

In this paper, an alternative approach is proposed. This approach is also
based on a general linear model with correlated noise modelled as an AR process,
but, unlike the common GLM approach, it does not require a prewhitening step.
Instead, statistical inference is based on the exact likelihood function (LF) that
describes the statistics of the data including the temporal correlation structure
of the noise. No approximations are made. The order of the AR process, which is
fixed in the proposed test, is determined from practical null data sets (acquired
in the absence of activity). The performance of the proposed tests is evaluated
in terms of detection rate and false alarm rate properties.

The paper is organized as follows. In Section 2.1 and Section 3, statistical
inference incorporating colored noise model is reviewed. Section 4 describes a
novel approach for the construction of a statistical test that also accounts for
colored noise. Simulation and experimental results are presented in Section 5.

2 Statistical Inference Incorporating Colored Noise

2.1 The Statistical Model of the fMRI Time Series

An fMRI time series y = (y1, ..., yn)T (the superscript T denotes matrix trans-
position) of equidistant observations can in general be modelled as [2,5]

y = Xθ + v (1)

in which X is an n × m design matrix. It consists of m columns that model
signals of interest and nuisance signals such as potential drift. Furthermore, θ is
an m× 1 vector of unknown parameters and v is an n× 1 vector that represents
stochastic noise contributions. The noise is modelled as a stationary stochastic
AR process of order p (i.e., an AR(p) process):

vt + α1vt−1 + α2vt−2 + · · · + αpvt−p = e (2)

with α = (α1, . . . , αp)T the vector of AR parameters and e independent, zero
mean Gaussian distributed white noise with variance σ2

e . Let σ2
eV be the n× n

covariance matrix of the AR process, i.e., σ2
eV = E[vvT ] with E the expecta-

tion operator. For observations of stationary stochastic processes, the covariance
matrix of the AR(p) process vt may be written as

σ2
eV = σ2

v

⎛⎜⎜⎜⎝
ρ(0) ρ(1) . . . ρ(n − 1)
ρ(1) ρ(0) . . . ρ(n − 2)

...
...

. . .
...

ρ(n − 1) ρ(n − 2) . . . ρ(0)

⎞⎟⎟⎟⎠ (3)
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where ρ(k) = E[vtvt+k]/σ2
v and σ2

v is the variance of vt. Notice that it follows
from this definition that ρ(0) = 1. The elements of the matrix V can be expressed
in the AR parameters through the Yule Walker relations [6]:

ρ(k) + α1ρ(k − 1) + · · · + αpρ(k − p) = 0, k > 0, ρ(−k) = ρ(k). (4)

Several authors have performed analyses that indicate that AR models give an
accurate description of the actual temporal autocorrelation structure of the noise
that contaminates fMRI data [4,7]. The validity of the model will be assessed
using experimental data in section 5.1.

In this paper, the noise is assumed to be Gaussian distributed. Although
magnitude MR data are known to be Rician distributed, the Rice distribution is
nearly Gaussian at high SNR [8]. Hence, the test derived in this paper will only
be valid for high SNR fMRI magnitude data (i.e., SNR>10).

2.2 Statistical Inference

In the next two sections, two-sided as well as one-sided hypothesis testing will be
considered. If the test is two-sided, the null hypothesis H0 that the task-related
ith component θi of θ equals zero is tested against the alternative hypothesis H1

that θi �= 0. If it is known that θi > 0 (under H1), one may use a one-sided test
in which H0 that θi = 0 is tested against H1 where θi > 0:

H0 H1

one-sided test θi = 0 θi > 0 or θi < 0
two-sided test θi = 0 θi �= 0

3 The Common GLM Approach

The widely used GLM approach consists of two steps. First, an estimate of the
parameter vector θ is obtained by least squares fitting of the model described
by the right hand side of Eq. (1) to the data y. A closed form expression of this
so-called ordinary least squares (OLS) estimator is given by:

θ̂OLS = (XT X)−1XT y. (5)

Although not fully efficient, this estimator is unbiased [9]. Therefore, the resid-
uals y−Xθ̂OLS have zero expectation values and a correlation structure that is
approximately equal to that of the noise v. Assuming that the noise is generated
by an AR(p) model, the parameters of this model and hence the matrix V can
be estimated from the residuals [3]. The estimated covariance matrix will be
denoted as V̂ . Second, V̂ −1 is used as weighting matrix in a generalized least
squares (GLS) estimator of θ, which results in:

θ̂GLS = ŴXT V̂ −1y (6)
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where the m×m matrix Ŵ = (XT V̂ −1X)−1 is an estimator of the covariance
matrix of θ̂GLS described by Eq. (6). Notice that estimator (6) is equivalent
to applying the matrix V̂ −1 to the model given by Eq. (1) before applying an
ordinary least squares estimator. This is known as prewhitening of the data.

Finally, an estimator of σ2
e is given by

σ̂2
e =

(
y −Xθ̂GLS

)T (
y −Xθ̂GLS

)
/(n −m) (7)

of which the statistics are not known exactly.

3.1 Statistical Inference

Brain activation can now be detected by testing the significance of the task-
related parameter, say, θi of the linear model using standard statistical tools
such as the t-test or the F -test. The Student’s-t test statistic is given by

Tt =
[
θ̂GLS

]
i
/

√
Ŵiiσ̂2

e , (8)

where
[
θ̂GLS

]
i

denotes the ith element of θ̂GLS, σ̂2
e is given by Eq. (7), and Ŵii

denotes the ith diagonal element of the m × m matrix Ŵ . The one-sided t-test
decides H1 if Tt > γ, whereas the two-sided t-test decides H1 if Tt < −γ or Tt >
γ, with γ a user specified, positive threshold. In practice, this threshold is chosen
in function of a false positive rate that the user allows in case the null hypothesis
H0 is true. Approximately, the test statistic Tt has a t distribution with n − m
degrees of freedom (exact if V would be known) under H0. Alternatively, one
may use the test statistic

TF =
([

θ̂GLS

]
i

)2

/
(
Ŵiiσ̂2

e

)
, (9)

which has an approximate F distribution with 1 and n − m degrees of freedom
(exact if V is known) under H0. The F -test, which is a two-sided test, decides
H1 if TF > γ, with γ some user specified threshold.

4 Likelihood Based Tests

In this section, two new tests (a one-sided as well as a two-sided likelihood ratio
test) for brain activation detection is presented with incorporation of colored
noise. Thereby, the significance of the task-related parameter θi of the linear
model is tested.

4.1 The Joint Probability Density Function of the Data

In order to use likelihood based tests, the joint probability density function
(PDF) of the fMRI data p(y|θ,α) is required. From Bayes’ theorem, we have:

p(y|θ,α, σ2
e) = p(yp|θ,α, σ2

e) p(yn−p|θ,α, σ2
e ,yp) (10)
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with yp = (y1, . . . , yp)T and yn−p = (yp+1, . . . , yn)T . The second part of the
right hand side is the conditional PDF of the observations yn−p given that the
initial observations yp remain fixed at their observed values. Under the assumed
AR model (2), where e is Gaussian distributed, it may be written as [10]

p(yn−p|θ,α, σ2
e ,yp) =

(
1

2πσ2
e

)(n−p)/2

×

exp

(
− 1

2σ2
e

n∑
t=p+1

{yt − xtθ + α1(yt−1 − xt−1θ) + . . .+ αp(yt−p − xt−pθ)}2

)
(11)

where xt denotes the t-th row of the design matrix X. The joint PDF of the
data yp may be written as [10]

p(yp|θ,α, σ2
e) =

(
1

2πσ2
e

)p/2

×

|Vp|−1/2 exp
(
− 1

2σ2
e

(yp −X1:pθ)T
V −1

p (yp −X1:pθ)
)

(12)

where X1:p denotes the p×m matrix consisting of the first p rows of the design
matrix X. Vp denotes the p×p covariance matrix of vp = (v1, . . . , vp)T and |Vp|
denotes the determinant of Vp.

4.2 Statistical Inference

If we substitute the acquired data y in the expression for the joint PDF of
the data (10), the resulting function is a function of the unknown parameters
(α,θ, σ2

e) only. By regarding these parameters as variables, the LF p(θ,α, σ2
e ;y)

is obtained. Then, the generalized likelihood ratio (GLR) is given by [11]:

λ =

sup
θ1,...,θi−1,θi+1,...,θm,α,σ2

e

p
(
θ1, . . . , θi−1, 0, θi+1, . . . , θm,α, σ2

e ;y
)

sup
θ,α,σ2

e

p(θ,α, σ2
e ;y)

. (13)

The denominator of λ is the LF evaluated at the maximum likelihood (ML)
estimator under H0, whereas the numerator of λ is the LF evaluated at the ML
estimator under H1. From the GLR statistic, a one-sided as well as a two-sided
likelihood ratio test can be constructed.

Two-sided likelihood ratio test. The generalized likelihood ratio test (GLRT)
principle states that H0 is to be rejected if and only if λ ≥ λ0, where λ0 is some
user specified threshold. It can be shown that, asymptotically (i.e., for N → ∞),
the modified GLR statistic

TLR = 2 log λ (14)

possesses a χ2
1 distribution, that is, a chi-square distribution with 1 degree of

freedom, when H0 is true [11].
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One-sided likelihood ratio test. The signed likelihood ratio test statistic is
given by [12]

TLR1 = Sign
(
θ̂i

)√
2 log λ. (15)

The test decides H1 if TLR1 > γ, with γ some user specified threshold. Asymp-
totically, the test statistic TLR1 has a standard normal distribution under H0.

4.3 Computational Considerations

To obtain the likelihood ratio λ, the ML estimates of the unknown parame-
ters under the null hypothesis H0 and the alternative hypothesis H1 have to be
found. For that purpose, the LF has to be maximized with respect to the un-
known parameters (α,θ, σ2

e). The noise variance σ2
e can be eliminated from this

optimization problem since it can be shown that the value of σ2
e that maximizes

the LF p(α,θ, σ2
e ;y) with respect to σ2

e is given by

σ2
e =

1
n

⎡⎣ p∑
i=1

p∑
j=1

[V −1
p ]ij(yi − xiθ)(yj − xjθ)+

n∑
t=p+1

{yt − xtθ + α1(yt−1 − xt−1θ) + . . .+ αp(yt−p − xt−pθ)}2

]
, (16)

[V −1
p ]ij being the (i, j)th element of V −1

p . Substituting (16) in (10) yields the
so-called concentrated LF. The ML estimates (α̂, θ̂) of the parameters (α,θ)
can now be found by maximizing the concentrated LF with respect to (α,θ),
which is a nonlinear optimization problem that can be solved numerically.

5 Experiments

Experimental fMRI data sets were obtained from small animal as well as from
human subjects. The experiments for the small animals (3 rats) were done on a
7T MRI system (SMIS, Guildford, UK) with an 80 mm aperture and self-shielded
gradients. Images were taken with size 256 × 128, maximum gradient strengths
Gr = 0.017 T/m, Gp = 0.027 T/m, Gsl = 0.07 T/m, and ramp time 100 μs. All
human experiments were performed on a 1,5 T scanner with high-performance
40 mT/m gradients (Siemens Sonata, Erlangen, Germany). Subjects were three
healthy volunteers (mean age 33 years). Gradient-recalled multi-shot EPI se-
quences (TE 50 ms, TR 3000 ms) were used with 30 slices covering the whole
brain. The voxels dimensions were 3× 3 × 3 mm.

5.1 Order of the AR Model of fMRI Noise Structures

From the experimental fMRI null data, the order of the AR model was deter-
mined. Previous work by Woolrich et al. examined the necessary AR order from
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six null data sets. They concluded that AR(6) was sufficient for their data [4].
In our work, various null data sets were acquired from humans as well as from
small animals. The null data were modelled with a second order polynomial
model: b0 + b1t + b1t

2 along with an AR(p) model of which the order was esti-
mated using Akaike’s information criterion (AIC) [13], where a penalty factor of
3 instead of 2 was chosen [14]. Evaluation of AR order maps, constructed from
these data revealed that an AR(3) model is conservative with enough freedom
to accommodate even more complex AR processes than expected.

5.2 Simulation Experiments

For a fixed false alarm rate of 1%, the likelihood ratio tests proposed were com-
pared to the GLM tests with respect to detection rate. The false alarm rate is
the probability that the test will decide H1 when H0 is true. The detection rate
is the probability that the test will decide H1 when H1 is true.

Simulation experiments were set up to detect brain activation. Thereby, a
simple on-off activation scheme was used in which traces of 100 time-points
were generated with period equal to 20 (10 on, 10 off). Also, small linear and
quadratic trends were introduced that were modelled along with the baseline
and activation pattern. The amplitude of the activation pattern was gradually
increased from 0 till 0.6; the noise standard deviation was fixed to 1. For each
simulation experiment, 104 Monte Carlo simulations were run.

6 Results and Discussion

Typical results for the simulation experiments described in Subsection 5.2 are
shown in Fig. 1. Fig. 1(a) shows the detection rate as a function of the amplitude
of the activation pattern. Although results weakly depend on this amplitude, it
may be concluded from the numerical outcomes that, for a fixed false alarm rate

(a) GLM vs. GLRT (onesided) (b) Onesided vs. two-sided GLRT

Fig. 1. Detection rates with a fixed false alarm rate of 1%



A Likelihood Ratio Test for Functional MRI Data Analysis 545

of 1%, the detection rate of the proposed one-sided GLRT is uniformly 2-3%
better compared to the detection rate of the GLM test incorporating colored
noise. Similar results were observed when comparing the two-sided tests.

Finally, Fig. 1(b) shows the results when comparing the one-sided test against
the two-sided test in case the amplitude of the activation pattern was known to
be positive. As expected, the one-sided test performs in that case over 10% better
than the two-sided test.

7 Conclusions

In this paper, likelihood ratio tests for the detection of functional brain activity,
one-sided as well as two-sided, have been presented. In contrast to the general
linear model (GLM) tests, the proposed likelihood ratio tests allow direct in-
corporation of colored noise and do not require a prewhitening step. Simulation
results showed that likelihood based detection results in systematic slightly im-
proved detection probabilities compared to the currently popular GLM based
tests.
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Abstract. Many vision problems require computing fast template mo-
tion in dynamic scenes. These problems can be formulated as exploration
problems and thus can be expressed as a search into a state space based
representation approach. However, these problems are hard to solve be-
cause they involve search through a high dimensional space. In this paper,
we propose a heuristic algorithm through the space of transformations
for computing target 2D motion. Three features are combined in order
to compute efficient motion: (1) a quality of function match based on a
holistic similarity measurement, (2) Kullback-Leibler measure as heuris-
tic to guide the search process and (3) incorporation of target dynamics
into the search process for computing the most promising search alter-
natives. The paper includes experimental evaluations that illustrate the
efficiency and suitability for real-time vision based tasks.

1 Introduction

Computing pattern or template motion in video streams is a critical task in pat-
tern recognition and computer vision field with many practical applications such
as vision based interface tasks [1], visual surveillance or perceptual intelligence
applications [2]. Nowadays, three main issues must be addressed in order to com-
pute effective target 2D motion: (1) indeterminate nature of shapes without any
a priori specification of speed and trajectory, (2) dynamic changing environments
and (3) real-time performance.

In this paper, it is proposed a fast algorithm to apply over a space of transfor-
mations for computing target 2D motion without any assumption of the speed
and trajectory of the objects in unrestricted environments. The main contri-
butions are focused on: (1) an A* heuristic search algorithm and (2) dynamic
update of the search space in each image, whose corresponding dimension is de-
termined by target dynamics. In addition to these contributions, the paper also
contains a number of experimental evaluations and comparisons:
� This work has been supported by the Spanish Government and Canary Islands

Autonomous Government under the Projects TIN2004-07087 and PI2003/165.
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– A direct comparison of the performance of conventional searches [3] and
the proposed A* search approach, demonstrating that the search approach
proposed is faster.

– An analysis of the time required, illustrating that the time to track targets
in video streams under unrestricted environments is lower than real-time
requirements using general purpose hardware.

The structure of this paper is as follows: the problem formulation is illustrated
in Section 2. In Section 3, the heuristic algorithm is described. Experimental
results are provided in Section 4 and Section 5 concludes the paper.

2 Problem Formulation

For the sake of subsequent problem formulation, some definitions are introduced:

Definition 1. Let T (k) =
{
t1, · · · , tr

}
⊆ R

2 be a set of points that represent a
template in step time k.

Definition 2. Let I(k) =
{
i1, · · · , is

}
⊆ R

2 be another set of points that denote
an input image in step time k. It is assumed that each step time k corresponds
to a new frame k of the video stream.

Definition 3. Let a bounded set of translational transformations be a set of
transformations G =

[
gxmin, gxmax

]
×

[
gymin, gymax

]
⊆ R

2 and let gc = (gc
x, gc

y)
denote the transformation that corresponds to the center of G. It is defined as:
gc =

((
1
2

(
gxmin + gxmax

))
,
(

1
2

(
gymin + gymax

)))
, where (xmin, xmax) and

(ymin, ymax) represent respectively the low and upper bounds of G in x and y
dimension.

Definition 4. Let a bounded error notion of quality of match Q(g;T (k), I(k), ε)
be a measurement for computing the degree of match between a template T (k)
and a current input image I(k), where the dependence of Q on T , I and/or ε is
omitted for sake of simplicity but without loss of generality. That is, the quality of
match assigned to a transformation g is represented by the allowed error bound,
ε, when template points are brought to image points using the transformation g.
This quality of match function assigned to a transformation g is expressed as:

Q(g) =
∑
t∈T

max
i∈I

∥∥g(t)− i
∥∥ < ε (1)

where || . || denotes a measurement of distance and g(t) represents the result of
applying the transformation g = (gx, gy) to every point in template T (k).

Given a template T (k), an input image I(k) and an error bound ε, the tem-
plate motion problem can be viewed as the search process in the space of trans-
formations in order to find the transformation gopt that maximizes the quality
of match Q(g) between the transformed template g(T (k)) and the image I(k):

gopt(T (k), I(k), ε) = arg max
g∈G

Q(g;T (k), I(k), ε) (2)
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3 Heuristic Search Algorithm

Formulation of problem solving under the framework of heuristic search is ex-
pressed through a state space based-representation approach [4], where the pos-
sible problem situations are considered as a set of states. The start state cor-
responds to the initial situation of the problem, the final, goal or target state
corresponds to problem solution and the transformation between states can be
carried out by means of operators. Next, the elements of the problem are de-
scribed in order to formalize the heuristic search framework:

– State: each search state n is associated with a subset Gn ⊆ G. Each state is
represented by the transformation gc corresponding to Gn.

– Initial state: is represented by a bounded set of translational transformations
G, which allow matching the current template position in the current scene.

– Final state: is the transformation that best matches the current template
points T (k) in the current image I(k), according to Q(g). The quality of
function match assigned to a transformation g is expressed in terms of the
partial directed Hausdorff distance (see appendix) between g(T (k)) and I(k):

Q(g) = hq

(
g
(
T (k)

)
, I(k)

)
< ε (3)

Where the parameter q represents the qth quartile value selected according
to expression 9 and ε denotes that each point of g(T (k)) must be within
distance ε of some point of I(k).

– Operators: are the functional elements that transform one state to another.
For each current state n, the operators A and B are computed:
• Function A. The current state is partitioned into four regions by vertical

and horizontal bisections, that is, four new states.
• Function B. The quality of function match (equation 3), is computed

for each one of the new states generated, where g(T (k)) corresponds to
gc(T (k)).

Splitting each current state into four new states leads to the representation of
the search tree to be a quaternary tree structure; where each node is associated
to a 2i × 2j region. To be precise, the heuristic search process is initiated by the
association of G with the root of the search tree, and subsequently the best node
at each tree-level l is expanded into four new distinct and non-overlapping states.
The splitting operation is finished when the quadrisection process computes a
translational motion according to Q(g) or all the regions associated with the
different nodes have been partitioned in cells of unit size. Figure 1 illustrates the
search process. Each one of the four regions computed are referred to as NW,
NE, SE and SW cells. The best node to expand from these cells is computed
using an A* approach [4], which combines features of uniform-cost search and
heuristic search. The corresponding value assigned to each state n is defined as:

f(n) = c(n) + h∗(n) (4)

Where c(n) is the estimated cost of the path from the initial node n0 to current
node n, and h∗(n) is the heuristic estimate of the cost of a path from node n to
the goal.
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Fig. 1. Search tree: hierarchical partition of the space of states using a quadrisection
process. The nodes at the leaf level define the finest partition

3.1 Heuristic Function h*(n) and Estimated Cost Function c(n)

The heuristic value h*(n) is estimated by means of evaluating the quality of the
best solution reachable from the current state n. Desirability of the best state
is estimated measuring the similarity between the distribution functions P and
Q that respectively characterize the current and goal state. The definition of
both functions is based on the quality of function match assigned to the target
transformation, gopt. Since the quality of function match is denoted by the partial
directed Hausdorff distance, the function P can be approximated by a histogram
of distances {Hgc}i=1···r, which contains the number of template points T (k) at
distance dj with respect to the points of I(k), when the transformation gc of
the current state n is applied on T (k). Figure 2a shows the function associated
to P , when a transformation gc corresponds to gopt. The distribution function
Q can be modeled by approximating {Hgc}i=1···r by an exponential function
f(n) = ke−an such is illustrated in Figure 2b.

Given the distribution functions P and Q, and let R be the number of tem-
plate points, the similarity between both distributions is measured using the
Kullback-Leibler distance (KLD) [5]:

D(P‖Q) =
R∑

i=1

pilog
pi

qi
(5)

According to [5], D(P‖Q) has two important properties: (1) D(P‖Q) ≥ 0; and
(2) D(P‖Q) = 0 iff P = Q. These properties show that when the template
points do not match the input image points, the values of KLD will be non-zero
and positive because the distributions are not similar, P �= Q. On the other
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Fig. 2. Distribution functions: (a) {Hgc}i=1···r (b) f(n) = ke−an, where a = 1. The
horizontal axis represents distance values and the vertical axis denotes the number of
transformed template points with gc at distance dj with respect to I(k).

hand, if the template points match the input image points, then the value of
KLD is equal or near zero.

An estimated cost function c(n) is added to f(n) in order to generate a back-
tracking process when the heuristic function leads the search process towards
no promising solutions. This term is based on the number of operators A type
applied from the initial state to the current state n.

3.2 Initial State Computation

The dimension M × N of G is computed by means of incorporating an alpha-
beta predictive filtering [6] into the search algorithm. The parameters estimated
by the filtering approach are represented by the 2D opposite coordinates of
the bounding box that encloses the target shape and are expressed as a four -
dimensional vector θ = [θ1, · · · , θ4]T . The location and velocity vector are jointly
expressed as a state vector x = [θT , θ̇T ]T . The state vector estimation using a
constant velocity model is formulated as:

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + v(k + 1)
[
α

β

ΔT

]T

(6)

Since v(k) represents a measure of the error of ẑ(k+1), a decision rule focused on
this uncertainty measurement can be obtained in order to compute the dimension
of G . Two main criteria are considered in the decision rule design. The first one
is that small values of the innovation factor indicate low uncertainty about its
estimate and therefore, a reduced size of G. However, deviations of the target
motion from the assumed temporal motion model involves higher uncertainty
about the estimation and so, larger dimension of G. The second criterion is that
the dimension of M × N must be a 2p × 2q value in order to assure that each
terminal cell of G will contain a single transformation after the last quadrisection
operation had been applied. Assuming these requirements, the dimension M×N
of G is computed as:
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M =
{2min, if w + 2min ≤ vM (k)

2max, if w + 2min > vM (k) (7)

N =
{2min, if w + 2min ≤ vN (k)

2max, if w + 2min > vN (k) (8)

Where v(k) = (vM (k), vN (k)), 2min, 2max represent the nearest values to v(k)
and w is calculated according to the expression: w = φ

(
2max − 2min

)
, where

φ weights the influence of the difference between 2min and 2max. The figure 3
and 4 show respectively the computation of M × N and the search algorithm.
The bounds of G in each step k are calculated as: gxmin(k) = gx(k − 1) − M

2 ,
gxmax(k) = gx(k − 1) + (M

2 )− 1, gymin(k) = gy(k− 1)− N
2 , gymax(k) = gy(k−

1)+(N
2 )−1, where

(
gx(k−1), gy(k−1)

)
represents the solution transformation

computed in previous step time k − 1.

Fig. 3. Alfa-beta filtering stages and computation of M × N dimension of G

Input

G: initial set of transformations.
ε: distance error bound allowed when template points are brought to point’s
image using a transformation g.
D(P‖Q) : value of Kullback-Leibler distance.
η : number of operators of type A applied from initial state to current state n.

Algorithm

Step 1) Compute M × N dimension of G

Step 2) Find gopt that verify Q(g) = hq

(
g(T (k)), I(k)

)
< ε:

While Q(g) > ε Do

2.1) Split state n into four new states {n}i=1···4
2.2) Compute Q(gc) ← hq

(
gc(T (k)), I(k)

)
for each ni

2.3) Expand the best ni according to f(n) = c(n) + h∗(n):
2.3.1) h∗(n) ← D(P‖Q)
2.3.2) c(n) ← c(n − 1) + η

End While

Fig. 4. Heuristic algorithm for computing template motion

4 Experiments and Results

Thirty sequences have been used, achieving the same behavior for all of them
on a P-IV 2.4 GHz. Particularly, sequences ”People” (855 frames), ”Hand” (512
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frames), ”Cars” (414 frames) and ”Motorcycle” (70 frames) are illustrated. The
average size of each frame and template is respectively 280× 200 and 170× 140
pixels. Initial states evaluated correspond to: (1)Fixed search area (A1): a 64x64
pixels 2D translations set ranging from (-32, -32) to (32, 32), (2)Fixed search area
with motion prediction (A2): a 64x64 pixels 2D translations set computed from
the predicted target position and (3)Adjustable search area (A3): the dimension
of each initial state is computed according to expressions 7 and 8. The goal
state is defined as the translation g that verifies that 80% (parameter q = 0.8)
of template points are at maximum 2 pixels distance (ε = 2.0) from I(k). ε is
increased in one unit until a maximum value of 10 if no goal state is computed.
Figure 5 illustrates three original sample frames of the sequences mentioned and
the corresponding edge located template. No object is shown in the last frame
of Car sequence because the object does not correspond to the target tracked.

Fig. 5. Sample frames of People, Hand, Car and Motorcycle sequence

Fig. 6. Nodes explored and time required for processing the sequences

The performance of the approaches for computing initial search state is mea-
sured by means of the number of nodes explored and the time required for pro-
cessing each sequence. The results of figure 6 show that the number of nodes to
be explored are reduced considerably by incorporating a filtering approach into
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the search algorithm. On the other hand, the search proposed is faster than the
conventional blind search strategy [3] at an average rate of three times better, al-
lowing this way real time-performance using general purpose hardware. Average
runtime for each frame of the sequences using the heuristic algorithm is 10 ms,
clearly being lower than real-time restrictions (40ms).

5 Conclusions

This paper presents a heuristic algorithm that is lower than real-time require-
ments for computing template motion of arbitrary shapes in unrestricted envi-
ronments. From the experimental study carried out, two conclusions have been
obtained: (i) although abrupt motions cannot be predicted by an alpha-beta
filtering, the algorithm was well adapted and (ii) color cue is required in those
situations where the target shape is represented by a reduced set of sparse points.
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A Partial Directed Hausdorff Distance

The partial directed Hausdorff distance between two sets of points A and B
ranks each point of A based of its distance to the nearest point in B and uses
the qth quartile value ranked point as the measure of distance. It is defined as:

hq(A,B) = Q
a∈A

th min
b∈B

‖a− b‖ (9)
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Abstract. Motion estimation (ME) is by far the main bottleneck in real-
time video coding applications. In this paper, a configurable complexity-
bounded motion estimation (CCBME) algorithm is presented. This al-
gorithm is based on prediction-refinement techniques, which make use
of spatial correlation to predict the search center and then use local
refinement search to obtain the final motion field. During the search
process, the ME complexity is ensured bounded through three config-
uration schemes: 1) configure the number of predictors; 2) configure
the search range of local refinement; 3) configure the subset pattern of
matching criterion computation. Different configuration leads to differ-
ent distortion. Through joint optimization, we obtain a near-optimal
complexity-distortion (C-D) curve. Based on the C-D curve, we pre-
serve 6 effective configurable modes to realize the complexity scalability,
which can achieve a good tradeoff between ME accuracy and complex-
ity. Experimental results have shown that our proposed CCBME exhibits
higher efficiency than some well-known ME algorithms when applied on
a wide set of video sequences. At the same time, it possesses the config-
urable complexity-bounded feature, which can adapt to various devices
with a wide range of computational capability for real-time video coding
applications.

1 Introduction

With the rapid development of wireless network and consumer electronics, it is
feasible to implement real-time video communication services on mobile devices
such as Pocket PCs and Mobile Phones. However, the mobile devices are of var-
ious computational capability. Although specific algorithms can be designed to
satisfy specific mobile device, it is not a cost effective way since there are so
many different devices. Hence, it is desirable to design complexity-configurable
algorithms to offer a good tradeoff between coding efficiency and the complexity.
Moreover, in order to avoid delay and jitter in real-time video encoding, the en-
coder must possess the ability to encode the most complex compliant video frame
� The work was supported by National Natural Science Foundation of China
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within a relatively fixed interval. Therefore, complexity-bounded algorithms are
taken into consideration.

Motion estimation (ME) plays an important role in video coding system [1] to
reduce temporal redundancy between video pictures. Meanwhile, ME is the most
time-consuming module of the encoder, e.g. full search ME consumes almost 80%
of computing time. In order to implement real-time video coding applications,
many fast ME algorithms have been developed to alleviate the heavy compu-
tation load, such as diamond search (DS) [2], hexagon-based search (HEXBS)
[3] and some predictive algorithms [4][5]. However, despite of the significant
speedups, ME still consumes the largest computational resources.

In order to further reduce the ME complexity, complexity-scalable ME algo-
rithms [6][7] have been studied. It also provide a proper trade-off between motion
accuracy and complexity such that it can adapt to the available computational
resource dynamically. But the aforementioned fast MEs and complexity-scalable
MEs do not ensure bounded complexity. Usually, more disordered motion leads
to more complexity of ME. In the other words, these algorithms can not strictly
ensure real-time encoding. The complexity-bounded ME (CBME) [8] achieve a
constant complexity as there is no recursivity in the ME process and it is inde-
pendent of any search window area size. However, it does not sufficiently make
use of computational resources to maximize the ME accuracy.

In this paper, we propose a configurable complexity-bounded ME (CCBME)
algorithm. This algorithm consists of two procedures. Firstly, making use of the
spatial correlation to predict the search center; secondly, using fast ME algorithm
to accomplish the local refinement search. During the search process, the num-
ber of predictors, the search range of local refinement and the subset pattern of
matching criterion computation can be configured to ensure bounded complex-
ity. The configurable schemes are analyzed with respect to the complexity and
distortion. Through joint optimization based on the analyzed data, we obtain a
near-optimal complexity-distortion (C-D) curve. According to the C-D curve, 6
effective configurable modes are selected to realize the complexity-configurable
feature, which can achieve a good tradeoff between ME accuracy and complexity.
Experimental results have shown that our proposed CCBME not only exhibits
higher efficiency than some well-known ME algorithms such as DS [2], HEXBS
[3] and CBME [8] , but also possesses the configurable complexity-bounded fea-
ture, which can adapt to various devices with a wide range of computational
capability for real-time video coding applications.

The rest of the paper is organized as follows. The CCBME algorithm and
joint optimization scheme are presented in Section 2. Experimental results and
comparative analysis are shown in Section 3. In Section 4, we draw the conclu-
sions and present the future works.

2 Configurable Complexity-Bounded Motion Estimation

The CCBME algorithm takes advantage of prediction-refinement techniques
which use spatial correlation to predict the search center and then apply lo-
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Fig. 1. Flowchart of configurable complexity-bounded motion estimation

cal refinement search to achieve the final motion vector (MV) (Fig. 1 ). Due
to simplicity and efficiency, the sum of absolute difference (SAD) is used as the
matching criterion in both prediction and refinement. The interesting problem is
how to achieve optimal computing resource allocation among the three modules
(prediction, refinement and SAD computation) for the given computational con-
straint while maximize the ME accuracy. Thus, configuration controller is added
to the CCBME algorithm to solve the problem. Next we present the detail.

2.1 Configurable Complexity-Bounded Prediction

The prediction is based on the hypothesis that motion fields varies slowly and
have spatial correlation. Therefore, we can choose a set of previously calculated
MVs as the candidate predictors to predict the MV of current block. After sta-
tistical analysis, zero MV (MV(0,0)) and four adjacent MVs (left, top, top-left
and top-right) make up of the candidate predictors and the one with the minimal
SAD is selected as the search center for next refinement search. It can be seen

Table 1. Prediction accuracy with different predictors according to full search results

Sequence 2 Predictors 3 Predictors 4 Predictors 5 Predictors

News 88.92% 91.62% 91.92% 92.53%
Foreman 60.24% 71.34% 73.48% 76.01%
Carphone 51.29% 63.49% 65.90% 69.87%
Mobile 83.79% 92.48% 93.11% 94.04%

Coastguard 84.56% 92.19% 93.34% 94.31%

Fig. 2. Configurable complexity-bounded prediction: (a) two predictors −→ (d) five
predictors
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from Table 1 that different number of predictors leads to different prediction
accuracy (predictive MV = final MV), also leads to different complexity. There-
fore, we realize configurable complexity-bounded prediction through configuring
different number of predictors. Fig. 2 describes the scheme.

2.2 Configurable Complexity-Bounded Refinement

After prediction, the search center is equal or close to the final MV. We define
the distance between predictive MV and the final MV by Eqn. 1.

D = max{|MVFx
−MVPx

|, |MVFy
−MVPy

|} (1)

Where D denotes the distance; MVFx
and MVFy

denote the x and y components
of final MV; MVPx

and MVPy
denote the x and y components of predictive MV.

It can be seen from Table 2 that the distance is below 4 with an acceptable
high probability. So we adopt small diamond search (SDS Fig. 3 ) to accomplish
the local refinement and limit the recursive step (Fig.3 (b)) up to 4 times. Well
then, we realize the configurable complexity-bounded refinement search through
configuring the recursive time.

Table 2. Probability within different distance

Sequence D = 0 D ≤ 1 D ≤ 2 D ≤ 3 D ≤ 4
News 92.22% 95.92% 97.34% 98.20% 98.62%

Foreman 75.11% 86.80% 91.01% 93.52% 95.03%
Carphone 66.87% 83.15% 88.42% 92.66% 95.43%
Mobile 92.01% 97.57% 98.31% 98.62% 98.85%

Coastguard 93.26% 98.58% 99.67% 99.78% 99.85%

Fig. 3. Small diamond search (a) first step (b) recursive step

2.3 Configurable Complexity-Bounded SAD Computation

In SAD computation, we use sub-sampling patterns to configure the complexity.
Three sub-sampling patterns are chosen and different pattern results in different
ME accuracy and complexity. So we realize the complexity configuration through
selecting different sub-sampling patterns (Fig. 4 ) for matching criterion (SAD)
computation.
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Fig. 4. SAD computation pattern (a) 1/4 (b) 1/2 (c) full computations

2.4 Joint Optimization Scheme

The joint optimization problem [9] is defined as: given the available comput-
ing resources, how to achieve efficient computing resource allocation among the
three aforementioned configurable complexity-bounded schemes such that the
ME accuracy is maximized? We define one full SAD computation as a complex-
ity measurement unit (CMU). So the total cost of CMUs for one block ME can
be defined by Eqn. 2.

C = S(P + (a + bR)) (2)

Where C denotes the complexity (CMUs); S denotes the SAD computation
pattern and S equals 1/4, 1/2 or 1; P denotes the predictor number and 2 ≤
P ≤ 5; R denotes the refinement recursive time and 0 ≤ R ≤ 4; a = 4 denotes
the complexity of first step in SDS (Fig. 3 (a)); b = 3 denotes the complexity of
recursive step in SDS (Fig. 3 (b)). Therefore, the complexity bound of one MV
search can range from 1.5 CMUs to 21 CMUs. The joint optimization problem
can be converted to Eqn. 3.

min
[s,p,r]∈S×P×R

D(s, p, r) subject to : C ≤ Cmax (3)

Where D(s, p, r) denotes the distortion; Cmax denotes maximal constraint com-
plexity; s, p, r are configurable parameters. Directly setting parameters, there are
60 kinds of configuration choices. Through exhaustive statistical analysis (over-
all distortion data, mean square error (MSE), are measured by averaging five
video sequences: news, foreman, carphone, mobile and coastguard), we get the
near-optimal complexity-distortion (C-D) curve (Fig. 5 ) to achieve the prefer-
able tradeoff between ME accuracy and complexity. Based on the C-D curve, 10
configuration modes marked by square are detected as follows: M1(1/4, 2, 0),
M2(1/4, 3, 0), M3(1/4, 4, 0), M4(1/4, 5, 0), M5(1/4, 5, 1), M6(1/4, 5, 2), M7(1/4,
5, 3), M8(1/4, 5, 4), M9(1/2, 5, 4), M10(1, 5, 4). From the Fig. 5, point A and
M8 have similar complexity-bound but significant difference in distortion; point
B and M5 have similar distortion but significant difference in complexity-bound.
This indicates that more complexity does not lead to less distortion. Therefore,
determining effective configurable modes will largely improve the performance.
Although all the aforementioned 10 modes are on the near-optimal C-D curve,
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Fig. 5. Optimized complexity-distortion (C-D) curve

the slope is high from M1 to M5 and large distortion increase get little complexity
reduction in return. Thus, we only preserve 6 configuration modes (M5 – M10)
in our CCBME algorithm.

3 Experimental Results

Many experiments have been performed to evaluate extensively the performance
of our proposed CCBME algorithm. The standard test sequences (News, Fore-
man, Coastguard) of CIF resolution are chosen as our test set. These sequences
present different kinds of motion: small motion with fixed background, disor-
dered motion and global motion. The experimental setup as follows: the distor-
tion measurement of mean square error (MSE); the complexity measurement of
CMUs (see Section 2.4 ); block-size of 16× 16; search window size of ±16; frame
rate of 30fps and 15fps respectively.

We compare the CCBME algorithm with some well-known fast ME algorithm
such as DS [2], HEXBS [3] and CBME [8]. Fig. 6 presents the results. It can
be seen that DS, HEXBS and CBME have some limitation, e.g. for small mo-
tion scenario, DS performs better and for disordered or global motion scenario,
CBME performs better. However, our proposed CCBME algorithm (on M10)
outperforms these fast MEs in all kinds of motion scenarios while averagely sav-
ing 30% computing resources. Furthermore, through configuration from M5 to
M10, the practical complexity of CCBME can range from 2CMUs to 14CMUs,
resulting in an acceptable variation of distortion.
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Fig. 6. Comparative evaluation of the CCBME algorithm

4 Conclusions and Future Works

Configurable complexity-bounded algorithms are useful for real-time video cod-
ing applications, especially on mobile devices. Since ME is an important and
most time-consuming module in video encoding system, the paper propose a
configurable complexity-bounded algorithm for ME. Through statistical analy-
sis with respect to complexity and distortion, 6 effective configurable modes have
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been determined. The CCBME algorithm not only achieves a good tradeoff be-
tween ME accuracy and complexity, but also ensure bounded complexity for
real-time video encoding. Good results have been observed in our experiments.

Although the CCBME algorithm strictly ensure the complexity bound, the
practical complexity always less than the predefined bounded complexity due to
early-termination scheme. In the other words, the computing resource is not suf-
ficiently utilized. Moreover, the ME of motion-active area need more complexity
than that of non-motion area. Therefore we believe that our CCBME algorithm
can be improved by applying some resource adaptive allocation schemes, which
will be taken into consideration in our future works.
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Abstract. Shape recognition and motion estimation are two of the most
difficult problems in computer vision, especially for arbitrary shapes un-
dergoing severe occlusion. Much work has concentrated on tracking over
short temporal scales and the analysis of 2D image-plane motion from a
single camera. In contrast, in this paper we consider the global analysis of
extended stereo image sequences and the extraction of specified objects
undergoing linear motion in full 3D. We present a novel Hough Trans-
form based algorithm that exploits both stereo geometry constraints and
the invariance properties of the cross-ratio to accumulate evidence for a
specified shape undergoing 3D linear motion (constant velocity or oth-
erwise). The method significantly extends some of the ideas originally
developed in the Velocity Hough Transform, VHT, where detection was
limited to 2D image motion models. We call our method the 3D Stereo
Velocity Hough Transform, 3DSVHT. We demonstrate 3DSVHT on both
synthetic and real imagery and show that it is capable of detecting ob-
jects undergoing linear motion with large depth variation and in image
sequences where there is significant object occlusion.

1 Introduction

Object recognition and motion estimation form two major areas of computer
vision. Many methods have been developed to solve each of these problems in
isolation but there has been less work on approaches that attempt to address
both problems simultaneously. Object recognition via shape detection has been
fairly successfully attempted using the Hough Transform[2], HT, and its variants,
especially the Generalised Hough Transform[1], GHT. However, it is only fairly
recently, in the Velocity Hough Transform[4], VHT, that the method has been
extended to detect objects that simultaneously satisfy both a 2D shape model
and a 2D image-motion model. The VHT clearly demonstrated the benefit of
using both structural and temporal information simultaneously.

A significant limitation of the VHT method is that motion is only modeled in
the 2D image plane. However, when an object travels in 3D then its perspective
projection onto the image plane is a non-linear function of depth. This means
that a uniform velocity linear motion in 3D does not project to a constant
velocity 2D motion on the image plane. Hence, the VHT can fail in situations
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where objects are close to the viewer and then move away in depth. In this
paper we address this limitation for linear object motion by formulating a Hough
Transform that adopts a novel motion parameterization based on the invariance
properties of the cross-ratio of four scene points and their 2D projections. We
also show how multi-view stereo and epipolar geometry can be incorporated
to further constrain the Hough accumulation process and thereby improve the
recognition process. We call our method the 3D Stereo Velocity Hough Transform
and denote it by the mnemonic 3DSVHT.

In section 2 of the paper we present the central ideas of the method. We
discuss the cross-ratio of a set of four points, its invariance under projection and
how it can be calculated for specific 3D motion models. We then formulate a
novel parameterization and show how individual pieces of image evidence can
generate votes in a parameter space that encodes both shape and motion. We also
discuss how evidence in one image of a stereo pair can restrict the votes generated
by evidence in the other image of the pair. Section 3 presents results on both
synthetic and real image sequences and compares the algorithm’s performance
to both the GHT and the VHT. Section 4 discusses conclusions and future work.

2 The 3D Stereo Velocity Hough Transform

2.1 Projective Invariance of the Cross Ratio

Consider a rigid object undergoing a constant velocity linear motion in 3D space,
as depicted in figure 1. It can be readily seen that such 3D motion will cast a
linear but non-constant velocity motion trajectory in 2D when projected to an
image. The same idea applies to other linear 3D motions: the parameters defin-
ing the 3D linear motion of an object cannot, in general, be directly applied to
describe the 2D linear motion trajectories resulting from the perspective projec-
tion onto the image plane. The reason for this lies in the properties of projective

p
0
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C

D

A

A’
C’D’

B’

A’’

B’’
C’’

D’’

t=0

Fig. 1. Plan view showing how a constant velocity 3D motion projects to a non-constant
velocity in the 2D image planes of a stereo sensor
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geometry, chiefly, in the fact that it preserves neither distances nor ratios of
distances. However, the cross-ratio of four points, defined as a ratio of ratios of
distances, is preserved under projection and is therefore a useful concept for un-
derstanding the relationship between 3D and 2D linear motions. Figure 1 gives
a definition of the cross-ratio for four points, (A,B,C,D), in 3D space and four
points (A

′
, B

′
, C

′
, D

′
) in the 2D image plane of a stereo pair. The values of the

cross-ratio in the two cases must be the same. Hence if we can calculate the cross-
ratio for 3D points in four time instants of a sequence from knowledge of a 3D
motion model then we can test, using the equality of cross-ratios, whether four
2D image points seen at corresponding times in the image plane could be pro-
jections of that 3D motion. If the cross-ratios are equal and the image points lie
on a linear trajectory then a vote can be added to a suitable Hough accumulator
array.

2.2 3D Motion Models and the Cross Ratio

The position of the centre of mass, P , of an object under linear motion in 3D
space is described by the vector equation:

P (t) = P 0 + m(a1,a2, . . . ,an, t) (1)

where P 0 is the position for t = 0, and m is a vector defining the 3D linear
motion. In the case of linear motion a coordinate system can be chosen, (see
figure 1), with its origin at P 0, and one of it’s axis coinciding with the line of
motion. With this new reference system, only one of the components of P will be
non-zero and this will hold all the information about the motion. Thus, equation
(1) becomes a scalar one of the form:

P ′(t) = m′(a′
1, a

′
2, . . . , a

′
n, t) (2)

where m′ will be a function of time as well as of n parameters that define the
motion along the axis. For uniform velocity linear motion only one parameter,
a′
1 = v, is needed and that is a constant i.e. P ′(t) = vt. For constant acceleration

linear motion P ′(t) = ut + 1
2at2 and hence two parameters are needed. For the

sake of simplicity we will consider only constant velocity motion in this paper
but all results can be generalized to the more complicated linear motion models.

Once a motion model has been defined it can be used to calculate the position
of the object at four instances in time and the cross-ratio for the 3D motion can
be calculated. For constant velocity motion the cross ratio is easily calculated
given four time values. For example, for times t = 1, t = 2, t = 3 and t = 4
the cross ratio will be given by Cr(t1, t2, t3, t4) = 2v

3v / 1v
2v = 4

3 . Hence any 2D
trajectories that are projections of this 3D motion must also have a cross-ratio,
for these frames, equal to 4

3 .

2.3 Choice of Parameter Space and Voting Procedure

The basic idea behind all Hough like methods for shape or object recognition
is that pieces of image evidence vote in a parameter space for all consistent
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possible instances of the object and its motion. Once the vote accumulation pro-
cess has come to an end, local maxima define the position, shape and motion
of the object. Hence, it is necessary to define a set of parameters that describe
all possible object shape and motion instances as well as a mapping from an
image observation to all consistent instances. In the current problem the choice
of parameterization is complicated by the fact that the motion model is in 3D
while the observations are in 2D. The choice of the parameters that form the
shape sub-space is straightforward and we can typically use the location, scale
and orientation parameters, xr, yr, s and θ of the GHT. However, for the motion
subspace we need a parameterization that relates observed 2D image positions
to the 3D motion model via the cross-ratio. The calculation of the cross-ratio
uses a subset of points from a motion trajectory and therefore it is natural to use
parameters that encode such trajectories. A convenient choice is to take position
of points in three arbitrarily chosen frames, Ia, Ib, Ic, and a subset of the 3D
motion model parameters for this task. From these parameters the full motion
trajectory can be calculated. However, equally important is that this parameter-
ization facilitates a simple geometric construction that can be used generatively
in the voting procedure to map a point image observation to feasible parameter
values. Given evidence in the form of a point at location pi in the ith frame then
only votes for trajectories that are both linear in 2D and where the cross ratio
for the quadruple (pa, pb, pc, pi) equals the cross ratio for the 3D motion model
should be added to the Hough accumulator. The image data structure repre-
sented by Ia, Ib, Ic can be efficiently used to generate only those quadruples that
lie in a limited image region defined by the extremal values of (pa, pb, pc, pi) and
that also produce linear trajectories, thereby avoiding exhaustive enumeration
and testing of all quadruples.

2.4 Exploiting Stereo Image Constraints

In section 2.1 we described how the cross-ratio can be used in the formulation
of the HT to ensure that only 2D trajectories consistent with a 3D linear mo-
tion are accumulated. If calibrated stereo image pairs are available then points
from each image sequence could be accumulated independently in a common
parameter space. However, this does not use the stereo information that there
are matching pairs of points across the images that correspond to projections of
the same 3D scene point. When an image point votes for motion parameters (or
in our encoding, possible trajectories), it conceptually maps out a hyper-surface,
only one point of which corresponds to the correct value of the motion. Most of
the votes generated are extraneous and could be regarded as noise. Reduction
of these noise votes is one way to improve algorithm performance and can be
achieved if possible stereo matches can be identified i.e. if two image points in
different images of a stereo pair correspond to projections of the same 3D point
then only the intersection of the two hyper-surfaces that they generate are candi-
dates for the true motion parameters. The problem of course is to identify correct
stereo matches and this is a very difficult problem. However, epipolar constraints
geometrically restrict the possible set of matching points and can be used to limit



3DSVHT: Extraction of 3D Linear Motion via Multi-view 567

c
p

p a

p
b

t

t

t

b

c

a

x
y

l left
lright ?

Fig. 2. Epipolar stereo constraints restrict the trajectories that can be generated by
image evidence in the right image given a trajectory in the left image

the trajectories that a point in, say, a right image votes for given a trajectory
that an image point in the left image has voted for. Figure 2 illustrates the idea
for a sequence of rectified stereo images. If an image point in the left image
votes for a trajectory denoted by (Ia(x1, y1), Ib(x2, y2), Ic(x3, y3)) then in the
right image only trajectories characterized by (Ia(x4, y4), Ib(x5, y5), Ic(x6, y6))
with y4 = y1, y5 = y2, y6 = y3 and x4 ≤ x1, x5 ≤ x2, x6 ≤ x3 are possible.
Similar rules apply to left to right candidate matches.

3 Experimental Results

In this section we demonstrate the 3DSVHT algorithm on both real and synthetic
stereo image sequences. The synthetic images are generated using the POVRAY
ray-tracer and allow us to easily construct complicated, photo-realistic test data
with known ground truth. The first, 50 frame image sequence considered con-
tains three synthetic objects, a die, a duck and a cylinder topped by a cone. The
sequence was engineered so that the objects had significant movement in depth
(and hence change in observed scale), a range of velocities and underwent signif-
icant inter-occlusions. The sequence thereby represents a difficult image analysis
task. The upper part of Figure 3 shows three frames from the right stereo cam-
era with the contour of the detected duck overlayed. It can be seen that the
object is well tracked. The lower part of Figure 3 shows two curves for the x
and y coordinate of the duck over the full 50 frame sequence. The open circles
are the duck’s position as detected by the 3DSVHT while the dots show a line
through the position determined by a standard GHT applied independently to
each frame. The 3DSVHT closely follows ground-truth whereas the GHT results
show that the GHT degrades catastrophically at points where the objects be-
come occluded. This illustrates the benefits of temporal integration. In order to
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Fig. 3. Tracking results in a complicated synthetic image sequence

quantitatively compare the performance of our algorithm with similar existing
methods, we repeated the experiment reported in [4] and [3]. This consists of
a small circle moving with uniform velocity across the image plane. The circle
moves in the camera’s fronto-parallel plane and does not move in depth. Hence,
a 2D rather than 3D motion is appropriate and the VHT can be applied to this
image sequence. The performance of the algorithm was tested for 76 sequences
each consisting of 11 frames. Sequences were distinguished by different values of
the circle’s velocity or the amount of added image noise. The noise added to the
edge-map was simple ”salt-and-pepper” noise. Examples of the edge images for
different values of noise can be seen in the upper part of figure 4 and are clearly
very challenging. The lower part of the figure shows a comparison between the
performance of the GHT, the VHT and the 3DSVHT as a function of noise.
The error measure used is the Euclidean distance between the position of the
detected ball and ground truth, averaged over the 76 sequences. It can be seen
that the VHT (which incorporates temporal integration) out-performs the GHT
but that the 3DSVHT (which utilizes both temporal integration and stereo) does
better than both GHT and VHT.

Finally, we have applied our algorithm to real data of a ball rolling at ap-
proximately constant velocity on a table. The camera view is such that the ball
is moving away from the viewer. The results of applying the GHT, the VHT
and the 3DSVHT are shown overlayed in the mosaic of images frames shown in
Figure 5. The ball location found by the GHT is shown as a square, the location
found by the VHT is shown by a diamond and the location determined by the
3DSVHT is denoted by a circle. The GHT fails badly in most frames as the im-
ages are too cluttered and produce too many extraneous edge points. The VHT
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Fig. 4. Comparison of GHT, VHT and 3DSVHT tracking a small circle moving with
constant 2D velocity in a noisy image sequence

Fig. 5. Results of GHT, VHT and 3DSVHT tracking a ball rolling on a table
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tracks the ball for the first few frames but then fails as the 3D motion of the ball
is not correctly captured by the 2D motion model. The 3DSVHT successfully
tracks the ball throughout the sequence even when the scale of the ball changes
significantly due to changes in depth.

4 Conclusions and Future Work

We have presented a novel Hough Transform technique that allows arbitrary
shaped objects undergoing linear 3D motion to be tracked in long image se-
quences even in the presence of significant occlusion. It exploits properties of
the cross-ratio of scene and image points to allow 2D evidence to be constrained
to vote only for feasible 3D hypotheses. It can be applied to situations where
existing methods such as the VHT fail. We have demonstrated the method on
both synthetic and real image data and shown it outperforms both the GHT
and the VHT.
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Abstract. In this paper we present a new and complete scheme of mode deci-
sion and motion estimation compliant with H.264/AVC encoding and decoding 
systems based on a moving object segmentation. It is particularly suited for ap-
plications, like surveillance, where a moving object segmentation is available. 
The knowledge of the moving object areas and background areas allows to re-
duce the set of modes permitted by the standard. This sub-set is selected in or-
der to obtain a more accurately motion estimation for active objects and less in-
tensive for quasi-static background. The number of comparisons needed to find 
the best motion vectors is reduced, conforming an encoding process simple and 
fast, compliant with the real time requirements of a surveillance application. An 
improved prediction of the motion vector is computed based on the result of the 
object segmentation. This avoids erroneous predictions to be carried out. Re-
sults will show that the number of comparisons needed to perform inter predic-
tion is reduced by 60%-70% depending on the sequence, keeping the same im-
age quality and bit-rate obtained without using segmentation. 

1   Introduction 

Some applications perform a moving object segmentation, like surveillance applica-
tions, where remote control centers carry out the supervision of the sequences. The 
transmission of the video data of this kind of applications is usually needed at real 
time conditions and with the minimum possible bit rate to allow remote storage.  

The new international video coding standard H.264/AVC [1][2] is expected to im-
prove features in video coding against earlier standards such as MPEG-2 or recent 
MPEG-4. It uses block motion estimation (ME) and compensation for exploiting tem-
poral redundancy. This module is one of the most important parts of video coding re-
lated to rate-distortion and, on the other hand, the most computationally expensive 
operation of the encoder. H.264/AVC has been made with the purpose of achieving a 
higher coding efficiency by increasing the intensity of the ME process. In earlier 
standards, frames are divided into fixed size macroblocks (MB) which are the basic 
units of ME. H.264/AVC allows the subdivision of MB into smaller blocks, down to 
sizes of 4x4 pixels [1]. The encoder then may choose between large blocks with just a 
few motion vectors to transmit, or smaller blocks and more motion vectors. The stan-
dard specifies sub-partition modes permitted, those shown in the Fig. 1. 
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Fig. 1. Sub-partition block scheme of H.264/AVC 

The decision is usually taken performing rate-distortion optimization criteria [3] 
applying the Lagrangian multiplier technique [4], by minimizing the function 

mmrecm RDJ ·λ+=  (1) 

where Drec is the sum of absolute difference (SAD) between current MB and its re-
constructed MB after quantization, λm is the Lagrangian multiplier and Rm are the bits 
to encode MB header, motion vector difference (MVD) and residual DCT coeffi-
cients. This criterion provides the total coding cost for a MB (rate-distortion), so the 
encoder may just choose the mode that offers the minimum value of the function Jm. 

Motion estimation is the most expensive part of encoding process, and even more 
in the case of H.264/AVC, as it combines tree structured motion compensation with 
multiple reference frames. Many efforts have been made to reduce this computational 
load by proposing different strategies. One of them is the development of fast ME al-
gorithms that reduce the number of comparisons to do into the search area [5][6]. 
These strategies are usually combined with features like early termination that pre-
vents from comparing useless candidates if a previous candidate offers a Sum of Ab-
solute Difference (SAD) below a defined threshold [7][8]. Other works tend to use 
thresholds to combine strategies of fast ME algorithms with mode decision algorithms 
[9] based on detection of activity for each MB, studied as elemental ME unit. 

However, in the case of surveillance applications, a more important reduction of 
the computational load is required for real time conditions. For these applications, 
where a moving object segmentation is available, this segmentation may be used to 
reduce the computational effort of the coding stage. The moving objects are areas of 
the image that need more computational effort at motion estimation, whereas the 
background may be encoded with a reduced sub-set of modes. 

In this paper we propose a new scheme of mode decision based on a previous 
available object segmentation, suitable with H.264/AVC encoding and decoding sys-
tems, where MBs can be classified as belonging to moving objects or to the quasi-
static background. The object becomes the global ME unit and, as it will be shown in 
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next sections, its management permit to use safely the skip mode, which is the main 
difference with strategies based on processing MB as the elemental ME unit.  

The advantage of the proposed scheme is that it does not need an accurate segmen-
tation, so it is especially effective for those applications that carry out a coarse mov-
ing object segmentation. 

2   Segmentation 

Object segmentation can be exploited for mode decision and ME in H.264/AVC even 
when it is a standard that does not support transmission of segmentation information. 
As it will be described in next sections, segmentation masks identify MBs belonging 
to moving objects in the scene. Sub-division mode can be then selected in order to 
adapt smaller blocks to the object shape. 

We propose a mode decision scheme based on the sub-division of MBs into 
smaller sizes, down to 4x4 pixels. Therefore, segmentation information is just needed 
at 4x4 block level. Though the proposed scheme can be employed with any segmenta-
tion algorithm, for the present paper we use the adaptive segmentation strategy pro-
posed in [10] where segmentation is done at sub-sampled copies of the image, and 
then may be refined to pixel level at successive recurrent stages. We will use the re-
sults of the segmentation at the sub-sampled level, without refinement, where each 
pixel can be projected into a 4x4 block at the original image, fitting with minimum 
block-size permitted by H.264/AVC. 

Moving object masks are used for the ME process, therefore no segmentation in-
formation is necessary at the decoder side. Absolute compliance with H.264/AVC de-
coding systems is then guarantied when using segmentation information into ME 
process. 

Fig. 2 (a) shows two examples of the segmentation mask obtained for studied se-
quences. One of them is Hall Monitor an example of a surveillance like sequence, 
whereas Miss America is a standard MPEG test sequence where the proposed scheme 
can be employed if a moving object segmentation is available. Black areas are the 
identified background while transparent areas are the grouped 4x4 blocks belonging 
to a moving object. The object shape is squared into block units that will be used in 
mode decision. 

Next sections will highlight improvements achieved through the use of the seg-
mentation results. 

3   Mode Decision 

Once the object segmentation is available, the mode decision is dramatically simpli-
fied. In this paper we propose an adaptive sub-set mode selection attending to MB 
type. Segmentation masks can be used to classify MBs in two main groups: object-
MBs and background-MBs. As it is shown in Fig. 2 (b), object-MBs are those that 
contain at least one 4x4 block belonging to the segmented object. Black areas are 
background-MBs, those that do not contain 4x4 object-blocks. 
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Fig. 2. Hall Monitor frame #45 and Miss America frame #113, zoom to moving object, (a): 
segmentation mask 4x4, (b): segmentation mask 16x16, interior MBs and boundary MBs, (c): 
subdivision mode obtained 

3.1   Background-MBs 

We propose to use skip mode for those background-MBs that in the immediately pre-
vious frame were background as well. For the case of quasi-static backgrounds the 
analysis of the complete set of modes is expected to be highly redundant because 
blocks show no motion or changes. For these MBs, experience shows that skip mode 
usually offers minimum cost at equation (1). Skip mode is a way of processing MBs, 
specified by the standard, where no bits are transmitted to the decoder (neither coded 
coefficients of difference values or MVs). The decoder identifies those MBs and 
builds the reconstructed MBs from MBs of the immediately previous frame, pointed 
by a motion vector prediction obtained from MVs of neighboring blocks [1]. Usually 
this prediction offers zero vector for static background, but non-zero vector is also  
allowed. 

This mode reduces dramatically the bits to transmit, so the larger background area, 
the more compression achieved. Furthermore, the ME process for these MBs is done 
without new comparisons, so it can be assumed instantaneous. 

Skip mode can not be used for background MBs that in the previous frame were 
object-MBs. The prediction would be erroneous and the decoder would display an ar-
tifact in the reconstructed sequence like the object leaves a trail behind it. In this case, 
the use of skip mode is complemented with Mode 1 (16x16) if at the rest of references 
frames there are at least one background-MB at the same position as the current MB, 
or with the complete analysis of modes if no background-MB can be found in the  
reference frames. 

3.2   Object-MBs 

The proposed mode decision for object-MBs firstly consists of classifying those MBs 
into two classes: boundary-MBs and interior-MBs. Boundary-MBs are those that con-
tain background 4x4 blocks and moving object 4x4 blocks, while interior-MBs are the 
rest of object-MBs. The appropriate selection of the modes, attending to the shape of 
the objects, is based on the continuity of the objects between frames. 

For boundary-MBs the mode decision is made by sub-dividing the MB into MB 
partitions and sub-MB partitions down to 4x4 pixels, adapting to the object shape as 
shown in Fig 2 (c). As it can be seen, the adaptation is oriented to separate back-



 Fast Mode Decision and Motion Estimation with Object Segmentation 575 

ground and object areas of a boundary-MB for ME process, so more detail is needed 
in areas where the boundary between object and background draws a complex shape, 
like feet, head or briefcase corners. The proposed sub-division algorithm is described 
as follows for each boundary-MB, and examples of selection are shown in Fig. 3: 

a) Select mode 1 (16x16) if only one 4x4 block is of different type (object or back-
ground) than rest of blocks. 

b) Select mode 2 (16x8) if subdividing the MB into 2 MB partitions of 16x8, at 
least seven 4x4 blocks of each MB partition are the same type and predominant 
type is different between MB partitions. 

c) Select mode 3 (8x16) analogous to mode 2. 
d) If modes 1, 2 and 3 are not selected, split MB into four 8x8 blocks, and for each 

MB partition, do: 
e) Select mode 4 (8x8) if all four 4x4 blocks in MB partition are the same 

type. 
f) Select mode 5 (8x4) if subdividing the MB partition into 2 sub MB parti-

tions of 8x4, both 4x4 blocks of each sub MB partition are the same type 
and this type is different from the other sub MB partition. 

g) Select mode 6 (4x8) analogous to mode 5. 
h) Select mode 7 if no previous mode is selected. 

Finally, the segmentation mask does not include changes or activity information about 
interior-MBs, so the full set of modes is analyzed for these MBs. 

 

Fig. 3. Examples of the subdivision algorithm: White blocks are moving object blocks and 
black blocks are background blocks. Mode 7 is selected if no previous mode is chosen. 

4   Motion Estimation 

Another high efficient new feature in H.264/AVC is the prediction of the motion vec-
tor. Sub-dividing MBs into smaller blocks generates a huge amount of MVs to be 
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transmitted (up to 16 per MB), that may significantly increase the output bit-rate 
while high prediction quality is achieved. Usually, it is expected that neighboring 
blocks obtain similar MVs, therefore a motion vector prediction (MVp) can be calcu-
lated from neighbors and the difference between MV and MVp is transmitted. Usu-
ally, this Motion Vector Difference (MVD) is very small; therefore less bits are 
needed for transmitting MV information. MVp is also used as the center of the search 
process at ME for each reference frame [1]. Therefore a good prediction might reduce 
the number of comparisons to be done in a sub-optimal ME algorithm with early  
termination [9]. 

Prediction errors may occur for those MBs whose neighbors-MBs do not belong to 
the same object. In order to overcome this problem, we propose to take advantage of 
segmentation information to improve MVp by just using the neighbors belonging to 
the same object. Therefore, an improved-MVp is generated, especially for boundary-
MBs, where the current MB and some of its neighbors belong to different objects, and 
its MV may not fit with the motion of the object that the current MB belongs to. 

All this process can be done without transmission of segmentation information to 
the decoder, that creates the common MVp. The encoder must send the MVD be-
tween MV and non-improved-MVp, while keep using improved-MVp as the center 
search for ME. Absolute compliance with H.264/AVC decoding systems is then  
guarantied. 

Table 1. Comparison between proposed algorithm (Seg) and the complete analysis of modes 
(Normal) in PSNR, Rate and the computational reduction achieved 

  PSNR R (kbps) AC RF (%) 

Normal 35.60 82.18 8374.2Suzie 
QCIF Seg. 35.54 82.92 5365.5

35.9 

Normal 38.64 37.83 8486.2Miss America 
QCIF Seg. 38.23 38.86 1362.9

83.9 

Normal 36.16 237.27 7732.1Hall Monitor 
CIF Seg. 35.59 220.09 219.4

97.2 

Normal 35.62 78.03 8176.8Trevor 
QCIF Seg. 35.57 80.77 2694.7

67.0 

5   Results 

Experimental tests have been made with the proposed algorithm implemented into the ref-
erence software model JM 9.2 [11]. Any fast ME algorithm may be used with the pro-
posed mode scheme. For numerical results, in this work we have employed the default fast 
ME algorithm of the reference software model JM 9.2, called UMHexagonS [11].  

A comparison between the full analysis of modes and the proposed scheme is re-
ported for several sequences in Table 1. This table shows encoding tests with constant 
QP = 31 (Quantization Parameter). We have used the Baseline Profile, with three ref-
erence frames for P-SLICES, IDR each twelve frames and common 16-pixel Search 
Range. 
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Fig. 4. Trevor frame #131. (a): Original frame, (b): reconstructed with full analysis of modes, 
(c): reconstructed with proposed scheme, (d): Difference image with full analysis, (e): Differ-
ence image with proposed scheme. 

In Table 1, AC value represents the average number of comparisons needed for a 
MB to perform inter-prediction. This number contains the total number of compari-
sons over all analyzed modes and all reference frames. The UMHexagonS algorithm 
is based on an early termination algorithm, so different values of AC are obtained for 
each sequence. RF value is the reduction factor achieved in AC by using the proposed 
scheme.  

As it is shown, the proposed scheme ensures a PSNR and a bit rate similar to the 
one of common ME process in all cases while computational load is dramatically re-
duced in most cases. Best reduction is achieved for surveillance like sequences, for 
example, Hall Monitor, where there is a large background area and skip-mode is used 
with the related coding efficiency. 

However, any type of sequence may be analyzed with the proposed scheme, like 
Miss America, Suzie or Trevor where results show little Rate Distortion deviation and 
computation reduction in function of the size of the moving object area delivered by 
the segmentation process. 

Regarding subjective quality, Fig. 4 shows a frame for Trevor sequence, where (a) 
is the original frame and (b) and (c) are the reconstructed images with full analysis of 
modes and our proposed scheme respectively. Fig. 4 (d) and (e) shows the reconstruc-
tion error images where contrast has been increased for a better visualization. As it is 
shown, there are not significant perceptual differences between the two methods, 
mainly due to the fact that for perceptually relevant areas, like those composed by 
boundary MBs which define the object shape, an accurate estimation have been made 
with our approach as described in Section 3. 

6   Conclusions 

In this work we have presented an algorithm for fast mode decision and motion esti-
mation over H.264/AVC for applications that carry out an object segmentation, such 
as surveillance applications. With this method, we allow these applications to use 
H.264/AVC and its coding efficiency reducing dramatically its associated computa-
tional load. 

Our results have shown that best computational reductions are achieved for se-
quences with large background areas, like those typical obtained from surveillance 
applications, and neither quality nor bit rate are seriously affected. 

Future works will focus on performing a fast mode decision scheme that performs 
its own segmentation masks without extra computational load, suitable for real time 
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applications that need to reduce dramatically the computational load without losing 
the compression efficiency achieved with H.264/AVC. 
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Abstract. Mesh motion estimation is a tracking technique useful in
particular for low bitrate compression, object-based coding and virtual
views synthesis. In this article we present a new triangular mesh tracking
algorithm preserving the mesh connectivity. Our method generalizes the
rigid template tracking method proposed by Jurie and Dhome [5] to the
case of non-rigid objects. Thanks to a learning step that can be done
off-line for a given number of nodes, the tracking step can be performed
in real time.

1 Introduction

The 2-D mesh motion compensation is an alternative solution to the classical
block-based techniques. Dynamic 2-D meshes have been studied in different re-
search areas: hierarchical and content-based design [13,10], hierarchical motion
estimation, occlusion modeling and scalable coding. Historically designed for
the low bitrate video compression, the 2-D mesh tracking is also adapted for the
object segmentation, tracking, coding and motion generation [11,9,10].

Our method is a non-rigid generalization of the rigid Jurie and Dhome
learning-based tracking method [5]. This method is achieved through two steps.
The off-line step estimates, at each node, a linear relation between the gray lev-
els differences and the parameters of the triangular mesh distortion. Then the
tracking step iterates the following process: read gray levels differences and get
the distortion parameters from the estimated linear relation. We express the
distortion parameters in generalized barycentric coordinates in order to apply
a mesh motion relative to the current frame. Our method gives results as good
as those given by the Hexagonal Matching method [8] considered as one of the
most reliable mesh tracking methods. Nevertheless our tracking step is of lower
complexity and thus faster than the Hexagonal Matching one and could be used
in real-time applications.

In section 2, we define the local transformations of a mesh and propose an
optimization model. Then, in section 3, we give a state of the art on mesh
tracking methods and present the key ideas of our work. In section 4, we detail
our approach and give experimental results.

2 Notations: Mesh Transformations and Criteria

In mesh-based motion tracking, the frame distortion is modeled by a mesh dis-
tortion. In the case of triangulation, this motion model assumes a piecewise

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 579–586, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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C 

C’ 

Fig. 1. Nodal transformation: initial mesh in
solid lines (left and right), image and mesh
distorted by a nodal transformation, mesh in
dashed lines (right)

n

Ωn

polygonal
support

Fig. 2. Example of a sample pat-
tern of the mesh. The sample pat-
tern of the node n is Ωn.

affine distortion of the image. This distortion can be parameterized either, for
each triangle, by the six parameters of an affine transformation [8,1] or, for each
node, by a displacement vector [6]. We use this second approach; so the mesh
connectivity is intrinsically preserved.

To estimate these nodal transformations, we use the criterion Et based on
the displaced frame difference:

Et(μ) =
∑
p∈Ω

(It(f(p;μ)) − Iref (p))2, (1)

where Iref is the reference frame (generally, I0 or It−1), p a pixel of the im-
age domain Ω, μ the parameters vector and f the piecewise affine transfor-
mation. We want to determine the vector μt that minimizes this criterion:
μt = argminμEt(μ).

A global mesh transformation can be broken down into local transformations,
that we call nodal transformations. These transformations are characterized by
the displacement of only one node of the triangulation (see Fig. 1). The global
criterion (1) can be broken down, like the global mesh transformation, into local
criteria around each node n of the mesh:

Et(μ, n) =
∑

p∈Ωn

(It(f(p;μ)) − Iref (p))2, (2)

where Ωn is a set of pixels, not dense in our case (see Fig. 2). Then we determine
the nodal transformation TΔμ, that is, the displacement vector Δμ of the node
n minimizing (2).

3 State of the Art and Key Ideas

In this section, we first explain the advantages and disadvantages of current
mesh methods based on the criterion (1). Then, we describe the learning-based
rigid tracking method that we shall generalize.

Mesh Tracking: Marquant et al. directly solve the global problem [6]. They
linearize the non-linear least squares criterion (1) using the second order Taylor’s
expansion. Their method gives good results but is slow.
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A pioneer algorithm, due to Brusewitz [3], divides the image into triangular
patches and estimates a motion vector for each triangle vertex. A dense motion
field is interpolated within each patch and the motion vectors are estimated
(in the least squares meaning) from the optical flow equation. In contrast with
this global method, Nakaya et al. [8] propose an Hexagonal Matching method:
a two-step search optimizes the node motion vectors representing an affine mo-
tion compensation for each triangle. This method minimizes the prediction error
defined on the hexagonal support of a nodal transformation. Because of the ex-
haustivity of the search, this method is expensive. However, it is considered as
one of the most reliable mesh tracking methods. It will be used as a benchmark
to validate our results.

Wang et al. propose a local closed-form solution based on a gradient descent
to estimate the motion and minimize the criterion (1) [13]. Altunbasak et al.
find locally optimal closed-form solutions to estimate the frame distortion using
either node or patch approaches and either image gradients or dense motion
vector fields [1]. Their method is less expensive than the Hexagonal Matching
one but their results are not as good.

We use such local techniques and generalize the methods proposed by Hager
and Belhumeur [4] and Jurie and Dhome [5] to the non-rigid mesh-based tracking.

Learning-Based Tracking: We first approximate the criterion Et(μ, n) (eq.
(2)) in the same way Hager and Belhumeur do for their own criterion [4]. Our
local criterion Et(μ, n) can be written: Et(μ, n) =‖ It(μ)− I0(0) ‖2, where It(μ)
is the vector [It(f(p;μ))]p∈Ωn and I0(0) = [I0(f(p; 0))]p∈Ωn = [I0(p)]p∈Ωn . As-
suming a small disruption Δμ between two successive frames It and It+τ (gen-
erally, τ = 1), a first order expansion gives It+τ (μ+Δμ) ≈ It(μ)+M(μ, t)Δμ+
τ∇tIt(μ), where the matrix M(μ, t) (noted M below) is a jacobian matrix. Using
the approximation τ∇tIt(μ) ≈ It+τ (μ)−It(μ), the criterion is now Et(Δμ, n) ≈‖
M(μ, t)Δμ + It+τ (μ) − I0(0) ‖2 . Solving ∇Et(Δμ, n) = 0, with ΔI = It+τ (μ)
−I0(0), we obtain the linear relation:

Δμ = AtΔI, where At = −(MTM)−1MT . (3)

This linear relation links Δμ, a small disruption of the parameters μ, and ΔI, a
gray levels difference sampled with Ωn.

As Jurie and Dhome [5], we assume that, at any time, we can express our
problem in the reference frame I0, solve it and then transfer the solution back to
the frame It. As a consequence, A is estimated only once (off-line) on the refer-
ence frame I0 and thus is time independent. Our method requires the estimation
of such a matrix A at each node of the mesh.

4 Estimation of Transformations by Learning

We estimate the motion of one node n at a time, that is, a nodal transformation.
We first set the problem between two successive frames It−1 and It and then
show that this problem is equivalent to a problem between the reference frame I0
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and a frame I
′
0. By expressing the displacement vector in generalized barycentric

coordinates, we adapt this displacement found in the setting of I0, to the frame
It−1. This adaptation is necessary, since the node and its adjacent nodes have
moved between I0 and It−1.

4.1 Learning and Tracking Stages of a Nodal Transformation

The detailed explanation is based on the figure 3. To simplify, only one point of
the sample pattern Ωn is shown per triangle.

The Problem: The figure 3 (b-i) shows the frame It−1 with the right position
of the mesh. We assume that, from I0 to It−1, the image has been mapped by
a piecewise affine transformation and that the tracking has been perfect. The
frame It is shown on the figure 3 (b-ii). This frame is the result of a nodal
transformation TΔμ′ applied to the frame It−1. The position of the mesh is the
one of the frame It−1.

Between these two situations on It−1 and It, reading the gray levels differ-
ences between It−1 and It at each point p of the sample pattern Ωn (see Fig. 2),
a vector ΔI can be computed: ΔI = [It(f(p;μt−1)) − It−1(f(p;μt−1))]p∈Ωn .

We are seeking the vector Δμ′, parameterizing the nodal transformation
of the image, to accordingly transform the mesh. This displacement vector is
predicted from ΔI thanks to the linear relation (3).

The Corresponding Problem in the Reference Frame I0: Since the track-
ing is perfect at time t− 1, that is I0(p) = It−1(f(p;μt−1)) for any p in Ωn (see
Fig. 3 (a-i) and (b-i)), an image I

′
0 following the frame I0 can be generated such

that:

ΔI = [I
′
0(p)− I0(p)]p∈Ωn = [It(f(p;μt−1)) − It−1(f(p;μt−1))]p∈Ωn . (4)

If the image I
′
0 is also a nodal transformation of I0 (see Fig. 3 (a-i) and (a-ii)),

denoted TΔμ, then we know how to simulate the same vector ΔI without gen-
erating the image I

′
0. Instead of applying the nodal transformation to the frame

I0 and leaving the mesh and the sample pattern Ωn unchanged, we apply the
inverse nodal transformation1 T−1

Δμ to the mesh and Ωn and leave I0 unchanged
(see Fig. 3 (a-iii)):

ΔI = [I0(T−1
Δμ(p)) − I0(p)]p∈Ωn .

Therefore any gray levels difference calculated between two successive frames
can be generated on the reference frame I0. Thus we can learn a link between
the parameters of the nodal transformation and the gray levels differences. This
learning stage is only based on the reference frame I0 and the local criterion (2).
From the simulation of numerous experiments j (j ∈ [1..J ], where J ≈ 400),
consisting in applying disruptions T−1

Δμj and then in collecting the induced ΔIj ,

1 Warning, the inverse nodal transformation T−1
Δμ is piecewise defined but with another

support than TΔμ. That is why the edges are broken.
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Fig. 3. Scheme showing the key ideas of our method
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we estimate the best linear predictor in the least squares meaning (see eq. (3)).
This predictor is indeed the learning matrix A (see Fig. 3 (c-i)): Δμ = AΔI.

Interpretation in the Frame It: The prediction Δμ, that is the displacement
vector of a node on the frame I0 expressed in cartesian coordinates, is transferred
to the vector Δμ′ to take into account the distortion of the region to track
between the frames I0 and It−1.

To do this, we expressΔμ in generalized barycentric coordinates (gbc) Δμgbc.
The base of these coordinates is the ordered vertices of the polygonal support
(see Fig. 2). We use the Wachspress coordinates [12] because they are invariant
by affine transformations and easy to compute [7]. We obtain Δμ′ by expressing
Δμgbc from the new position of the base in the frame It−1 (see Fig. 3 (c-ii)).
This result is exact when the polygonal support has been affinely transformed,
and, in practice, satisfactory for any conformable mesh transformation.

4.2 From Nodal Transformations to Global Mesh Distortion

To track global mesh distortion, during the learning stage, we compute a learning
matrix An for each node n and, during the tracking stage, we implement the
following relaxation algorithm:

Relaxation algorithm :
- For each node n,

+ calculate ΔI(n) (eq. 4)
+ using the gbc, determine Δμ′(n)
+ calculate the criterion Et (eq. 1)
End for

- Select the node n that most decreases Et

- While the gain on Et is bigger than a threshold loop
+ Move n of Δμ′(n)
+ Update :

* the interest points of the polygonal support of n
* the motion vectors of the nodes of the polygonal support and of n
* the global criterion of the nodes of the polygonal support and of n

+ Select the node n that most decreases Et

End loop

We have worked on “Miss America”, “Foreman” and synthetic sequences.
We have chosen a regular triangulation of 19 nodes centered on the faces. The
sample pattern is shown on figure 2. The learnt displacements are all possible
vectors with their coordinates between −10 and 10 pixels.

Synthetic Sequences: The synthetic sequence illustrated on figure 4 (top) is
obtained by non-rigid transformations [2] of the first image of the ”Foreman” se-
quence. These non-rigid transformations are defined by a radial basis mapping
using thin-plate spline basis functions and 19 kernels of non-rigidities. We assume
that we perfectly know the motion of the mesh border nodes. The figure 5 shows
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Fig. 4. Top: Synthetic video sequence of non-rigid deformations on “Foreman”. Left:
reference frame (frame 1) and its learning mesh. Middle: frame 13 and its mesh tracked
by our method. Right: frame 43 and its mesh tracked by our method. Bottom: Video
sequence “Miss America”. Left: reference frame (frame 1) and its learning mesh. Middle:
frame 78 and its mesh tracked by the Hexagonal Matching method. PSNR of 31.41 dB.
Right: frame 78 and its mesh tracked by our method. PSNR of 30.40 dB.
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that our method well approximates these non-rigid transformations: the maxi-
mum average error per pixel is only of 2.2 pixels and is get on the last frame.

Real Sequences: The figure 4 (bottom) shows the results obtained on the
“Miss America” sequence using the Hexagonal Matching (HM) method [8] and
our method. The PSNR between the frame rebuilt from the estimated mesh
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localization and the corresponding frame in the sequence enables to quantify the
tracking. The graph on figure 6 shows that our results are similar to the results
of (HM). Moreover, our method is faster than (HM). In fact, for each node, the
complexity of (HM) isO(KHPHM

2
H) (KH being the number of iterations, PH the

number of pixels in the polygonal support andMH the size of the search window).
Our algorithm complexity is O(PM2) for the learning stage and O(KP ) for
the tracking stage. Since KP ≈ KHPH in the tracking stage, our method is
M2

H ≈ 200 times less complex than (HM).

5 Conclusion

Our mesh tracking method based on a learning preserves the mesh connectivity.
The results are similar to the ones of the Hexagonal Matching method which
is recognized as one of the most efficient in terms of results accuracy [8,1]. Our
method is simpler and quicker, which is due to the learning stage.
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Abstract. A generic bi-directional scheme is proposed that robustifies
the estimation of the maximum-a-posteriori (MAP) sequence of states
of a visual object. It enables creative, non-technical users to obtain the
path of interesting objects in offline available video material, which can
then be used to create interactive movies. To robustify against tracker
failure the proposed scheme merges the filtering distributions of a for-
ward tracking particle filter and a backward tracking particle filter at
some timesteps, using a reliability-based voting scheme such as in demo-
cratic integration. The MAP state sequence is obtained using the Viterbi
algorithm on reduced state sets per timestep derived from the merged
distributions and is interpolated linearly where tracking failure is sus-
pected. The presented scheme is generic, simple and efficient and shows
good results for a color-based particle filter.

1 Introduction

One component in our offline video content analysis application needs to track
objects within shots of all kinds of videos, possibly containing challenges such
as occlusion, lighting changes, moving cameras and cluttered backgrounds. The
idea is that prior to tracking, an operator selects the interesting objects in one
or more frames, called seeds, and can correct at any time during tracking, giving
rise to retracking in parts of the sequence using additional seeds. In specific cases
(such as face tracking) we envision to drop the necessity for human interaction
in favor of a slow but accurate detection algorithm every n frames. Furthermore,
we do not want to equate offline processing to ’much slower than realtime’: speed
still matters to remain usable. Intended use cases are the addition of interactivity
to video sequences (e.g. clicking on a soccer player to get his resume) and region
of interest coding.

Most trackers in literature are concerned with sequentially obtaining an es-
timate x̂k of the real object state xk at timestep k, or the filtering distribution
p(xk|z1:k), given the newly arrived measurement (frame) zk. Often dependent
modules exist that require such an estimate at each timestep, for example to
maneuver a robot or control a pan/tilt camera. Our application has no such
needs, and the quantity of interest is the state sequence (path) x1:T of the object.
Particle filters can be used to sequentially estimate p(x1:k|z1:k) ∀k ∈ {1, . . . , T},
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at the real risk of early discarding the future best paths during resampling steps.
Another approach is to randomly generate paths from the smoothing densities
{p(xk|z1:T )}T

k=1 obtained using a smoothing particle filter[2]. Since the final re-
sult is supposed to be one state sequence, the technique presented in [3] is more
appropriate: the object state space at each timestep k is discretized to the M
most promising states, which correspond to the particles of the filtering density
obtained by a particle filter. Next the O(TM2) Viterbi algorithm is run to find
the maximum-a-posteriori state sequences.

The weakness of the latter technique is the employed particle filter: failure
of this filter due to occlusion, clutter or illumination changes often means no
particles are near the real object state at some timesteps, a deficiency that the
Viterbi step can not correct for. A viable solution is to enhance the particle filter
so that it will fail less, and this will likely come at the cost of less generic, care-
fully tuned models and increased complexity. Instead, the next sections show a
generic complementary solution that makes use of additional seeds, also at the
expense of extra processing. The main assumptions are that failure-prone inter-
vals in the sequence occur only from time to time and that tracking before and
after such intervals is feasible. We show good results for the proposed scheme
in section 4, for experiments with a color-based particle filter on both synthetic
and real world videos.

2 Particle Filters and the Viterbi Algorithm

Given a time-evolving system that is described by an unknown state vector
xk at timestep k, particle filters[1] offer a sequential Monte Carlo style so-
lution to finding the filtering distribution p(xk|z1:k), the distribution of the
state given past noisy observations z1:k = {z1, . . . , zk}. This distribution is ap-
proximated by a cloud of samples (particles) {x(i)

k }N
i=1 with associated weights

{π(i)
k }N

i=1: p(xk|z1:k) =
∑N

i=1 π
(i)
k δ(xk − x

(i)
k ). One way to recursively maintain

a weighted samples approximation is by selecting the most succesful particles
at timestep k and propagating them to timestep k + 1 according to the state
transition prior p(xk+1|xk). In this case (sampling-importance-resampling fil-
tering) the new weights are the likelihood of the observation given the state:
π

(i)
k+1 = p(zk+1|x(i)

k+1).
Independent of the scheme presented next, we performed experiments with

a color-based particle filter with state vector [x, y, w, h, ẋ, ẏ, ẇ, ḣ] that defines
the bounding box around the tracked object, together with a change in each
parameter. The state transition prior is a constant speed model, the likelihood
p(zk|xk) is the Bhattacharrya distance between the model histogram and the
histogram of pixels inside xk.

For more information, the reader is referred to [1] and [4].
The Viterbi algorithm is used to get the MAP state sequence x̂MAP

1:T i.e. the
sequence for which p(x1)p(z1|x1)ΠT

k=2p(xk|xk−1)p(zk|xk) is maximized, given M
possible states {x(i)

k }M
i=1 at timestep k:
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1. Initalize
For 1 ≤ i ≤M1 :
δ1(i) = log p(zk|x(i)

1 )
2. Find best path (δ is probability, ψ is previous) for arriving in x

(j)
k

For 2 ≤ k ≤ T :
For 1 ≤ j ≤Mk :
δk(j) = log p(zk|x(j)

k ) + maxi{δk−1(i) + log p(x(j)
k |x(i)

k−1)}
ψk(j) = argmaxi{δk−1(i) + log p(x(j)

k |x(i)
k−1)}

3.Choose best path
iT = arg maxi δT (i)
x̂MAP

T = x
(iT )
T

4. Backtrack
For k = T − 1, . . . , 1
ik = ψk+1(ik+1)
x̂MAP

k = x
(ik)
k

Its complexity is O(TM2). In [3] it is argued that the possible states at timestep
k can correspond to the states in the approximation of p(xk|z1:k) by a particle
filter.

3 Proposed Approach

We assume the shot under consideration consists of frames 1, . . . , T and that
only one object is tracked. If only one initialization is given (e.g. x1), we default
to the algorithm in [3]. An automatic detection algorithm may however generate
extra seeds (e.g. s), as can an operator anticipating or observing tracking failure.
Although not required, for simplicity we will assume s = T in the remainder of
this paper. In that case, tracking proceeds as follows:

1. One particle x(1)
1 = x1 is inserted at timestep 1, with weight 1;

2. One particle x(1)
T = xT is inserted at timestep T , with weight 1;

3. A particle filter sequentially estimates, forward in time using p(xk|xk−1)
Pf = {pf(xk|z2:k)}T−1

k=2 starting from {(x(1)
1 , 1)}

4. A particle filter sequentially estimates, backward in time using p(xk|xk+1)
Pb = {pb(xk|zT−1:k)}T−1

k=2 starting from {(x(1)
T , 1)}

5. Combined particle representations are obtained (see section 3.1):
Pc = {pc(xk|z2:T−1) = fcomb(pf (xk|z2:k), pb(xk|zT−1:k))}T−1

k=2

6. The Viterbi algorithm calculates the MAP-path from timestep 1 to T using
x1, xT and the most probable states in Pc. In addition, interpolation is
performed at timesteps where the hypotheses are considered faulty or marked
faulty by the operator. See section 3.3.

The filtering processes for Pf and Pb are independent: failure is anticipated,
so we do not want to corrupt the ’second opinion’ of one particle filter by the
possibly faulty output of the other.
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3.1 Obtaining Pc

Inspired by the integration of cues in multiple-cue trackers, each pf and pb will
be merged into the new probability density function pc according to a measure
of reliability.

A popular integration approach by Triesch and von der Malsburg is demo-
cratic integration[6]. This scheme is originally used to unidirectionally track faces
using a motion detection cue, a color cue, a prediction cue, a shape cue and a
contrast cue. At each timestep k, each cue i votes for each possible state. The
vote weight depends on the similarity with a prototype for that cue and on an
adaptive reliability measure for that cue. Spengler and Schiele integrate particle
filters (Condensation) with democratic integration in [5]. Their technique boils
down to particle filtering where the weight of each particle is a non-adaptive
linear combination of the likelihoods of different cues.

Our integration method is based on a similar voting scheme i.e. after obtain-
ing Pf and Pb, we require that each

pc(xk|z2:T−1) = rf (k)pf (xk|z2:k) + rb(k)pb(xk|zT−1:k)

where rf (k) and rb(k) denote the reliability or confidence in pf (xk|z2:k) and
pb(xk|zT−1:k) respectively. In our case, these reliabilities will bias the selection
of particles from either pf or pb in section 3.2. A weighted sample representation
of pc(xk|z2:T−1) is {(x(i)

c,k, π
(i)
c,k)}2N

i=1 =

{(x(1)
f,k, rf (k)π(1)

f,k), . . . , (x(N)
f,k , rf (k)π(N)

f,k ), (x(1)
b,k, rb(k)π

(1)
b,k), . . . , (x(N)

b,k , rb(k)π
(N)
b,k )}

as

pc(xk|z2:T−1) =
N∑

i=1

(rf (k)π(i)
f,k)δ(xk − x

(i)
f,k) +

N∑
i=1

(rb(k)π
(i)
b,k)δ(xk − x

(i)
b,k)

In contrast to a scheme that multiplies pf and pb, the anticipated disagreement
between pf and pb does not leave us with a (near) zero pc or, after normalization,
with a pc having unrealistic modes (e.g. when pf and pb are Gaussians).

A straightforward choice for the reliabilities is rb(k) = rf (k) = 0.5. However,
since the particle weights {π(i)

f,k} and {π(i)
b,k} have been separately normalized

to sum to 1 by the particle filter, only the relative success between particles
of the same particle set is retained. The relative success between particles of
pb(xk|zT−1:k) and pf (xk|z2:k) is lost e.g. the particles of pb could all be spot on
the real object state (all high likelihood) and the particles of pf could all have
lost track (all low likelihood), without this being deducible from the normalized
particle weights. Therefor, the definition of reliability as the sum of the likeli-
hoods within a particle set solves this problem: if the non-normalized reliabilities
are r′f (k) =

∑N
i=1 p(zk|x(i)

f,k) and r′b(k) =
∑N

i=1 p(zk|x(i)
b,k) then the weights for pc

become

rf (k)π(·)
f,k =

r′f (k)
r′f (k) + r′b(k)

p(zk|x(·)
f,k)

r′f (k)
=

p(zk|x(·)
f,k)

r′f (k) + r′b(k)
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and rb(k)π
(·)
b,k =

p(zk|x(·)
b,k)

r′
f (k)+r′

b(k) i.e. each of pc’s particles is now properly weighted
relative to the total likelihood of all particles.

With these definitions, rf (k) and rb(k) respond to occlusion and loss of track
in the expected way. However, another common cause of tracking failure, inabil-
ity of a filter’s likelihood function p(z|x) to distinguish between the real object
and distractors, will not cause the ideal response in the corresponding reliability.
This weakness is often by design e.g. because a more accurate likelihood func-
tion would be too complex or hard to model. We try to compensate for such
generically undetectable failures by assuming the odds of encountering them is
proportional to the number of frames tracked. At the same time introducing dy-
namics for the reliabilities to manage their rate of change, the final reliabilities
are calculated as follows: ∀k ∈ {2, . . . , T − 1}:

rf (k) = min(max(rf (k − 1) + d(k) − p(k), 0), 1) (1)
rb(k) = 1 − rf (k) (2)

where:

d(k) =
qf (k)− rf (k − 1)

τ
(3)

qf (k) =
q′f (k)

q′f (k) + q′b(k)
(4)

q′f (k) =
N∑

i=1

p(zk|x(i)
f,k), q′b(k) =

N∑
i=1

p(zk|x(i)
b,k) (5)

As in [6], τ should be configured to filter out high-frequency noise but still allow
quick enough adaptation. p(k) is penalty that should work in favor of rf (k) when
k is close to 1, and in favor of rb(k) when k is close to s. In our experiments,
p(k) defaults to increasing linearly between p(1) = −0.2 and p(T ) = 0.2.

3.2 Selecting a Reduced State Set

Given the O(TM2) complexity of the Viterbi algorithm, for each timestep k ∈
{1, . . . , T} we wish to retain only the M < N distinct most promising states.
The main concern is offering enough valid choice to Viterbi. The object states at
timestep k that are selected for the Viterbi algorithm are the M distinct states
from {x(i)

c,k}2N
i=1 that have the largest probability according to pc(x

(i)
c,k|z2:T−1).

3.3 Interpolated Maximum-a-Posteriori Path

We now have a drastically reduced set of possible object states {x(i)
k }Mk

i=1 at
each timestep k, that has either been assigned by a user or a detection algo-
rithm (Mk = 1), obtained using a particle filter (Mk = M) or obtained using
both a forward particle filter and a backward particle filter as described above
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(Mk = M). Hence the MAP-sequence can be calculated using the Viterbi algo-
rithm as described in section 2. The required likelihoods of these states for the
Viterbi algorithm have already been calculated during filtering.

When loss of track (e.g. due to occlusion) occurs, often no possible object
states are near the real object state. Many of these situations can be detected
by inspecting maxi{p(zk|x(i)

k )}: if below a certain threshold (e.g. 0.1), loss of
track at timestep k is assumed. Additionally, the user can select intervals in
which results are not acceptable. The Viterbi algorithm can easily be extended
to then discard the available hypotheses at these timesteps and interpolate (e.g.
linearly): given the current position of the algorithm is timestep k and k−(n+1)
is the last timestep that had valid possible object states:

1. Find probability for linearly interpolated paths
For 1 ≤ j ≤Mk :

For 1 ≤ i ≤Mk−(n+1):
Let y1

i,j , . . . , y
n
i,j be the n linearly interpolated states

between x
(i)
k−(n+1) and x

(j)
k

δk(i, j) = log p(zk|x(j)
k ) + δk−(n+1)(i) + log p(y1

i,j |x
(i)
k−(n+1))

+ log p(y2
i,j |y1

i,j) + . . .+ log p(x(j)
k |yn

i,j)
2. For 1 ≤ j ≤Mk :
im = arg maxi δk(i, j)
δk(j) = δk(im, j)
Insert {y1

im,j, . . . , y
n
im,j} between x

(im)
k−(n+1) and x

(j)
k using ψ

4 Experiments

Experiments were performed with the color based particle filter introduced in
section 2. The first test sequence consists of 89 frames of a duck disappearing
behind a tree early in the sequence, reappearing 20 frames later. Initializations
were given in the first and last frame. τ is set to 1. Figure 1 shows the 200
particles of pf and pb and the reduced particle set for Viterbi (100 states) of pc

at different timesteps. Both the forward and backward particle filter lose track
at the time of disappearance, and rf behaves accordingly. The right states are
selected for pc. The occlusion is detected and no states are retained for the
corresponding timesteps. Figure 1 shows that the MAP state sequences using
states from either Pf or Pb are outperformed by the MAP path obtained using
states from the combined probability density functions. The resulting path is
interpolated at timesteps where the occlusion takes place.

For a challenging soccer sequence with distractors and occlusion, similar en-
couraging results were obtained using the same configuration (200 particles per
tracker, 100 states retained, initialization in first and last frame). They are pre-
sented in figure 2. The PAL-resolution soccer sequence was tracked in both di-
rections at 7 frames per second on a 2Ghz PC. Obtaining the states for Viterbi
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Fig. 1. Duck sequence. Top,red: forward tracker states. Top,green: backward tracker
states. Top,white: retained states for Viterbi. Top,thick blue: true state. Bottom left:
rf . Bottom middle: MAP state sequences (same color assignments). Bottom right: state
sequence distance to ground truth.

Fig. 2. Soccer sequence. Top,red: forward tracker states. Top,green: backward tracker
states. Top,white: retained states for Viterbi. Top,thick blue: true state. Bottom left:
rf . Bottom right: state sequence distance to ground truth.
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takes less than one second, the Viterbi algorithm itself 10 seconds. Simplifying
the employed state transition prior p(xk|xk−1) for the Viterbi algorithm from
the tracker’s constant velocity model to a normal distribution over the distance
between the centers of xk and xk−1 reduces this time to 1 second, while still
producing good results.

5 Conclusion

The presented scheme per timestep successfully selects a limited amount of states
from the filtering distributions of a forward tracking particle filter and a back-
ward tracking particle filter using a reliability-based voting scheme. This has the
desirable effect of both speeding up the estimation of the maximum-a-posteriori
state sequence so that it becomes interactively usable, and robustifying it by
offering a second opinion, which is indispensable when the forward tracker fails.
The Viterbi algorithm is well suited for this application, as it naturally allows to
guide paths through states indicated by users. Further enhancements at the user
interface level are possible, for example correction of the MAP-path by simple
mouse clicks, preferably without retracking.
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Abstract. The performance improvement of a number of motion estimation 
algorithms are evaluated following vector/SIMD instruction set extensions for 
MPEG-2 TM5 video encoding. Simulation-based results indicate a substantial 
complexity metric reduction for Full-Search, Three Step Search, Four Step 
Search and Diamond Search making the later three appropriate for execution on 
a high performance embedded VLSI platform. A simple model is developed to 
explain the simulated results, and a compound performance/power metric, the 
complexity-power-product (CPP), is proposed for algorithmic optimisation in 
vectorized applications for low-power, consumer devices. 

1   Introduction 

MPEG-2 [1, 2] is a popular, lossy video compression standard currently employed in 
many consumer products including DVD recorders, and digital, set-top boxes. This 
standard was introduced to support high-quality video at transmission rates from 4 to 80 
Mbit/s, utilizing a dataflow similar to MPEG-1. The MPEG-2 codec is based on the 
discrete cosine transform (DCT), either of the residual data, obtained after performing 
motion estimation (ME) and compensation (MC) to remove redundancy between frames 
(inter-frame coding), or of the original luminance and chrominance data in removing 
redundancy within the same frame (intra-frame coding). Quantization then removes the 
high spatial frequency components to reduce the channel rate. 

Full-Search Motion Estimation (FSME), the default method in the MPEG-2 TM5 
implementation, exhaustively matches each macroblock in the current frame to all 
macroblocks, within a given search area, of a previous (reference) frame. It is clear 
however that, for portable real-time embedded applications, the power requirements 
are in direct conflict with the billions of arithmetic operations required by FSME per 
second, in order to sustain CIF-sized (352x288 pixels) real-time video encoding at 25 
or 30 frames per second (fps).  

Fig. (1) depicts processor requirements for real-time CIF video at 25 fps. These 
results were obtained by scaling architecture-level results (dynamic instruction count) 
by an average clocks-per-instruction (CPI) value of 1.5. This CPI value was chosen as 
characteristic of a 32-bit scalar CPU with a 2-way, 16KB instruction cache and a 4-
way, 16KB write-through data cache when executing the MPEG-2 TM5 workload. 
Clearly the frequencies obtained are far too high to be realistic for FSME with 
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battery-powered devices. To reduce the ME complexity, a number of fast algorithms 
have been suggested [4-9]. A common factor in all ME methods is the computation of 
an error term that identifies how well the predicted macroblock maps to a reference 
macroblock. A software-based codec implementation should target all these data-
parallel computations using both custom vector instructions and multithreaded 
processor designs, since such benefits can be utilized by all search methods. The 
current paper looks the benefits of vectorization. 
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Fig. 1. Full-Search ME performance requirements for a variety of sequences 

Table 1. Fractional DIC (see eqn (1)) for main ME functions for p in the range 2 and 62 

  p  DIST1  FDCT FULLSEARCH REMAINDER 
  6   51.0   21.1           3.5      24.5 
14   61.1   13.7 9.2     15.9 
24   68.3    7.8 14.7 9.1 
30   69.8    6.1 17.1 7.1 
46   71.7    3.3 21.1 3.9 
62   71.9    2.1 23.5 2.4 

As shown in Table 1, the major complexity contributor in MPEG-2 TM5 is the 
inner loop of the ME function (DIST1) which computes the error of the current 
macroblock over all macroblocks in the search area. In particular, the DIST1 function 
complexity ranges from 52% to 73% of the unmodified reference software complexity 
for a search range of p = 6 to  p = 62 pels respectively. The forward-DCT 
computation (FDCT) is the next largest contributor to the complexity, but as shown in 
the table, its percentage complexity decreases with increasing search window size due 
to corresponding increase in the DIST1 contribution. The third greatest contributor to 
the complexity of the coder is the FULLSEARCH function itself, which is not 
discussed in this work as it has been the focus of numerous simulations in the past. 
Optimized (fast) ME algorithms, as mentioned above, significantly reduce the relative 
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complexity contribution of FULLSEARCH as well as that of the whole video coder 
and are presented in the results section. In the current work we estimate performance 
improvement of such sub-sampling ME algorithms due to vector/SIMD instruction 
extensions. An approximate theoretical description of the complexity values obtained 
is developed which generates a possible performance evaluation metric appropriate to 
the optimization of data-parallel algorithms for embedded platforms. 

2   Simulation Infrastructure, Results and Analysis 

Simulations were performed on a modified version of the SimpleScalar toolset for 
instruction set architecture research [10]. The toolset consists of a C-compiler, 
assembler and linker, and a collection of an architectural- (no timing effects), and a 
single microarchitectural-simulator (including timing effects). The default sim-profile 
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Fig. 2. Fractional complexity (CDIST1/CTOT(k=1)) of vectorized (a) FSME and (b) TSS 
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simulator was extended with additional processor state and additional instructions to 
transform that state. A scripting infrastructure was developed to automatically walk 
the algorithm optimization space and collect the performance metrics reported in this 
paper, using data-parallel extensions developed in [11].  

Exhaustive simulations of the MPEG-2 TM5 video encoder were performed, for 
several sub-sampling ME methods, which were applied to twelve different video 
sequences, each consisting of 25 frames, for three vector register file lengths 
(VLMAX = 4, 8 and 16), using our simulation infrastructure. The complexity metric 
we have used here is the dynamic instruction count (DIC) of the executed algorithm. 
This metric is a direct measure of performance and does not relate to any particular 
CPU implementation. To correlate the metric to real-time (i.e. clock cycles), the 
micro-architectural metric of the average CPI can be used. The dynamic instruction 
count, multiplied by the average CPI and the clock period of the microarchitecture 
translates directly into time units. Utilizing this DIC metric, our results are applicable 
to a wide range of CPU architectures based on the principles of RISC processing. 

Fig. (2a) depicts the dynamic instruction count of the vectorized full-search 
DIST1 function over search range and vector register length, and Fig. (2b) depicts 
the Three Step Search for the same metric. Other sub-sampling ME algorithms such 
as four step, three step search and diamond search follow a curve very similar to 
that in Fig. (2b). The data presented is relative to the dynamic instruction count of 
the unmodified (non-vectorized) full-search ME algorithm as it appears in the TM5 
distribution. 

Exploitation of DLP leads to a family of optimized video encoders that can be 
utilized in power-conscious, real-time devices. We observe the (expected) 
insensitivity of the sub-sampling ME algorithms over the search range (Fig. (2b)) 
which comes at a minimal loss of PSNR. This is attributed to the use of slow-moving 
video sequences which experience little and smooth motion across frames. The 
superiority of FSME is seen in fast-moving sequences such as ‘Rotating City’. 

3   Theoretical Analysis 

Table1 reports the simulation results for the fractional Dynamic Instruction Count 
(DIC) of the various parts of the Full Search algorithm as a function of the search 
range in the reference frame. For macroblocks of size N × N pixels, and a search area 
of (N+2p) × (N+2p), the number of SAD calculations to be performed is (2p+1)2. 
Naively, one expects part of the total DIC (CTOT) to scale as (2p+1)2, with the rest 
independent of p. For example, as the forward DCT occurs after the block matching 
completes it will be independent of search area, while clearly the DIC value for 
DIST1 will increase with p. Let us define complexity (DIC) measures for 
FULLSEARCH, DIST1, FDCT and the remaining functions REM as respectively 
CFS, CDIST1, CFDCT and CREM, thus CTOT = CFS + CDIST1 + CFDCT + CREM. Similarly, let 
us define fractional values, with respect to CTOT, of CFS*, CDIST1*, CFDCT* and CREM*. 
From this naïve perspective we expect CFDCT + CREM to be a constant independent of 
search area, c say. CDIST1 can then be expressed in terms of these fractional values as 
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and similarly for CFS. Naturally CFS and CDIST1 will be functionally dependent on the 
search range parameter s = 2p+1, and a plot against s2 reveals their behaviour. Fig. 3 
shows a plot of CDIST1/c values (table 1) against s2 together with the straight line 1.9 + 
s2/1100, clearly the approximation is excellent except for the smallest window size, 
where the fit curve is slightly too high. Also shown is a plot of CFS/c values against s2 
together with the straight line 0.37s2/1100 and again, except at small window size, the 
fit is excellent. In addition, we expect CFDCT/CREM = CFDCT*/CREM* to be a constant, α 
say. From table 1 it is clear that α ~ 1.16 to an excellent approximation (values range 
from 1.14 to 1.17) and consequently this analysis shows that individual contributions 
to the total DIC, CTOT, are approximately 

16.2

c16.1
C,

16.2

c
C,

1100

)1p2(
c37.0C,

1100

)1p2(
9.1cC FDCTREM

2

FS

2

1DIST ==
+

=
+

+=  (2) 

 

Fig. 3. Graph-based DIST1 and FULLSEARCH approximations 
   

When the algorithm is vectorized, DIC values gain a functional dependence upon 
k, the multiplicity of datapaths with respect to the scalar version (or VLMAX). In the 
current implementation of TM5 we choose to disable the vectorized FDCT, while the 
FS function is characterized by thread-level parallelism (TLP), a complementary form 
of DLP, which is not exploited in this particular study. One expects that CDIST1 will 
possess a section of code whose complexity decreases as 1/k, while the REM 
instructions cannot be vectorized. For now let us assume that the split between those 
parts of DIST1 which can be vectorized (k-1 dependence ) and those that cannot yields 
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which shall be justified later through Fig. 4. 
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Fig. 4. Fractional complexity over search range and vector register file length 
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Fig. 4 shows a plot of R against (2p+1) for k = 4 (lower curve), 8 and 16 (upper 
curve) together with results taken from reference [3] which are shown as data points. 
It is likely that a better fit to these data points may be obtained by a more thorough 
investigation of the split in eqn (3). This is confirmed by the saturation values see in 
Fig. (2a) which are predicted in this model to be 0.40, 0.25 and 0.19 but which are 
measured to be 0.40, 0.31 and 0.26.  A significant conclusion is that the DIC value for 
DIST1, and consequently the total DIC value, is bounded below by c(2.15 + 
0.37s2/275) and no further increase in VLMAX will improve matters. There are also a 
number of downsides to increasing k, in particular more power will be dissipated in 
evaluating the DIST1 function with increased vector length. Indeed one might expect 
the total power for the calculation to increase linearly with k, say as 

))k()((P)k(P Δ−+= 111  (5) 

where P(1) is the scalar power dissipation (VLMAX = 1) and Δ (< 1) is the fractional 
rate of increase with vectorization. Thus one must effectively offsets DIC (and hence 
the operational frequency) against power dissipation.  

A variety of optimization problems may now be set up to determine, for example, 
the best vector length for a given search range 2p+1. A figure of merit for such a 
purpose is the product of the total DIC and the overall power dissipation, CPP (the 
complexity-power product), which may be used in a manner similar to that of the 
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area-delay product, used in optimizing circuit designs. For a given value of p 
(essentially PSNR) the CPP is P(k)CTOT(k), i.e. 

( )Δ−+++++= )1k(1
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)1p2)(k37.01(

k

1
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Clearly CPP(k) is large at both large and small k, with a minimum at intermediate 
value. Differentiating with respect to vector length, yields an optimum value kopt of 
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Clearly kopt(s) is bounded above by ΔΔ−→ /)1(64.1k(max)
opt

 the value for very 

large search regions (s → ∞) and thus (max)
optopt k)s(k < . When Δ = 0.2, (max)

optk  = 3.25 

so that VLMAX should be taken as ~ 4 (i.e. 32 bits) while for Δ = 0.05, (max)
optk  = 7.25 

leading to a VLMAX of 8 (i.e. 128 bits). For small search ranges (s < 32, p < 16) the 
optimum k value is roughly linear in s, ΔΔ+ )/-(1))0.55(s/128  0.66(~k (max)

opt
. Now 

for Δ = 0.2, (max)
optk  ~ 2, leading to VLMAX = 2 (i.e. 16 bits). 

The expression for kopt(s) illustrates, that an algorithm optimised with respect to 
CPP for a given search area, will become suboptimal if the Search Area is increased 
(in an attempt to increase PSNR for example). Eqn. (7) indicates how the vector 
length should be altered to accommodate such a change. If as above Δ = 0.2, VLMAX 
should be set to 2 for small search areas, increasing to 4 as s increases. The analysis 
here is based largely on the results in [3] and in table 1, obtained by averaging over a 
large range of different types of video sequence. However these results are also valid 
for a wide number of individual standard video clips as discussed in ref [12]. 

3.1   IC for TSS, FSS and Other ‘Fast’ Algorithms   

For fast algorithms, such as the Three Step Search (TSS), the dependence of DIC on 
window size is weak. From the same naïve perspective as above we expect that the 
vectorised-TSS DIC relative to the scalar value, )1(C/)k(C TSS
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Here BTSS and ATSS represent those parts of the TSS algorithm which scale with k-1 
and are independent of it, respectively. BTSS, ATSS and βseq are likely to be sequence 
dependent. Relative to the vectorized Full Search the TSS complexity varies as 
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In terms of DIC, it is expected that one gets a greater advantage from vectorizing the 
Full Search algorithm than is the case for the TSS (or other fast methods). 



602 V.A. Chouliaras, V.M. Dwyer, and S. Agha 

Consequently this ratio will increase with k, bounded above by the k → ∞ value. This 
again shows that vectorization is a process which has an optimum solution. This is 
considered in more detail in [12].  

4   Conclusions 

Exploitation of DLP, via vector/SIMD instruction set architecture extensions and the 
use of ME algorithms, is vital for real-time execution of the complex MPEG2-TM5 
video encoder. CPU architects utilize architectural and/or trace-driven simulation to 
determine the optimal mix of microarchitecture (DLP) and algorithmic optimisations. 
This will converge to a local minimum in the design space, primarily reached via the 
optimization of a few complexity/microarchitectural metrics such as dynamic 
instruction count, average CPI or bus utilization. We advocate a complementary 
approach based around an analytical complexity model for the vectorized MPEG-2 
application through extrapolating the architecture-level simulation data. As shown, 
the model matches the simulation results quite accurately for a search window range 
of between 8 and 64 pels. Subsequently, we proposed a new complexity metric, the 
complexity-power-product (CPP) to drive the optimization process without the need 
for prohibitively long, exhaustive simulation of the algorithmic and microarchitectural 
space. We continue to develop this model for the case of thread-level-parallelism 
(TLP) in order to explore the architecture/ microarchitecture space in a fraction of the 
time taken by simulation methodologies. 
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Abstract. In this paper, we propose a new tracking method based on dynamic 
Bayesian network. Dynamic Bayesian network provides a unified probabilistic 
framework in integrating multi-modalities by using a graphical representation 
of the dynamic systems. For visual tracking, we adopt a dynamic Bayesian 
network to fuse multi-modal features and to handle various appearance target 
models. We extend this framework to multiple camera environments to deal 
with severe occlusions of the object of interest. The proposed method was 
evaluated under several real situations and promising results were obtained. 

1   Introduction 

Visual tracking in complex environments is an important task for surveillance, 
teleconferencing, and human computer interaction. It should be computationally 
efficient and robust to occlusion, changes in 3D pose and scale as well as distractions 
from background clutter. To meet these requirements, it is desirable to fuse multi-
modal features efficiently. In addition, in order to monitor a site effectively, it is 
necessary to develop a tracking algorithm in multiple overlapping field of view 
camera environments. 

Numerous visual tracking algorithms have been proposed. As the deterministic 
approach, Comaniciu et al. [1] proposed mean shift tracker which is a non-parametric 
density gradient estimator based on color distribution. The method can reliably track 
objects with partial occlusions.  As the probabilistic approach, Isard et al. [2] 
proposed CONDENSATION algorithm, otherwise known as particle filtering, for 
visual tracking.  Nummiaro et al. [3] proposed an adaptive color-based particle filter 
by extending CONDENSATION algorithm. It shows good performance in 
comparison with mean shifter tracker and Kalman filtering. As multi-modal feature-
based tracking, Liu et al. [4] suggests a multi-modal face tracking method using 
Bayesian network. It integrates color, edge and face appearance likelihood models 
into Bayesian networks for robust tracking. For object tracking in multi-camera 
environments, Comaniciu et al. [5] proposed a flexible multi-camera system for real-
time tracking. Kahn et al. [6] suggested a system for people tracking in multiple 
uncalibrated cameras. They use spatial relationships between camera fields of view to 
correspond with those between different views of the same person.  

For our visual tracking, we adopt a dynamic Bayesian network based multi-modal 
features fusion and appearance target model handling. Dynamic Bayesian network 
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(DBN) provides a unified probabilistic framework in integrating multi-modalities by 
using a graphical representation of the dynamic systems. The proposed tracker has the 
following characteristics. First, multiple modalities are integrated in the dynamic 
Bayesian network to evaluate the posterior of each feature. Secondly, a memory-
based appearance model is introduced to handle abrupt appearance changes. Finally, 
our proposed model is extended into overlapped multiple camera environments to 
deal with occlusions. 

The paper is organized as follows. Section 2 discusses dynamic Bayesian network. 
Section 3 presents our proposed tracking method in single and multi camera 
environments. Section 4 shows experimental results of our proposed method in face 
tracking. 

2   Dynamic Bayesian Network 

The Dynamic Bayesian Network (DBN) provides a coherent and unified probabilistic 
framework to determine a target object state in each frame by integrating modalities 
such as the prior model of reference state and evidence in target object candidate. 

2.1   Dynamic Bayesian Network 

To construct DBN for visual tracking, we must specify three kinds of information 

such as the prior distribution over state variables )( 0xp , the transition model 

)|( 1−nn xxp and the observation model )|( nn xyp . Fig. 1(a) shows an example of 

DBN for object tracking. 

The transition model )|( 1−nn xxp  describes how the state evolves over time. In 

this paper, we only consider a first-order Markov process. The observation model 

)|( nn xyp  describes how the evidence variables are affected by the actual state of 

the object tracking. The target object candidate is evaluated as the posterior 
probability through the integration of multiple cues in DBN. In other words, the 
posterior probability of the candidate is evaluated as  

                                           ),|( 1−nnn xyxp                                                      (1) 

where xn and xn-1 are the target object candidate and reference object state, 
respectively. yn is the evidence of low-level features such as color and edge 
information resulting from the target object candidate. 

x2x1x0

y1 y2

xnxn-1

cn en

 

                                                 (a)                                                   (b) 

Fig. 1. Dynamic Bayesian Network 
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As target models, color distributions are usually used because they achieve 
robustness against non-rigidity, rotation and partial occlusion. However, when the 
background color is similar to the object of interest, the color information only is not 
good enough to track object robustly. In this case, edge information is also useful to 
track object effectively. So, multi-modal object tracking is desirable for robust 
tracking.  In our visual tracking, we use two features such as color and edge. This is 
shown in Fig. 1(b). As evidence variables in our framework, we use color likelihood 

)|( nn xcp and edge likelihood )|( nn xep  where cn and en are the color and edge 

measurements at time n, respectively. The posterior probability like Eq. (1) is 
interpreted as 

                      )|()|()|(),,|( 11 −− ∝ nnnnnnnnnn xxpxepxcpxecxp               (2) 

Here, we define sample state vector x as  

                                              },,,,{ kllbax ba=                                           (3) 

where a, b designate the location of the ellipse, la , lb the length of the half axes and k 
the corresponding scale change. The dynamic model can be represented as  

                                               11 −− += nnn rAxx                                               (4) 

where A defines the deterministic component of the model and rn-1 is a multivariate 
Gaussian random variables. 

The color likelihood )|( nn xcp  is defined as 
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where )(u
ip  is the ith object candidate’s color distribution and )(uq  is color 

distribution of reference object. 
We use the edge likelihood as the one proposed by Nishihara [7]. The edge 

likelihood is computed as 

                     ⋅=
jp

nn jgjn
N

xep )()(
1

)|(                              (6) 

where 
pNiin ,...,1)}({ =  is the unit vector normal to the ellipse (object) at pixel j and 

pNiig ,...,1)}({ =  is the intensity gradient at perimeter pixel j of the ellipse, and Np is 

the number of pixels on the perimeter of an ellipse. 
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2.2   Appearance Model 

To track object effectively, the tracking system should be able to adopt itself to 
suddenly changing appearances. For example, if there are significant differences 
between the reference model and the target object candidate in observation, object 
tracking might not be possible. These differences might occur due to changes in pose, 
illumination or occlusion between the moment when the reference model was built 
and the moment when the observation was made. However, people can track objects 
pretty well based on his memory or experiences regardless of occlusions or sudden 
appearance changes. So, we generate a model similar to people’s short-term memory 
in order to deal with various appearance models [8]. 

I1 R1 Rn

m1 mn

m

In

 

Fig. 2. Noisy-OR gate model for memory-based appearance representation 

m0 m1 m2

x0 x1 x2

c1 e1 c2 e2

 

Fig. 3. Our Proposed Tracker 

The posterior probability for target object candidate is The short-term memory 
consists of a set of reference object models and provides various reference models in 
determining target object candidate. To integrate memory function with DBN, we 
adopt noisy OR-gate model [9]. This is shown in Fig. 2. In this model, the state 
variable m is determined from the nodes I and R. The node I shows causal inhibition 
and if I is 1, the causality is inhibited. The inhibition of one cause is independent of 
the inhibition of another cause.  The node R represents the reference object model. 
We also assume accountability that an effect can happen only if at least one of its 
causes is present and is not being inhibited.  

For example, if the reference model R1 is not similar to target object candidate, the 
inhibition of reference model I1 is on and one of other reference models in short-term 
memory is compared. The proposed approach is shown in Fig. 3, which integrated 
memory-based appearance models with DBN.  
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2.3   Approximate Inference in DBN 

For approximate inference in DBN, we use particle filtering because it seems to 
maintain a good approximation to the true posterior using a constant number of 
samples [3]. In our proposed approach, the particle filtering method is executed as 
follows: 

Step  1: N samples are created by sampling from the prior distribution at time 0. 
Step 2: Each sample is propagated forward by sampling from the transition model 

like 
).,|( 11 −− nnn mxxp

 

Step 3: Each sample is weighted by the log likelihood such as +)|(1 tt xcpk   

)|(2 tt xepk  where k1, k2 are the confidence weight of each likelihood. 

Step 4: The population is re-sampled to generate a new population of N samples with 
weighted-sample-with-replacement. 

evaluated through the integration of multiple cues using Bayesian Network. In 
other words, the posterior probability of the candidate is evaluated as  

                                             ),,,|( 11 −− nnnnn mxecxp                                     (7) 

where xn and xn-1 are the target object state  and previous object state, respectively. mn-1 

refers to the a set of reference appearance models in the short-term memory. cn and en 
are the color and edge measurements, respectively. The posterior probability is 
interpreted as 

)|()|()|()|(),,,|( 1111 −−−− ∝ nnnnnnnnnnnnn mxpxxpxepxcpmxecxp        (8) 

3   DBN-Based Visual Tracking 

In this Section, we will present how to implement our proposed tracking system in 
single camera and multi-camera environments.  

3.1   Visual Tracking in Single Camera Environment 

Our proposed tracker executes our particle filtering method. In other words, it selects 
the samples from the sample distribution of the previous frame, and predicts new 
sample positions in the current frame. After that, it measures the observation weights 
of the predicted samples. The weights are computed from color and edge likelihoods 
like Eq.(5) and Eq.(6), respectively. The confidence weights ki for each feature are 
learned from training data. The estimated target object state  is computed by 

               i
n

i
ni

N

i

i
nin xxepkxcpkxE ))|()|(()( 2

1
1 +=

=

                           (9) 

To update target model, we compute target update condition as 

                                              TqxES nn >)),((                                           (10) 



608 H.-B. Kang and S.-H. Cho 

where S(E(xn),qn) is similarity between the estimated state E(xn) and target model qn, T 
is the target update threshold value. If this condition is satisfied, the update of the 
target model is performed by 

                                       )(1)1(
nxEnn pqq αα +−= −                                  (11) 

where α weights the contribution of the estimate state histogram PE(x). 

3.2   Visual Tracking in Multi-camera Environments 

In multi-camera environments, each camera has limited overlapping field of views. If 
one object is detected in one camera, we try to find corresponding object in other 
cameras using epipolar geometry. We compute epipolar lines between cameras and 
the corresponding object’s position is estimated along the epipolar lines. In the DBN 
framework, as shown in Fig. 4, we add epipolar variable P to DBN. For example, 

12
np represents the epipolar line likelihood between camera 1 and camera 2. 
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Fig. 4. DBN in multi-camera environments 

To track an object effectively in multiple camera environments, we detect the 
occlusion case in each camera. The occlusion is determined by computing 
Bhattacharyya coefficient between the target object and the reference object. In the 
case of occlusion, the Bhattacharyya coefficient is too small and we calculate the 
intersection points between epipolar lines to locate virtual target object. After that, if 
desirable target object is found at the estimated location, the tracking process in that 
camera resumes. 

4   Experimental Results 

Our proposed DBN-based visual tracking algorithm is implemented on a P4-2.4Ghz 
system with 320*240 image size. We made several experiments in a variety of 
environments to show the robustness of our proposed method.  
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In our experiment, we use three cameras (left, center, and right) which have limited 
overlapping FOVs. For face tracking, we detect a face from camera input using Viola 
and John’s method [10]. For one pair of cameras, we compute epipolar lines. As 
shown in Fig. 5, the center camera target object is occluded by an unspecified object 
after a short time. Our proposed method resumes to track the target object well 
because our method maintains several appearance models using short-term memory. 
In Fig. 6, the error result of our method is analyzed by comparing the resulting tracks 
 

 

Fig. 5. Experimental Result (a)proposed method, (b) general particle filter method 

Left Center Right

 

Fig. 6. Error result of sequence (solid line-proposed, dotted line-particle filter) 

to the ground truth. The solid line shows the error result of our method and the dotted 
line shows the error result of general particle filter method. 

5   Conclusions 

In this paper, dynamic Bayesian network based visual tracking method is proposed. 
Dynamic Bayesian network provides a unified probabilistic framework to determine a 
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target object state in each frame by integrating various modalities. For robust 
tracking, we implement a multi-modal tracking method that integrates color and edge 
and appearance information in multiple camera environments. We have presented 
results on realistic scenarios to show the validity of the proposed approach. Compared 
to other tracking algorithms, our proposed system shows a better and more robust 
tracking performance. 
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Abstract. A new background modeling approach is presented in this paper. In 
most background modeling approaches, input images are categorized into fore-
ground and background regions using pixel-based operations. Because pixels on 
the input image are considered individually, parts of foreground regions are fre-
quently turned into the background, and these errors cause incorrect foreground 
detections. The proposed approach reduces these errors and improves the accu-
racy of a background modeling. Each input image is categorized into three 
 regions in the proposed approach instead of two regions, background and fore-
ground regions. The proposed approach divides traditional foreground regions 
into two sub-regions, intermediate background and foreground regions, using 
activity measurements computed from optical flows at each pixel.  The other 
difference of the proposed approach is grouping pixels into objects and using 
those objects at the background updating procedure. Pixels on each object are 
turned into the background at the same rate. The rate of each object is computed 
differently depending on its category. By controlling the rate of turning input 
pixels into the background accurately, the proposed approach can model the 
background accurately. 

1   Introduction 

The background modeling has been an issue in the computer vision area, and the 
background modeling has been used as the first procedure for various applications 
such as security surveillance, motion analysis, and object tracking. Ren, Chua, and Ho 
model a background statistically for non-stationary camera [1]. Jabri, Duric, 
Wechsler, and Rosenfeld detect humans in video images using color and edge infor-
mation [2]. Hong and Woo applied two color spaces for background subtraction [3].  
The deformable shape model is used to track humans in [4], and color and disparity 
information is used for background estimation in [5]. 

Popular information used in the background modeling is color and disparity infor-
mation [6]. Color and disparity information could be used together in a background 
modeling system to compensate drawbacks of systems using color or disparity infor-
mation alone [6],[7]. Systems using only the disparity information have difficulties to 
detect objects located near the background, but these objects can be easily detected by 
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systems using the color information unless the objects are covered with the color 
similar to the background color. For objects camouflaged by the background, the 
disparity information could be used to detect them from the background as long as 
objects are not located near the background. Shadows also cause a problem to systems 
using the color information alone. Shadows of foreground objects are generally de-
tected as foreground objects because the color of shadows frequently differs from the 
background color. The shadow problem can also be eliminated using the disparity 
information. The disparity information is also more robust than the color information 
to illumination changes in environment. 

In this paper, we present a new background modeling approach that improves the 
quality of the background model using color, disparity, and motion information.  
Using motion information in the proposed approach, foreground regions detected 
using color and disparity information are further divided into two sub-regions, inter-
mediate background and foreground regions.   

The proposed approach divides input images into three regions; background, in-
termediate background, and foreground regions. Background regions are image areas 
of static objects in the environment such as floor, wall, and ceiling. Intermediate 
background regions are images of objects that are entered into the view of the camera 
and stayed for the given period without any movement.  These objects could be cars 
in a parking lot and furniture at home. Image areas of moving objects are considered 
as foreground regions. Intermediate background and foreground regions, which are 
generally considered as the foreground regions by most background modeling ap-
proaches, are distinguished by the activities of pixels in the proposed approach.  Pix-
els of foreground regions with little or no activities are considered as intermediate 
background regions, and other pixels are considered as foreground regions.  The opti-
cal flow information is used to compute the activity of each pixel in the foreground 
regions.  Pixels on these three regions affect differently.  The background updating 
rates are computed differently for pixels in intermediate background and foreground 
regions. 

The other difference of the proposed approach is grouping pixels into objects and 
using those objects at the background updating procedure. Pixels on each object are 
turned into the background at the same rate. The rate of each object is computed dif-
ferently depending on its category. By applying the same background updating rate 
for pixels in the same object, the proposed approach improves the accuracy of the 
background model. The proposed approach prevents parts of the object become the 
background. 

This paper is organized as follows. In section 2, components of the proposed ap-
proach are described. The experiments and their results are presented in section 3, and 
the conclusion is presented in section 4. 

2   Proposed Approach 

The system overview is shown in Figure 1. Two types of inputs, intensity and dispar-
ity images, are given to the system to model a background. Optical flows are com-
puted from the intensity image at the first step. At the second step, three backgrounds 
are constructed from two input images, and foreground regions are segmented from 
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intensity and disparity images. Intensity and disparity backgrounds are modeled using 
the Gaussian Mixture model. The third background, an optical flow background, is 
also modeled from the estimated optical flows. Foreground regions (FGs) are seg-
mented from intensity and disparity images using intensity and disparity background 
models. 

At the third step, foreground objects are detected. Since the disparity information is 
more robust to shadows and illumination changes, foreground objects are detected 
from the disparity foreground regions, and their area and boundary information is 
stored.   

At the last step, the activities of foreground objects are estimated using the object 
information and the optical background model constructed in the second step.  These 
activity measurements are the main inputs of the background invalidation procedure 
that categorizes foreground regions (FGs) into intermediate background (IBs) and 
foreground regions (fgs). Foreground regions (fgs) are regions that should not be 
turned into the background, so the proposed approach prevents them from turning into 
the background. The output of the background invalidation procedure is a binary 
mask that distinguishes pixels in fgs from pixels in IBs. For pixels in fgs, the value of 
the mask is 1, and 0 is given to pixels in IBs.  The regions with value 1 will not affect 
the background model at all while pixels with value 0 will modify the background 
model. 

 

Fig. 1. System overview. The first, second and third steps are indicated with the rectangular 
boxes, and the fourth step is indicated with grey color. Regions with grey color are elements 
involved in the fourth step. 

2.1   Intensity and Disparity Background Modeling 

Intensity and disparity backgrounds are modeled using the adaptive background mix-
ture models presented in [8]. A mixture of four Gaussian distributions is used to 
model the recent history of each pixel on intensity and disparity images. When the 
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current pixel value is matched with one of the pixel’s Gaussian distribution, the 
weight of that distribution is increased.  If there is no matched Gaussian distribution, 
the Gaussian distribution with the lowest weight is replaced with a new Gaussian 
distribution.  The mean and the weight of the new Gaussian distribution are the cur-
rent pixel value and the weight of the replaced Gaussian distribution respectively.  
The reasons for using the weight of the replaced Gaussian distribution as the weight 
of the new Gaussian distribution are to keep the order of weights among four Gaus-
sian distributions and to reduce computation time.   

The background distribution is the distribution with the highest value of w/ , where 
w is weight and  is a standard deviation. The matching Gaussian distribution is se-
lected by comparing the current pixel value Xt with the mean value μi,t and the stan-
dard deviation i,t of the ith Gaussian in the mixture at time t, Equation 1.   

titittiti X ,,,, σμσμ +<<−  (1) 

2.2   Object Detection 

In the object detection procedure, foreground pixels are grouped into regions, and 
their areas and boundaries are computed.  Foreground pixels on the disparity image 
are first grouped into regions through the region growing procedure, which extends a 
region by connecting neighboring pixels with pixel values close to the pixel value of 
the considering pixel. After removing small regions, each remaining region is consid-
ered as one foreground object, and the area and the boundary of each foreground 
object are computed. The detected foreground objects are input to the next procedure, 
the background invalidation, that requires a object-based operation instead of a pixel-
based operation. The object-based operation has advantage over the pixel-based op-
eration. For the object-based operation, all pixels in the same object are turning into 
the background at the same rate, so the object-based operation prevents some pixels in 
the same object are turned into the background while other pixels in the same object 
are still remained as the foreground. 

2.3   Background Invalidation 

Ideally only background pixels should affect the background model.  However, the 
background model is affected by foreground pixels with most existing background 
modeling systems.  Harville, Gordon, and Woodfill tried to minimize this undesired 
behavior applying activity-based learning modulation in [6].  That system produced 
good results, but the system turned some pixels of foreground objects into the back-
ground as shown in the experiment section.  This happens occasionally for the follow-
ing two cases. Some pixels on foreground objects do not move much even though 
other pixels in the same foreground object have high activities. Then, these pixels are 
recognized as the pixels that could be turned into the background, and these pixels 
become the background when it stays stationary for the certain period.  For examples, 
pixels in legs of a standing person could be turned into the background, because legs 
are not moved much while a person is standing and talking with other person.  Similar 
errors are occurred for pixels moving into regions that have the similar pixel values. 
When a person wearing a T-shirt with a single color moves little bit while talking with 
other person, center pixels of the T-shirt are turned into the background. The pixel 
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values at different frames are still fallen into the same Gaussian standard deviation 
even though the person is not stationary.  This problem is caused because most exist-
ing background modeling approaches are based on individual pixels and are not based 
on the entire objects.  

To overcome this problem, the background invalidation procedure is developed.  In 
this procedure, the foreground regions (FGs) detected using the disparity information 
are categorized into intermediate background regions (IBs) and foreground regions 
(fgs) using object and the activity information.  Pixels on IBs and fgs are affecting the 
background model differently.  The background model is not modified by pixels the 
fgs, but pixels on the IBs modify the background model by updating the Gaussian 
distributions of the background model. 

The activity history of each individual pixel is computed from the optical flow 
background.  The activity history stores the history of activities of each individual 
pixel, and it is constructed by applying the adaptive background mixture models pre-
sented in [8] to optical flows of the intensity image.  The activity M is computed for 
each object using the activity history to determine whether that region belongs to the 
foreground regions (fgs) or the intermediate background regions (IBs).  Objects with 
larger activity values than the threshold value are considered as fgs while other ob-
jects are considered as IBs.  The activity M is computed by Equation 2, which adds 
square of activity history values, OF, on the optical flow background in the object 
area bn. bn(x, y) in Equation 2 indicates pixels in the nth object boundary at time t, and 

 in Equation 2 represents weighting between new optical flow at time t on nth image 
position, Fn,t, and the previous activity history value, OFn,t-1.  
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The background invalidation procedure is applied to detected foreground regions, 
fgs. All pixels on fgs are masked as invalid, and those pixels are not considered for 
updating the background models. For pixels on fgs, previous Gaussian distributions 
are not modified at all. This prevents any pixel on foreground objects affecting the 
background model, so this procedure is considered as the object-based operation in-
stead of the pixel-based operation.  

3   Experiments 

In these experiments, the presented approach is compared with the background mod-
eling approach described in [6] and [8]. One scenario has been applied to both ap-
proaches, and their results are shown in Fig. 2. 

The scenario of the experiments begins with two students talking about the classes 
in the lab.  One student stands next to the other student who sits on a chair. After few 
moments, the student sat on the chair stands up to talk with the other student. The 
ideal background model constructed after the scenario is the background containing 
the chair and other stationary objects.  Any pixels on two students should not affect 
the background model.   
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(a)                                              (b) 

    
(c)                                             (d) 

    
(e)                                             (f) 

Fig. 2. Comparing two approaches, the approach using adaptive background mixture model and 
the proposed approach. The first row describes the results achieved from the comparing ap-
proach at frame 168. The second and third rows describe the results achieved from the proposed 
approach at frame 168 and 206 respectively. The first column is the captured image with object 
and activity marks, and the second column is the intensity background model construed using 
each method. The black rectangles indicate the objects, and the circles indicate the existence of 
activities.  

When the comparing approach is applied to the video capturing the scenario, leg 
areas and middle areas of student regions are turned into the background incorrectly 
as shown in Fig. 2(b) even though any areas in student regions should not turn into the 
background. In contrast to this result, only few pixels in student regions are turned 
into the background using the proposed approach as shown in Fig. 2(d).  At frame 
168, only part of the chair became the background, and the entire chair became the 
background a little later, Fig. 2(f). When the chair is entered into the view, pixels in 
the chair regions are active and are invalidated in the invalidation procedure.  This 
invalidation delays the chair to be turned into the background in the proposed ap-
proach compared with the approach described in [6] and [8]. Currently we are trying 
to solve this problem, but the solution has not been found yet. 
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4   Conclusion 

In this paper, we improve the quality of the background model by categorizing the 
foreground regions (FGs) further into two sub regions, the intermediate background 
(IBs) and foreground regions (fgs) in the background invalidation procedure.  This 
improvement is achieved by applying the object-based operation and the optical flow 
computation, which requires additional time to the system.  The proposed approach is 
currently processing about ten frames per second.  We think the required extra time is 
not serious because the processors are advanced rapidly.  We believe that the pro-
posed approach could be used soon for various applications that require real-time 
foreground detections such as surveillance, robot, and virtual reality.   
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Abstract. The problem of denoising of video signals corrupted by additive 
Gaussian noise is considered in this paper. A novel 3D DCT-based video-
denoising algorithm is proposed. Video data are locally filtered in 
sliding/running 3D windows (arrays) consisting of highly correlated spatial 
layers taken from consecutive frames of video. Their selection is done by the 
use of a block matching or similar techniques. Denoising in local windows is 
performed by a hard thresholding of 3D DCT coefficients of each 3D array. 
Final estimates of reconstructed pixels are obtained by a weighted average of 
the local estimates from all overlapping windows. Experimental results show 
that the proposed algorithm provides a competitive performance with state-of-
the-art video denoising methods both in terms of PSNR and visual quality. 

1   Introduction 

Digital images and video nowadays are essential part of everyday life. Often 
imperfect instruments of data acquisition process, natural phenomena, transmission 
errors and compression can degrade a quality of collected data. Presence of noise may 
sufficiently affect the further data processing such as analysis, segmentation, 
classification and indexing. Denoising is typically applied before any aforementioned 
image/video data processing. Herein, the problem of denoising of video corrupted by 
additive independent white Gaussian noise is considered.  

Historically, first algorithms for video denoising operated in spatial or spatio-
temporal domains [1]. Recent research on denoising has demonstrated a trend towards 
transform-based processing techniques. Processing in a transform domain (e.g. in 
DCT, DFT or wavelet domains) provides a superior performance comparing to the 
spatio-temporal methods due to a good decorrelation and compaction properties of 
transforms.  

Wavelet-based video denoising was inspired by the results of the intensive work on 
the wavelet-based image denoising [3-5] initiated by Donoho’s wavelet shrinkage 
approach [2]. Several multiresolution (wavelet-based) approaches were recently 
proposed to the problem of video denoising, see, e.g. [6] and [7]. 

Local adaptive sliding window DCT (SWDCT) image denoising method [8], [9] is 
a strong alternative to the wavelet-based methods. This paper gives an extension of it 
to SWDCT denoising of video. This extension is not a straightforward one. Video 
data in the temporal direction are not stationary due to a motion present in videos. 
Thus, two pixels located at the same spatial location of consecutive frames could be 
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uncorrelated. On the other hand, DCT is a good approximation of the statistically 
optimal Karhunen-Loeve transform in the case of highly correlated data [10]. Thus, a 
wise selection of local 3D data through the different frames should be performed 
before any application of a 3D DCT. One approach to this is to use a block matching 
technique to correlate 2D image blocks in sequential frames via minimization of some 
cost function (MSE or MAE). Full search or any of fast block matching schemes 
could be utilized here.  

This paper is organized as following. In Section 2, the SWDCT image denoising 
approach is briefly described. A 3D-SWDCT video denoising algorithm is proposed 
in Section 3. In Section 4, denoising performance of the proposed algorithm is 
analyzed in comparison with the recent wavelet-based video denoising algorithms [6], 
[7], [13]. Conclusions are given in Section 5. 

2   Sliding Window DCT Denoising of Images 

Sliding window DCT denoising approach is well developed tool for image denoising, 
(see, e.g. [8] and [9]). In this section we will briefly describe its basic principles. 
SWDCT denoising scheme is graphically depicted in Fig. 1.  

Suppose, we wish to recover unknown image ( )x t  from noisy observations 

( ) ( ) ( )y t x t n t= + , where ( )1 2,t t t=  are coordinates in 2D space, ( )n t  is an additive 

Gaussian noise 2(0, )N σ  with variance 2σ .  
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Fig. 1. A general SW-DCT image denoising scheme [9] 

Noisy image ( )y t  is locally processed in the overlapped blocks (windows) { }iA . 

Running over the image each iA  is separately filtered in the DCT domain (computing 

2D DCT of { }iA , thresholding obtained coefficients and applying an inverse 2D DCT 

to the result) to obtain a local estimate iA . For every iA  its “relevance” is reflected 

by a weight iW  evaluated from the local DCT spectrum properties (selected to be a 

reciprocal of the number of remaining (nonzero) after a threshold DCT coefficients in 

the block). These estimates iA  and weights iW  are further accumulated in the buffer 

bufx  and in the weighting mask W , respectively. Finally, every denoised image pixel 
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( )x t  is obtained by a weighted average of denoised local estimates of the same pixel 

from all overlapped estimates iA .  

The SWDCT denoising algorithm can be expressed by equations (1)-(4) 

( ) { }iY w F A= , (1) 

( ) ( ){ }X w T Y w= , (2) 

( ){ }1
iA F X w−= , (3) 

( ) ( ) bufx t W t x= . (4) 

where { }F  is a separable 2D forward DCT and { }1F −  is its inverse, ( )1 2,w w w=  

are coordinates of 2D DCT coefficients and { }T  is a hard thresholding function  

( ) ( ) ( ),    

0,          else   

Y w Y w Thr
X w

≥
= . 

(5) 

The SW-DCT denoising assumes several tunable parameters, such as the local 
window size and sliding steps along the image directions. They can be user-specified 
[9] either adaptive to a local signal statistic [12] in order to achieve a better 
performance/complexity tradeoff. 

3   Video Denoising Based on a 3D DCT 

The SW-DCT denoising method is well developed for images. In the case of video, 
SW-DCT should be performed in the 3D space, and the use of a temporal redundancy 
of video can improve the filtering performance. Let us assume that SW-DCT operates 
in the spatial domain of each video frame as it is described above. In the temporal 
direction 1D sliding DCT can be similarly applied along the temporal axis. On the 
other hand, SW-DCT performance can be significantly improved, if the transform will 
operate over a highly correlated signal. However, pixels along the temporal axis may 
be uncorrelated due to dynamical nature of a video signal. 

Due to this, we propose to perform a local 3D DCT denoising on an array iB  (of 

size h w tL L L× × ) that is built from correlated 2D blocks ,i kA  (k – is an index of the 

current frame) taken from the tL  consecutive frames. These ,i kA  blocks are selected 

using a block matching or similar technique [11]. Here, the full search or a fast block 
matching scheme via minimization of some cost function (MSE or MAD) can be 
employed.  

A general scheme of the proposed algorithm for video processing is depicted in 
Fig. 2. A noisy sequence y  is processed locally in the 3D windows of size 
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Fig. 2. A general block-diagram of proposed video denoising algorithm 

h w tL L L× × . An accumulating buffer bufx  keeps tL  consecutive frames. Block 

selector uses a sliding window ,0jA  in the 0th frame of the buffer as a reference and 

searches in every sequential frame for the best match { },1 ,,..., ; 1i i k tA A k L= −  in terms 

of their correlation to ,0iA . These 2D blocks ,0iA  and { },1 ,,..., : 1i i k tA A k L= − , are 

filled to the buffer iB . Note here that it may appear that a block selector will fail to 

find, in some frame, a subblock ,i kA  that correlates with ,0iA . This could appear 

either due to a dynamic nature of a video or due to a global scene change. In order to 
prevent an error propagation further, block selection for the current ,0iA  should be 

terminated. In such a case a local 3DDCT denoising should be performed on a shorter 
in the temporal direction array iB , in other words we implement an adaptive window 

size selection in the temporal domain. As a result, we have produced a 3D array iB  

filled with tL  highly correlated 2D blocks { },0 ,,..., ; 1i i k tA A k L= −  which is now a 

subject of denoising. We retrieve a locally denoised estimate of iB  as a result of hard-

thresholding of the 3D-DCT coefficients of iB  and accumulate it in the buffer bufx . 

Amount of the retrieved estimates for a particular ( )bufx t  and statistical properties of 

the local DCT spectra define ( )W t , as it was specified in Section 2. 

After the current tL  frames are processed, the sliding window shifts in the 

temporal direction and a new 1tL + frame becomes to be involved in the denoising 

procedure. Described operations (namely, block matching, local denoising of iB , 

accumulation of iB  in bufx ) are recursively performed on a group of frames until the 
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last frame of the sequence is processed. Finally, every pixel ( )x t  is reconstructed 

from a coordinate-wise weighting of ( )bufx t  with a mask ( )W t . 

The computational complexity of the proposed algorithm is mostly depends on the 
computation of the 3D DCTs and a block matching procedure performed for every 
spatial block. If we assume that sizes of a local 3D DCT are L in all directions, and 
the sliding parameters for both spatial coordinates are P , then the number of 
arithmetic operations per output sample for the transform part of the algorithm is 

equal to 
2

2
2 1

L

P
μ⋅ ⋅ + , where μ  is a complexity of the 1D DCT. If 8L =  and 

4P = , this number is 4 μ⋅ . Few operations per output sample should be added to 

this in the case of application of a fast block matching procedure.  

4   Experimental Results 

To evaluate the performance of the proposed method, several standard test CIF and 
QCIF video sequences were used, see Tables 1 and 2. Original sequences were 
corrupted by an additive Gaussian noise with a standard deviations equal to 10, 15 
and 20, and then processed with the denoising algorithm proposed in Section 3.  

In our simulations we chose processing buffer iB  to be of size of 8x8x8 due to 

existed and well developed software and hardware solutions for 8-point DCT [10]. 
Buffer iB  was chosen to be sliding over a video data with the steps equal to 2 in both 

spatial directions and 1 in the temporal direction. The hard thresholding procedure 
was applied to all 3D-DCT coefficients of the buffer iB  to get a locally denoised 

estimate iB . Threshold value Thr in the Equation 5 was chosen to be equal to 2σ  [8]. 

To select highly correlated ,i kA  blocks from 7 consecutive frames, we have used a 

fast block matching algorithm in the pixel domain (so called “logarithmic search” 
[11]) with a minimal absolute error (MAD) as a cost function. To prevent error 
propagation, an adaptive window size selection in temporal domain was performed. 
The block selection procedure was terminated for a particular ,0iA  if a correlated ,i kA  

can not be found in the current frame. This improves a filtering performance 
especially in the presence of high motion or scene change. Furthermore, a selection 
algorithm that operates in the pixel domain and is based on MAD or MSE criteria 
may provide ,i kA  correlated rather with a noise pattern of the reference 0,iA  than with 

the original video signal. This could become a problem in video fragments with a very 
low signal to noise ratios, for example, dark flat regions corrupted with heavy noise. To 
suppress such false motion prediction we rejected (set to zero) motion vectors if MAD 
of a prediction is lower than a predefined threshold within the distance of 3σ . In  
Table 1, a performance of our algorithm is compared with the results of wavelet-based 
denoising schemes of [6] and [7]. The average PSNR values presented in Table 1 are 
computed over 40 (“Salesman”) and 52 (“Tennis” and “Flower Garden”) frames. The 
first four frames of processed sequences are excluded from PSNR calculation due to the 
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recursive nature of the WRSTF algorithm [7] in order to make the comparison more 
objective.  

Table 1. Video denoising, comparative results 

Average PSNR, dBs Video Noise, 
σ  Noisy Soft3D [6] WRSTF [7] 3D SWDCT 
10 28.16 31.86 32.41 33.34 

15 24.63 29.86 30.12 30.80 

“Tennis” 

20 22.15 28.58 28.68 29.52 
10 28.15 34.85 35.82 37.01 
15 24.72 33.29 33.91 34.83 

“Salesman” 

20 22.35 32.00 32.40 33.29 
10 28.34 30.23 30.80 31.25 
15 24.88 27.71 28.19 28.62 

“Flower” 

20 22.44 26.01 26.39 26.80 
 

To compare performance of the proposed algorithm with the results reported in 
[13], we have applied our algorithm to “Miss America” and “Hall” video sequences 
corrupted with additive Gaussian noise (average PSNR of noisy video are 20 dBs). 
Results are shown in Table 2. Analysis of Tables 1 and 2 demonstrates that our 
algorithm outperforms those from [6], [7] and [13]. Fig 3. and 4 give some examples 
of denoised frames to subjective judgment of visual quality of denoised video 
sequences.  
 

  

  (a)     (b) 

Fig. 3. A fragment of the 30th frame of the “Salesman” video sequence. (a) Noisy (PSNR of 
fragment 22.29 dBs). (b) Denoised with the proposed algorithm (PSNR of fragment 33.06 dBs). 
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  (a)     (b) 

Fig. 4. A fragment of the 30th frame of the “Flower” video sequence. (a) Noisy (PSNR of 
fragment 22.41dBs). (b) Denoised with the proposed algorithm (PSNR of fragment 26.39 dBs). 

Table 2. Video denoising, comparative results 

Average PSNR, dBs Video 
Noisy Proposed in [13] 3D SWDCT 

“Miss America” 20 34.1 34.9 
“Hall” 20 29.1 31.8 

Detailed information on the developed algorithm and video sequences processed 
by 3D-SWDCT are available from: http://www.cs.tut.fi/~rusanovs/. 

5   Conclusions 

A problem of denoising of video signals corrupted by an additive Gaussian noise is 
considered in this paper. A novel 3D DCT based video denoising algorithm is 
proposed. High filtering performance of the local 3D DCT based thresholding is 
achieved by a proper selection of video volume data to be locally denoised. A 3D 
DCT thresholding is performed on a group of highly correlated sliding in spatial 
directions 2D windows that are selected from the set of sequential frames. Weighted 
average of overlapped denoised estimates provides a final denoised video. We have 
tested the proposed algorithm on a group of standard video test sequences corrupted 
by an additive Gaussian noise with a variety of standard deviations. Results have 
demonstrated that the proposed algorithm provides competitive results with 
wavelet-based video denoising methods both in terms of PSNR and subjectively 
quality. 
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Abstract. In this paper, we present a new restoration technique for
colour images. This technique is developed for restoring colour images
that are corrupted with impulse noise. The estimated histograms for
the colour component differences (red-green, red-blue and green-blue)
are used to construct fuzzy sets. Those fuzzy sets are then incorporated
in a fuzzy rule based system in order to filter out the impulse noise.
Experiments finally show the shortcomings of the conventional methods
in contrast to the proposed method.

1 Introduction

Reduction of noise in digital images is one of the most basic image processing
operations. Recently a lot of fuzzy based methods have shown to provide efficient
image filtering. Three of the most common noise types in the literature are
additive, multiplicative and impulse noise. Impulse noise is usually characterized
by some portion of image pixels that is corrupted, leaving the remaining pixels
unchanged. Additive noise occurs when to each image pixel a value from a certain
distribution is added, e.g. Gaussian distributed values. Multiplicative noise is
generally more difficult to remove from images than additive noise, because the
intensity of the noise varies with the signal intensity (e.g. Speckle noise).

The proposed method is developed to deal with impulse noise in digital
colour images. For the modulation of impulse noise we refer to [1,2]. Conven-
tional techniques, e.g. processing each component independently, do not take
into account the correlation between the colour components causing some un-
wanted behaviour (artefacts). In this paper we describe a new method where
we first estimate the original colour differences at a certain position. Afterwards
we use these differences to filter out the impulse noise without destroying the
dependencies between the colour components (i.e. the colour differences).

A lot of colour models exist to represent a digital colour image (denoted by
O). We will use the well known RGB model. Colours in this model are represented
by a three-dimensional vector, where each component is quantified to the range
[0, 2m − 1] (mostly with m = 8). Therefore a digital colour image O is usually
represented by a two-dimensional array of vectors where an address (i, j) defines
a position in O, called a pixel or picture element.

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 626–633, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Histogram Estimation

For each colour pigment we calculate the histogram of intensity values coming
from the most likely corrupted impulse noise pixel pigments. This is realized by
dividing the corrupted image (denoted by A) into several subimages of smaller size
x×x (with x = 3 in this paper). Moreover, only the maximal and minimal inten-
sity values of each subimage are stored into the histogram. The idea behind this
is that impulse noise in a local window is usually identified by the minimal and
maximal intensity values, because corrupted pixels are generally extremes com-
pared with the other intensity values. Next, we use those histograms (denoted by
HISTR, HISTG and HISTB for the red, green and blue pigments respectively)
to construct the fuzzy set NOISE. In fuzzy logic we represent such a fuzzy set by
a proper membership function μNOISE . A membership degree of one (zero) for
a certain intensity value indicates that this intensity value will be considered as
noisy (noise free) for sure. All the degrees between these two extremes indicate
that there is some kind of uncertainty. For more background information about
fuzzy logic we refer to [3]. The calculation of the membership degree for a certain
intensity value IV in the fuzzy set NOISE is shown in Fig. 1. The horizontal axis
in Fig. 1 indicates for a certain intensity value IV the amount of stored pixels with
this intensity value in the histogram. The vertical axis returns the corresponding
membership degree in the fuzzy set NOISE. The parameters a and b are set to

a =
∑2m−1

k=0 HIST (k)
2m − 1

and b = 2 ∗ a, in order to incorporate the global histogram

information for all the other intensity values.

Fig. 1. The calculation of the membership degree μNOISE(IV ) of the fuzzy set NOISE

for a certain intensity value IV

3 Filtering Method

Our new filtering method first calculates the differences between the colour pig-
ments in an region around a central pixel. Next, we use this information to filter
out the impulse noise.
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3.1 Colour Component Differences Estimation

In contrast to many conventional techniques we use colour component differ-
ences. Therefore we introduce the following matrices:

MRG(i, j) = A(i, j, 1) −A(i, j, 2)
MRB(i, j) = A(i, j, 1) −A(i, j, 3) (1)
MGB(i, j) = A(i, j, 2) −A(i, j, 3)

where A(i, j, 1), A(i, j, 2), A(i, j, 3) are the red, green and blue component at
position (i, j) of the noisy input image A. Next, we transfer these matrices from
the range [−(2m − 1), (2m − 1)] to the range [0, 1]. Afterwards we take into
account three fuzzy sets, namely SMALL, MEDIUM and LARGE, so that
each matrix value can be mapped to a fuzzy variable with membership degrees
in these three fuzzy sets. Windows of size 3× 3 are used (in this paper) to scan
across the normalized matrices of Expression 1. The elements of such a window
used to scan for example across the normalized matrix MRB centred at (i, j),
are denoted as follows: rb1 = MRB(i − 1, j − 1), rb2 = MRB(i − 1, j), rb3 =
MRB(i − 1, j + 1), rb4 = MRB(i, j − 1), rb5 = MRB(i, j), rb6 = MRB(i, j + 1),
rb7 = MRB(i + 1, j − 1), rb8 = MRB(i + 1, j) and rb9 = MRB(i + 1, j + 1). For
each element of such a window three membership degrees in the corresponding
fuzzy sets SMALL, MEDIUM and LARGE are calculated. This is realized by
the membership functions: μSMALL shown in (2), μMEDIUM shown in (3) and
μLARGE shown in (4).

μSMALL(rbk) =

⎧⎪⎪⎨⎪⎪⎩
1 if rbk ≤ c1

1

1 +
(

rbk − c1

a1

)2b1
if rbk > c1 k = 1, 2, ..., 9 (2)

μMEDIUM (rbk) =
1

1 +
(

rbk − c2

a2

)2b2
k = 1, 2, ..., 9 (3)

μLARGE(rbk) =

⎧⎪⎪⎨⎪⎪⎩
1

1 +
(

rbk − c3

a3

)2b3
if rbk ≤ c3

1 if rbk > c3 k = 1, 2, ..., 9

(4)

For the calculation of the parameters ak, bk and ck (for k = {1, 2, 3}) we refer
to [4].

Besides the three fuzzy sets above we also take into account a fourth fuzzy
set that can be derived by the Fuzzy Rule 1. A pixel at position (i, j) with
membership degree 1 in this fuzzy set has a noise-free colour difference between
the red and blue component. There also exist similar fuzzy sets for the red-green
and the green-blue differences at position (i, j).
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Fuzzy Rule 1. Defining the membership degrees in the fuzzy set NOT NOISE
for the red-blue difference at position (i,j):

IF
(
A(i, j, 1) is NOT NOISE

)
AND

(
A(i, j, 3) is NOT NOISE

)
THEN A(i, j, 1) −A(i, j, 3) is NOT NOISE

In fuzzy logic we use involutive negators to represent negations. Here we use
the standard negator (NOT x = 1 − x, where x ∈ [0, 1]). For conjunctions and
disjunctions we use triangular norms (roughly the equivalent of AND operations)
and triangular co-norms (roughly the equivalent of OR operations), respectively.
Two well known triangular norms (together with their dual co-norms) are the
product (probabilistic sum) and the minimum (maximum). Here we will use
the minimum and maximum. So the rule

(
A(i, j, 1) is NOT NOISE

)
AND(

A(i, j, 3) is NOT NOISE
)

can be translated into:

minimum
((

1− μNOISE(A(i, j, 1))
)
,
(
1− μNOISE(A(i, j, 3))

))
, which can be

used to express the membership degree in the fuzzy set NOT NOISE for the
difference (A(i, j, 1)−A(i, j, 3)). This will be denoted by μnotNOISE(A(i, j, 1)−
A(i, j, 3)).

Now we combine the previous three fuzzy sets SMALL, MEDIUM and
LARGE with the fuzzy set NOT NOISE to calculate three weights for each
element of the window. This is realized by fuzzy rules. One example of such a
rule is given by Fuzzy Rule 2 were the fuzzy weights wSMALL

rbk for the differ-
ences between red and blue pigments are calculated for the case SMALL. So
finally we calculate three such weights for each element of the window: wSMALL

rbk ,
wMEDIUM

rbk and wLARGE
rbk .

Fuzzy Rule 2. Defining the fuzzy weights for the fuzzy set SMALL:

IF
(
rbk is NOT NOISE

)
AND

(
rbk is SMALL

)
THEN wSMALL

rbk is LARGE

Once we have calculated the corresponding weights, we calculate three possible
estimations for the difference red-blue at a certain position (i, j). These three
estimations are denoted as Δrbk

SMALL, Δrbk
MEDIUM and Δrbk

LARGE . They are calcu-
lated by the following fuzzy averaging:

Δrbk
SMALL =

∑9
k=1 rbk wSMALL

rbk∑9
k=1 wSMALL

rbk

; Δrbk
MEDIUM =

∑9
k=1 rbk wMEDIUM

rbk∑9
k=1 wMEDIUM

rbk

(5)

Δrbk
LARGE =

∑9
k=1 rbk wLARGE

rbk∑9
k=1 wLARGE

rbk

The final difference Δrb(i, j) between the red and blue pigment for a region
around (i, j) is one of the three estimations of Eq. 5, which is closest to some
reference difference (denoted by refrb

Delta(i, j)). We used the following reference
difference between the red and blue pigment for a position (i, j):
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refrb
Delta(i, j) =

∑9
k=1 rbk μnotNOISE(rbk)∑9

k=1 μnotNOISE(rbk)
(6)

In the case where
∑9

k=1 μnotNOISE(rbk) is equal to zero the reference difference
becomes the median of all 3×3 differences rbk. After this step we have calculated
three output differences Δrg(i, j), Δrb(i, j) and Δgb(i, j) for respectively the red-
green, red-blue and green-blue differences at position (i,j). These output values
are then transferred back to the interval [−(2m − 1), (2m − 1)].

3.2 Noise Reduction

In this subsection we only explain the filtering step for the red component. The
green and blue components are filtered analogously. We filter for example the
red component of a noisy input image A(i, j, 1) at position (i, j) if and only if
μNOISE

(
A(i, j, 1)

)
is greater than zero, because otherwise we know that this

intensity value is noise free for sure. When we filter the red component at position
(i, j), then the final output becomes:

1. When μNOISE

(
A(i, j, 2)

)
and μNOISE

(
A(i, j, 3)

)
are both equal to 1, then

the output F (i, j, 1) for the red component at position (i, j) is equal to:

F (i, j, 1) =

∑+1
k=−1

∑+1
l=−1 (1 − μNOISE(A(i + k, j + l, 1))) · A(i + k, j + l, 1)∑+1

k=−1

∑+1
l=−1 (1 − μNOISE(A(i + k, j + l, 1)))

2. When μNOISE

(
A(i, j, 2)

)
is equal to 1 and μNOISE

(
A(i, j, 3)

)
< 1 then

the output F (i, j, 1) for the red component at position (i, j) is equal to:
F (i, j, 1) = max(min((A(i, j, 3) + Δrb(i, j), 255), 0)

3. When μNOISE

(
A(i, j, 2)

)
< 1 and μNOISE

(
A(i, j, 3)

)
is equal to 1 then

the output F (i, j, 1) for the red component at position (i, j) is equal to:
F (i, j, 1) = max(min(A(i, j, 2) + Δrg(i, j), 255), 0)

4. Otherwise the output F (i, j, 1) for the red component at position (i, j) be-
comes equal to: F (i, j, 1) = 1

2

(
A(i, j, 2)+Δrg(i, j)

)
+ 1

2

(
A(i, j, 3)+Δrb(i, j)

)
.

4 Experimental Results

In this section we will present some experimental results. We compared our
method (entitled as Histogram based Fuzzy Reduction Method for Colour images
(HFRMC)) with other well known fuzzy filters: DSFIRE [5] (dual step fuzzy
inference rule by else-action), PWLFIRE [6] (piecewise linear FIRE), AWFM
[7] (adaptive weighted fuzzy mean), HAF [4] (histogram adaptive fuzzy), FMF
[8] (fuzzy median filter), IFCF [9] (iterative fuzzy control based filter), FSB
[10] (fuzzy similarity filter), FIDRM [1,2] (fuzzy impulse noise detection and
reduction method), FVRF [11] (fuzzy vector rank filter) and FCCF [12] (fuzzy
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Table 1. PSNR results for the (512×512-) Lena image for different impulse noise (salt
and pepper) levels (5%, 10%, 20%, 30%, 40%) and different filters

PSNR (dB) PSNR (dB)
5% 10% 20% 30% 40% 5% 10% 20% 30% 40%

Noise 18.3 15.2 12.2 10.5 9.2 Noise 18.3 15.2 12.2 10.5 9.2
CSAM 37.8 35.1 31.7 24.0 19.9 TSM (3 × 3) 36.8 33.2 28.1 23.1 18.5
LUM 33.1 31.1 28.2 23.2 18.5 FSB 34.5 33.4 29.3 23.5 18.9
FVRF 28.7 25.4 21.6 18.9 17.0 FCCF 31.7 30.4 27.0 22.0 18.1
AWFM 32.0 31.7 31.4 30.7 29.8 IFCF 34.0 32.6 29.4 25.7 22.1
DSFIRE 40.2 37.9 32.7 26.8 21.7 PWLFIRE 39.4 31.2 23.0 18.2 15.8

FMF 40.2 36.7 30.5 26.7 20.3 HAF 34.2 33.8 33.2 32.2 30.7
HFRMC 55.6 52.0 47.4 43.9 43.9 FIDRM 45.1 42.6 39.6 37.5 35.7

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. The restoration of a magnified part of the coloured Lena image (a) corrupted
with 30% salt and pepper noise (b). The applied methods are: (c) the proposed filter, (d)
component based FIDRM, (e) component based HAF, (f) component based AWFM,
(g) component based LUM (h), component based DSFIRE, (i) component based FMF.
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credibility colour filter). Besides these fuzzy filters, we also used the CSAM [13]
(conditional signal-adaptive median), TSM [14] (tri-state median filter) and the
LUM [15] (lower-upper-middle filter) as non fuzzy filters.

As a measure of objective dissimilarity between a filtered image and the
original one we use the peak signal to noise ratio (PSNR, Eq. 7 (expressed in
decibels dB)):

PSNR(F, O) = 10 log10

3NMS2

3∑
c=1

N∑
i=1

M∑
j=1

[
O(i, j, c) − F (i, j, c)

]2

(7)

where O is the original image, F the filtered image of size NM and S the max-
imum possible pixel value (with 8-bit integer values the maximum will be 255).
Although the PSNR measure has his shortcomings with respect to expressing
the quality of an image as observed by human beings, it is still widely used in the
image processing community [16]. In order to get a clear idea of the performance
with respect to the level of impulse noise, experiments have been carried out
for 5%, 10%, 20%, 30% and 40% of impulse noise. This is illustrated in Table 1
where the numerical results for the well known test image Lena of size 512×512
are shown. It is clear that the newly proposed (HFRMC) method achieves the
largest PSNR value. These numerical results are confirmed by the visual results
shown in Fig. 2. The main improvements can be observed: in edge regions the
proposed method does not introduce new colour artefacts and filters out many
impulse noise pixels. Other well performing filters, as for example the FIDRM,
introduce new colours artefacts as can be seen in Fig. 2. We also observe that
the proposed method (HFRMC) preserves edge sharpness. Although this filter
is designed for impulse noise only, the idea behind the proposed method can
be used to preserve the colour information for other noise types as well. The
disadvantage of the proposed method is that it will not reduce uniform impulse
noise very well. But actually, this filter can be modified (i.e. changing the global
histogram calculation into a local iterative detection method) to handle uniform
impulse noise as well.

5 Conclusion

A new colour filter, which is based on fuzzy logic, has been presented. This filter
is especially developed for reducing all kinds of fixed impulse noise from digital
colour images while preserving the useful colour information. Visual observa-
tion confirms the numerical results expressed in PSNR values (Eq. 7), which
illustrates that the proposed filter achieves convincing results for colour images.
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Mirror Symmetry in Perspective�
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Abstract. We assume the presence of mirror symmetry in the viewed
scene. In this scene we consider planar point sets and their mirror re-
flections. We observe the existence of a homology that maps the image
of such a planar point set to the image of its mirror reflection. We show
how to compute the vertex and the axis of this homology. Finally, the
homology is used to reduce image noise by “symmetrization”.

1 Introduction

In our experiments we performed metric 3D reconstructions from images taken
by one camera (monocular vision) in the presence of a plane mirror, [1]. The
object features that we want to reconstruct or measure are put in such position
that both the direct image and the reflected image are available. Obviously, mir-
ror vision is a variant of stereo vision. The mirror reflection supplies the second
view, and hence the depth information that is necessary for reconstruction. But
it is not exactly the same. The second virtual camera that is induced by the
mirror cannot be obtained by a rigid motion from the first camera due to the
reflection. As a consequence the epipolar geometry degenerates ([2,3,4]), result-
ing into one epipole (the mirror pole e, Section 3) instead of two. The use of a
mirror to obtain a second view has some crucial advantages over the classical
stereo vision:

– The second view is captured by a camera that is identical to the first (up to
mirror reflection). This means that both views can be perfectly calibrated
by the same intrinsic camera parameters, as opposed to a situation with two
cameras or even with one moving camera.

– In stereo vision the relative position of two cameras is specified by 6 param-
eters. In mirror vision we need only 3 parameters; they describe the position
of the (only) camera relative to the mirror.

– We have induced a plane of symmetry in the viewed scene (the mirror). This
symmetry gives a homological constraint on the direct and reflected images,
which can be utilized to reduce pixel noise.

While the first two advantages have been exploited in [1], this articles focuses
on the third one. The homological constraint is explained in Section 4 and is
the basis of a 2D symmetrization that goes beyond the method of [5]. The
resulting correction of pixel noise significantly improves applications such as 3D
measurements.
� This project was partially supported by a BOF-funds of the University of Antwerp.
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2 A Symmetry Plane in the Pinhole Model

In the pinhole model the images of a camera are obtained by a pair (C,R),
consisting of a point C (the centre of the camera) and a plane R (the retinal
plane or image plane). More precisely, the camera image m of a point M in 3-
space is obtained by projecting M on R from C. We will use the frontal pinhole
model, which means that the “screen” R separates the viewed objects from the
centre C ([2]). Notice that nonlinear lens distortions are not taken into account
in the pinhole model.

Next, we assume the presence of a symmetry plane in the scene. This oc-
curs for example if the viewed object is symmetric, as it is the case for certain
buildings and for a lot of man-made objects. On the other hand, (perfect) plane
symmetry can be forced by the placement of a mirror in the neighborhood of
the photographed scene (Figure 2), as we did in our experiments. In the remain-
der of this article, the plane of symmetry will be called the mirror, denoted by
M. If the symmetry is induced by a mirror then we distinguish between the
real feature point M and its mirror reflection M ′, and between the direct im-
age m of M and the indirect (reflected) image m′. If rather M is a plane of
symmetry of the viewed object then we use the same terminology, making an
artificial distinction between the “real part” of the object and the “reflected
part”.

The (imagined) line k where R and M meet, is called the hinge of the camera-
mirror setting. We avoid situations with a camera parallel to the mirror, such
that the hinge is a well-defined finite line. In the Euclidean space that represents
the real world, we can define the mirror angle ϕ �= 0, as the (positive) “sharp”
angle between R and M.

The plane H through the centre C and perpendicular to the hinge k is called
the horizontal plane. Clearly, the horizontal plane contains the optical axis of
the pinhole model (the line through C and perpendicular to the retinal plane
R). The intersection h of H with R is called the horizon of the image. Of course,
the horizon contains the principal point c in the image plane (the intersection of
the optical axis with R).

There is a certain point e on the horizon that will be crucial in this paper,
called the mirror pole. It is defined as the intersection of the line through C and
perpendicular to M, and the retinal plane R. In [4] e is called the “epipole”,
while in [3] the authors refer to it as V P (the “vanishing point”).

3 The Pole Correction

The mirror pole e can be considered as the vanishing point of each line per-
pendicular to the mirror M. This fact is very useful. Indeed, let m be the pro-
jection of a point M into the image plane R, and let m′ be the projection of
the reflection M ′ of M . In the sequel, m will be called the direct image and m′

the indirect or reflected image of M . Because e is the projection of the point at
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infinity of the line MM ′, the three image points m, m′ and e are collinear
in R. This condition is called the mirror constraint. It corresponds to the fa-
mous epipolar constraint of classical stereo vision ([6,7,2]). In our camera-mirror
setting, the epipoles degenerate into one point: the mirror pole e ([3,4]).

Once we are given two pairs (m1,m
′
1) and (m2,m

′
2) of direct and indirect

images of some points M1 and M2 in 3-space, we can determine e by

e = m1m
′
1 ∧m2m

′
2

To cope with noise it is preferable to have more of such pairs, and to deter-
mine e by a least square approximation followed by a nonlinear optimization
technique.

Fig. 1. In a noisy image the configuration of lines mm′ is not perfectly concurrent.
The mirror pole e has been obtained by a LSA.

Conversely, once we have detected the mirror pole e we can use it to look for
the indirect image m′ that corresponds to a given direct image m. Indeed, since
m′ belongs to the line em, this narrows our search.

Let (ue, ve) be the pixel coordinates of the mirror pole e. Each pair (m,m′)
of a direct and a reflected image of a feature point M gives one linear constraint
for ue and ve:
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(v′ − v)ue + (u − u′)ve + u′v − uv′ = 0 (1)

with m(u, v) and m′(u′, v′) the given pixel coordinates. For exact data two such
equations (obtained from two feature points M1 and M2) suffice to solve for e
(assuming that the linear equations are linearly independent, which is equivalent
to avoiding that M1M2 is perpendicular to the mirror).

In real images the data are always corrupted, and we try to cancel out as
much noise as possible by considering n pairs (m,m′) with typically n ≥ 10.
Then we put e equal to the least square approximation of the associated system
of n linear equations (1). If we normalize each such equation (1) by dividing
by

√
(v′ − v)2 + (u − u′)2 then we can interprete this LSA geometrically as the

point that globally minimizes the distances to the n given lines mm′.
Once we fixed e we can consider for each pair (m,m′) the unique line λ∗

through e that minimizes

δ = d(m,λ)2 + d(m′, λ)2

In particular, using highschool calculus, we find λ∗ : y− ve = a(x−ue) with
(putting (u1, v1) = (u − ue, v − ve) and (u2, v2) = (u′ − ue, v

′ − ve)):

a =
v2
1 + v2

2 − u2
1 − u2

2 +
√

(u2
1 + u2

2 − v2
1 − v2

2)2 + 4(u1v1 + u2v2)2

2(u1v1 + u2v2)

This optimal line still leaves us with an error δ∗e (which is only zero if mm′

contains e). The total deviation of the n given pairs (m,m′) from the mirror
constraint is the sum of all these errors:

Δe =
∑

(m,m′)

δ∗e

which is a function in the coordinates (ue, ve) of e. By means of a (nonlinear)
numerical optimization procedure we minimize Δe, starting at the LSA for e
that we found in the previous paragraph. In experiments we arrived at reliable,
small values for Δe.

Having computed an accurate position of e we can correct the image data
in order to force the mirror constraint. This is done by the orthogonal projec-
tion of the pair (m,m′) on the associated optimal line λ∗. We call this the pole
correction. This procedure aims to reduce pixel noise by making the image data
compatible with the presence of the plane symmetry (satisfying the mirror con-
straint). This strategy has the same spirit as the 2D data symmetrization in [5].
There, the authors restrict to the case of ”weak projection” (where the mirror
pole lies at infinity in the image plane). In the next paragraph we will refine the
process of data symmetrization one step further.

Example 1. In Figure 2 we show the direct and reflected images of a plane 5 by
5 grid. In a preprocessing phase we corrected radial distortion up to the second
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degree, resulting in the following lists of pixel coordinates (rounded up to units
for display reasons):

grid = (784, 154) (856, 216) (932, 283) (1016, 357) (1106, 436)
(750, 264) (819, 329) (891, 398) (971, 474) (1056, 555)
(719, 367) (784, 434) (853, 506) (929, 584) (1009, 667)
(688, 466) (750, 535) (817, 609) (889, 688) (965, 772)
(660, 559) (719, 629) (783, 705) (852, 786) (923, 871)

reflected grid = (355, 211) (285, 277) (219, 340) (155, 400) (95, 457)
(408, 295) (337, 359) (269, 421) (204, 480) (142, 536)
(464, 380) (390, 444) (320, 504) (253, 561) (189, 616)
(520, 468) (444, 530) (373, 588) (304, 645) (239, 698)
(578, 558) (500, 618) (427, 675) (356, 730) (289, 782)

As a first guess for the mirror pole e, we minimize the sum of the squared
distances from e to the lines mm′ (m: direct image; m′: reflected image). We
obtain e0 = (−1844.47, 505.41), leaving a residue of 109.715. Next, using e0 as
an initial value in the nonlinear minimization of Δe, we get1

e = (−1752.03, 495.29)

with a residue of only 3.18.

Fig. 2. The direct (right) and reflected (left) images of a 5 by 5 grid after the correction
of radial distortion

1 The computation has been performed by the function FindMinimum in Mathemat-
ica.
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4 The Homological Constraint

Let (M1,M2,M3, . . .) and (M ′
1,M

′
2,M

′
3, . . .) be two corresponding sets of fea-

ture points under the given plane symmetry in the viewed scene. So, M ′
i is the

mirror reflection of Mi. Further, we assume that the points M1,M2,M3, . . . all
lie in the same plane. Automatically, this is also true for the reflected points
M ′

1,M
′
2,M

′
3, . . .. Typically, such a situation occurs for feature points Mi on the

same wall of a symmetric building, or on the same face of a symmetric polyhedral
object. It also occurs when we photograph a planar pattern near a mirror for
calibration purposes (Figure 2, [1]). In this case, the mirror symmetry implies
a constraint on the image data that generalizes the previously described mirror
constraint. This constraint seems to be missed by other authors ([5], [4], [3]).
It gives rise to a useful 2D data symmetrization, more advanced than the pole
correction.

Let A denote the plane that contains the feature points M1,M2,M3, . . ., and
A′ the plane that contains the mirror reflections M ′

1,M
′
2,M

′
3, . . .. We assume

that A �= A′. It is obvious that the line a where these planes intersect lies on the
mirror M. The unique plane C through the camera centre C and a intersects
the retinal plane R in the line A, that might be regarded as the image of the
(virtual) line a. Further, the (sharp) angle between A and M is called α, and
the angle between C and M is called β.

The images of the points on A are mapped to the images of the points on A′

by means of a homography H. Indeed, H is the composition of the projectivity
between R and A (from C), the mirror reflection (w.r.t. M), and the projectivity
between A′ and R. We can make a stronger statement: the mirror symmetry
between two planes in 3D projects to a homology in the retinal plane. A homology
is a homography H that is characterized by a line W of fixpoints (the axis), a
fixpoint v not on W (the vertex) and a real number δ (the modulus). For every
point p �= v in the projective plane the homological image Hp is determined by

1. p and Hp are collinear with the vertex v
2. the line pv intersects W in a point w such that the cross ratio

(v, w; p,Hp) = δ

Theorem 2. The images m1,m2,m3, . . . of points in a plane A are mapped to
the reflected images m′

1,m
′
2,m

′
3, . . . by a homology H of R. The mirror pole e is

the vertex of H, the line A = A∧A′ is the axis of H, and the modulus is given by

δ =
tan α − tan β

tan β + tanα

Proof. The pencil of planes with axis a = A∧A′ is a one-dimensional projective
system. Let E be the plane through a and perpendicular to M, and put δ equal
to the cross ratio (E , C;A,A′).

If M is an arbitrary point on A and if M ′ ∈ A′ denotes its mirror reflection.
The plane D = CMM ′ intersects a in the point D, and intersects the pencil of
planes through a in a plane pencil of lines through D. Still
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δ = (E ∧ D, C ∧ D;A ∧D,A′ ∧ D)

In D, we can define a projectivity from the pencil through D to the pencil
through C via the intersection by the line MM ′. Notice that MM ′ is parallel
with E ∧ D, and so is Ce. We conclude that

δ = (Ce,CD;CM,CM ′)

or, after intersecting by the retinal plane

δ = (e, d;m,m′)

where d denotes the image of D or, equivalently, d = mm′ ∧A.

Finally, if we put S = CD ∧MM ′ then we see that δ = SM/SM ′. If we put
M ′′ = MM ′∧M then SM = M ′′M −M ′′S and SM ′ = SM ′′ +M ′′M ′, whence

SM

SM ′ =
tan α − tan β

tan β + tan α

$%

If we fix a projective basis in the projective plane then we can express a ho-
mography H by means of a 3 by 3 matrix, which is determined up to global
scaling. By abuse of notation, this matrix will be denoted by H too. In case H
is a homology, if e denotes a column vector of homogeneous coordinates of the
vertex and if a denotes a column vector of line coordinates of the axis, then up
to a scale factor H is given by

H ∼ I +
(δ − 1)

eT a
eaT

Remark 3. A homology H has an eigenvalue of multiplicity 2, that can be put
to 1 after rescaling of H; then the other eigenvalue equals the modulus δ. The
eigenvectors for eigenvalue 1 correspond to the points on the axis, the eigen-
vectors for eigenvalue δ to the vertex of the homology. We refer to [8] for more
background on homologies.

5 Homological 2D Symmetrization

Let m1,m2,m3, . . . be the images of the feature points M1,M2,M3, . . .. We can
extract the pixel coordinates of these image points manually or automatically
(e.g. using edge detection). In any case we encounter pixel noise (no perfect light
or focus conditions, no infinite resolution, etc. . . ).

If the object points M1,M2,M3, . . . belong to the same plane A, and if more-
over the reflected images m′

1,m
′
2,m

′
3, . . . are available (object with plane of sym-

metry or presence of mirror) then we can exploit Theorem 2 to reduce the pixel
noise significantly. We first compute the homology H that approximately maps
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the direct images mi to the reflected images m′
i. Then we find the most likely

(in some sense) corrections for mi and m′
i that are compatible with H. This

procedure is called homological 2D symmetrization and it is an improvement of
the pole correction (Section 3) and the 2D symmetrization as described in [5],
but it is restricted to coplanar object points.

We construct the homology H by a separate computation of the vertex, the
axis and the modulus. For each of these elements we look for the best candidates.

Algorithmic Details:

1. Theorem 2 only guarantees the existence of a homology in the perfect pinhole
model. Dealing with real data (and real lenses) nonlinear distortions cannot
be ignored. Therefore, we first (partly) compensate for radial distortions by
means of a standard procedure (e.g. [9]).

2. The vertex of the homology is the mirror pole e. Section 3 explains how an
optimal choice for e can be computed.

3. For each pair of directed images (m1,m2) and reflected images (m′
1,m

′
2) of

object points in the plane A, the point of intersection pij = m1m2 ∧ m′
1m

′
2

should belong to the axis A (assuming a perfect, noise-free pinhole model).
By linear regression we obtain an optimal choice for A that minimizes the
sum of squared distances to the different pij . Robust techniques are described
in the literature to deal with outliers.

4. The homology H now contains only one unknown, δ. Finally, we find the
most likely correction for the noisy data m1,m2, . . . , m

′
1,m

′
2, . . . and the

most optimal choice for δ by minimizing∑
i

||m∗
i −mi||2 +

∑
i

||Hm∗
i −m′

i||2

Example 4. We pick up the example at the end of Section 3, concerning the 5 by
5 grid (Figure 2). The given (rounded) pixel coordinates have been first corrected
from radial distortion. Since the 25 feature points are coplanar, we can apply
the homology-method of the section. Recall we found an accurate location of the
mirror pole, e = (−1752.03, 495.29), serving as the vertex of the homology H.
Next, for each pair {mi,mj} of grid points we compute pij = mimj ∧m′

im
′
j , and

obtain the axis A of H as the best linear fit for all these intersections pij :

A : y = 15.9978x − 9497.34

This yields the following matrix for the homology H with unknown modulus δ
(up to a global scalar):

H ∼

⎛⎝ 1 + 0.737183(−1 + δ) −0.0460804(−1 + δ) −437.641(−1 + δ)
−0.208398(−1 + δ) 1 + 0.0130267(−1 + δ) 123.719(−1 + δ)

−0.000420759(−1 + δ) 0.0000263011(−1 + δ) 1 + 0.24979(−1 + δ)

⎞⎠
Now we solve for a nonlinear numerical minimization of∑

i

||m∗
i −mi||2 +

∑
i

||Hm∗
i −m′

i||2
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with the 50 coordinates of m∗
1, . . . , m

∗
25 and δ as unknowns, using the given pixel

coordinates and δ0 = −1 as initial values. We find the following optimal grid
points:

(783.923, 153.503) (855.425, 216.264) (932.157, 283.486) (1015.76, 356.907)
(1106.25, 436.309) (750.405, 263.248) (818.542, 328.266) (891.668, 397.948)
(970.967, 473.637) (1056.37, 555.051) (718.516, 367.323) (783.579, 434.253)
(853.388, 506.064) (928.756, 583.681) (1009.51, 666.758) (688.437, 465.814)
(750.569, 534.509) (817.209, 608.262) (888.875, 687.556) (965.296, 771.992)
(659.624, 559.434) (719.093, 629.567) (782.844, 704.946) (851.158, 785.61)
(923.662, 871.102)

and δ = −1.68212 (total residue = 5.01767). The reflected grid points are cor-
rected by the homological images of the corrected (direct) grid points.
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Abstract. A new impulse detector design method for image impulse noise is 
presented. Robust statistics of local pixel neighborhood present features in a bi-
nary classification scheme. Classifier is developed through the evolutionary 
process realized by genetic programming. The proposed filter shows very good 
results in suppressing both fixed-valued and random-valued impulse noise, for 
any noise probability, and on all test images. 

1   Introduction 

Impulse noise presents a frequent problem in image processing. It emerges as a result 
of noisy sensors or transmission errors. Impulse noise suppression is required pre-
processing stage, which cannot be efficiently done by employing simple linear filters. 
Therefore, a number of nonlinear and adaptive filtering techniques have been devel-
oped for this purpose. 

Nonlinear techniques are mainly based on median or its modifications [1], which 
are robust estimators, immune to high levels of impulse noise. The major drawback of 
such algorithms is uniform application of particular filter across the entire image. 
Thus, besides noisy pixels, undisturbed pixels are also modified. Performances of 
these filters are enhanced by introducing an impulse detector and space-variant filter-
ing, [2]-[8]. In this concept, each pixel is analyzed in context of its neighborhood, and 
decision is made whether the pixel is noise-free or corrupted. Accordingly, it will be 
left unchanged, or replaced by the estimated value, respectively. Adaptive filtering 
conducted through this procedure reduces distortion because most of the uncorrupted 
pixels are left unchanged. As a result, impulse detection becomes essential filtering 
stage. Constructing an impulse detector requires a trade-off between opposing de-
mands for noise suppression and detail preservation [2]. Existing algorithms employ 
one [2], [4] or more [6], [8] thresholds which are compared to particular local 
neighborhood statistics in order to label pixel as noisy or noise-free. 

In this work, a novel design of impulse noise detector is presented. It is based on 
the supervised learning paradigm and built as a binary classifier. Genetic Program-
ming (GP) is relatively recent and fast developing approach to automatic program-
ming [9]. In GP, solution to a problem is represented as a computer program in the 
form of a parse tree, consisting of primitive functions and terminals. It has been cho-
sen among other learning algorithms due to its capability to fit extremely nonlinear 
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functions easily and mitigate influence of futile features. GP employs evolutionary 
principles of natural selection and recombination to search the space of all possible 
solutions in order to find the most satisfactory one. 

This paper is organized as follows. The impulse noise model used in the paper is 
explained in Section 2 and design of a new impulse detector is presented in Section 3. 
Section 4 contains analysis of obtained results and finally, conclusions are drawn in 
Section 5. 

2   Impulse Noise Model 

A great variety of models for the image impulse noise exists today. Most of them 
have in common that percentage p of image pixels are corrupted, while 1−p of pixels 
are left unchanged. Corrupted pixels have values equal to the maximum or minimum 
of the allowable dynamic range, which is well known salt-and-pepper noise model. 
Similarly, noisy pixels can be replaced by just one value chosen from available range. 
Although these models are mathematically very simple, they are far from being realis-
tic. In this paper, besides the salt-and-pepper noise, we have used a more general 
noise model introduced recently [6], [7], [8]. In this noise model corrupted pixels can 
take arbitrary values within the dynamic range, i.e. [0,255] for gray-scale images, 
according to uniform probability distribution. Most of contemporary impulse noise 
filters are not capable of dealing with this noise model [10], [11]. In order to make a 
fair comparison between the impulse noise filters performance, both noise models 
have been included in testing. Besides, several filters included in comparison were 
originally designed for random valued impulse noise. 

3   Impulse Detection 

3.1   Robust Statistics 

Let xij and yij denote pixels with coordinates (i,j) in a noisy and a filtered image, re-
spectively. If the estimated value of a particular noisy image pixel is ϕ(xij), then the 
filtered image is defined as: 

)1()( ijijijijij MxMxy −+= ϕ , (1) 

where Mij is the binary noise map, containing ones at the positions detected as noisy 
and zeros otherwise. Noise map should be generated from some local neighborhood 
statistics. Let WK denote rectangular window centered at the position (i,j), where the 
size of the window is (2h + 1) × (2h + 1) and K=2h+1. A set of pixels contained in the 
window WK, centered at the position (i,j), is defined as: 

}12,,|{),( +=≤≤−≤≤−= hKhjhhihxjiW ijK . (2) 

Median is a robust estimator of the location, reliable as long as the number of outliers 
i.e. noisy pixels in the given window WK is smaller than 50%. Similarly, MAD (me-
dian of the absolute deviations from the median) is well-known in robust statistics as 



 Impulse Noise Detection Based on Robust Statistics and Genetic Programming 645 

a robust estimator of scale [12]. It is capable of estimating local variance even if up to 
50% of pixels within window WK are noise impulses. 

The absolute deviation from the median and MAD carry valuable information for 
detecting impulse noise. They are defined as follows: 

|)),((|),( 333 jiWmedianxjid ijx −= , (3) 

|)),((|),( 555 jiWmedianxjid ijx −= , (4) 

|)),((),(|),( 3333 jiWmedianjiWmedianjiMAD x −= , (5) 

|)),((),(|),( 5555 jiWmedianjiWmedianjiMAD x −= . (6) 

These statistics are calculated for windows sizes 3x3 and 5x5, due to the fact that 
better robustness can be achieved by enlarging window size, at the expense of losing 
information about details. The absolute deviations from the median can indicate 
whether the currently analyzed pixel is corrupted. Larger deviation will suggest that 
the pixel is noisy and vice versa. However, if details are present in noise-free image, 
they can be mistakenly treated as noise. In order to avoid this, a robust estimate of 
local variance, obtained from MAD estimator, is used to make distinction between 
image details and impulse noise. 

3.2   Genetic Programming 

The output of a GP classifier is a numeric value that is translated into a class label. 
For binary classification case, this translation is usually based on the sign of a nu-
meric value. 

In the proposed design of a GP classifier, terminal set has four features and a num-
ber of randomly generated constants. Features are d3x3, d5x5, MAD3x3 and MAD5x5, as 
defined in (3)-(6). Features (3) and (4) are linearly normalized from range [0,255] to 
[-1,1] while features (5) and (6) are linearly normalized from range [0,127] to [-1,1]. 
Random constants are generated using uniform distribution within the range [-1,1].  

Training set was built from standard test images Lena and Goldhill. Firstly, images 
were corrupted by a combination of fixed-valued and random-valued impulse noise. 
Secondly, features were calculated for all pixels in training images, and corresponding 
instances were labeled according to the following rule: 0 – noise-free pixel, 1 – cor-
rupted pixel. At the end, the balanced training set was made by randomly selecting 
equal number of data points labeled as noise-free and corrupted. 

Primitive function set consists of standard arithmetic plus and minus functions with 
two input arguments and myif function defined as: 

<
≥

=
212

211
2121 CC,R

CC,R
)R,R,C,C(myif , (7) 

where C1, C2, R1 and R2 are input arguments. These primitive functions are among the 
simplest, and myif function is of special importance. Its nonlinearity is suitable for 
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modeling this type of problem, since it provides selection of different tree parts (R1, 
R2) based on values of input arguments C1 and C2. 

A data point which represents a pixel is classified as noisy if the output of a GP 
classifier is positive, and it is classified as noise-free if the output is negative. Fitness 
function is defined as classification accuracy, i.e. number of correctly classified data 
points divided by total number of data points in the training set. According to this 
design, the best possible fitness is 100%. 

The ramped half-and-half method was used for generating programs in the initial 
population and for the mutation operator [9]. The proportional selection mechanism 
and the reproduction, crossover and mutation operators were used in the evolutionary 
process. Size of initial generation is set to 200 and genetic programs are evolved for 
50 generations. Maximum depth of a tree representing the genetic program is limited 
to 5, in order to avoid over-fitting and bloat. 

3.3   Trained Classifiers 

Five different GP classifiers were evolved on the same training set, starting from 
different initial populations. Let X1, X2, X3 and X4 denote normalized features, d3x3, 
d5x5, MAD3x3 and MAD5x5, respectively. Final classifier is made by majority voting 
over trained classifiers. Trained GP classifiers represented as strings are given bellow, 
and Classifier 1 is presented in the form of a tree in Fig. 1. 

X2

X2

-0.719 X1 -0.139 -0.639

  myif
X2

-0.865 X1

X3 0.319

  plus
X4

  myif

  myif

  minus

 

Fig. 1. Classifier 1 represented in a tree form 

Classifier 1 
minus(X2,myif(X2,myif(-0.719,X1,-0.139,-0.639),X2, 
myif(-0.865,X1,plus(X3,0.319),X4))) 

Classifier 2 
myif(minus(X1,plus(minus(-0.565,X2),-0.522)),myif(myif(X3,minus(X1, 
X4),0.469,-0.459),X2,myif(X2,plus(X1,-0.255),myif(X1,-0.0299, 
-0.565,-0.126),X4),-0.565),minus(X2,-0.755),plus(minus(X1,X4), 
plus(minus(X1,X4),minus(X2,-0.755)))) 

Classifier 3 
myif(X1,X4,plus(plus(plus(X2,0.713),minus(-0.814,-0.908)), 
minus(X2,X4)),plus(plus(X1,0.713), plus(plus(X2,0.696), 
minus(X2,X4)))) 
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Classifier 4 
minus(X2,myif(X1,-0.823,myif(-0.611,X1,X4,-0.823), 
minus(X3,-0.351))) 

Classifier 5 
plus(myif(minus(X1,plus(X2,-0.093)),myif(plus(X2,-0.934),0.579,X4, 
plus(X2,X4)),myif(X2,X4,0.794,X2),0.882),myif(X1,-0.637,0.794, 
myif(X3,X1,X1,minus(-0.178,X3)))) 

4   Results 

The performance of the proposed filter has been compared with those of some exist-
ing detection based filters. Simulations were made on several standard grayscale test 
images (resolution 512×512) corrupted by salt-and-pepper and random-valued im-
pulse noise. For each particular image and noise ratio, simulations were repeated a 
number of times and averaged results are given in Table 1, and Fig. 2. Quality meas-
ure used for evaluation was the peak SNR (PSNR). Filtered image has been generated 
according to Eq.(1), where simple 3x3 pixels median was used as the estimator ϕ(xij). 
Proposed filter is compared with SDROM [8], ACWMF [6], PWMAD [7], TSM [4] 
and PSM [10]. 

Table 1. Comparative results of impulse noise filters in PSNR. Test images are corrupted by 
20% impulse noise. 

Random-valued Impulse Noise Filters 
Peppers Bridge Goldhill Lena Barbara Boats Airplane 

TSM [4] 31.63 26.44 30.66 32.09 24.99 29.99 30.29 
PSM [10] 27.48 25.64 27.22 27.50 24.40 27.15 27.64 
PWMAD [7] 33.01 26.66 31.54 33.16 26.38 30.57 31.33 
ACWMF [6] 32.10 26.63 31.15 32.61 25.35 30.50 30.97 
SDROM [8] 31.57 26.58 30.81 32.06 24.90 30.20 30.61 
Proposed 32.92 26.86 31.61 33.15 25.47 30.80 31.56 

Fixed-valued Impulse Noise Filters 
Peppers Bridge Goldhill Lena Barbara Boats Airplane 

TSM [4] 25.81 23.95 25.70 26.01 23.05 25.56 25.51 
PSM [10] 32.29 27.81 30.90 30.60 25.28 31.06 26.92 
PWMAD [7] 31.45 26.83 30.87 31.80 24.99 29.97 30.27 
ACWMF [6] 30.08 26.69 29.86 30.53 25.47 29.42 29.19 
SDROM [8] 30.11 26.29 29.77 30.68 24.50 29.26 29.29 
Proposed 31.83 27.13 31.18 32.44 25.50 30.61 31.01 

 
Their performance comparison over noise ratios from 10% to 35% is given in 

Fig. 2. for test image Airplane, that was not included in the training set. It is inter-
esting to observe that the proposed filter outperforms other filters in PSNR for both 
types of impulse noise. One can note that PSM filter shows better results for higher 
ratios of salt and pepper noise. However, unlike the proposed filter, PSM is imple-
mented recursively. Multiple filtering with the proposed GP filter, or its recursive 
implementation, will significantly increase its performance for higher noise ratios. 
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Fig. 2. Performance comparison of different filtering algorithms conducted on test image Air-
plane corrupted by various rates of random-valued and fixed-valued impulse noise 

The efficiency of the proposed filter in processing different images has also been 
tested. Table 1 presents the comparison of PSNR results for images degraded by both 
kinds of impulses, where 20% of the pixels are contaminated in each image. The 
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results have similar tendency for all images, where the proposed filter shows best 
results in most situations. 

5   Conclusions 

A new approach to the impulse detector design is presented. Trade-off between noise 
suppression and detail preservation is accomplished by using robust estimators of 
location and scale. Since these estimators are highly nonlinear, a genetic program-
ming is used to combine them in order to find an optimal solution for the binary clas-
sification problem. Although presented approach requires training of the impulse 
detector, obtained GP trees are very simple and can be implemented easily on any 
platform. Simulations confirm that achieved generalization is excellent. In addition, in 
most cases results of the proposed filter were equal or better when compared to the 
results obtained with other filters. Moreover, it shows very good performance for both 
random- and fixed-valued impulse noises. Additional optimization of random con-
stants within GP trees, and inclusion of more images in the training set, can lead to 
further improvement of the proposed filter performance. 
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1 University of Novi Sad, Chair for Computer Engineering,
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Abstract. Multiresolution video denoising is becoming an increasingly
popular research topic over recent years. Although several wavelet based
algorithms reportedly outperform classical single-resolution approaches,
their concepts are often considered as prohibitive for real-time process-
ing. Little research has been done so far towards hardware customiza-
tion of wavelet domain video denoising. A number of recent works have
addressed the implementation of critically sampled orthogonal wavelet
transforms and the related image compression schemes in Field Pro-
grammable Gate Arrays (FPGA). However, the existing literature on
FPGA implementations of overcomplete (non-decimated) wavelet trans-
forms and on manipulations of the wavelet coefficients that are more
complex than thresholding is very limited.

In this paper we develop FPGA implementation of an advanced wavelet
domain noise filtering algorithm, which uses a non-decimated wavelet
transform and spatially adaptive Bayesian wavelet shrinkage. The stan-
dard composite television video stream is digitalized and used as source
for real-time video sequences. The results demonstrate the effectiveness
of the developed scheme for real time video processing.

1 Introduction

Recently, several promising multiresolution (wavelet domain) video noise filters
have been proposed. These can be categorized in non-separable spatio-temporal
approaches utilizing a three-dimensional (3-D) wavelet representation [1], [2] and
separable approaches that combine 1-D temporal filtering and 2-D spatial de-
noising in the wavelet domain [3,4]. Although these wavelet domain video filters
were reported to outperform the more classical, single-resolution techniques,
little research has been done so far towards their customization for hardware
implementations and consequently, they are often considered as prohibitive for
real-time applications.

Modern hardware solutions for digital signal processing algorithms increas-
ingly employ Field Programmable Gate Arrays (FPGA). FPGAs accelerate the

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 650–657, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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execution of algorithms and offer a tremendous potential to improve performance
through parallelization. While FPGA design of the orthogonal wavelet transform
and related image compression tools (JPEG2000) has been well studied [5,6,7],
only a few publications address FPGA design of other types of wavelet trans-
forms or wavelet coefficient manipulations other than simple thresholding.

In this paper we efficiently customize one of the latest wavelet domain denois-
ing filters [8] and implement it in FPGA’s for real-time video denoising. Some
additional details of the developed architecture can be found in [9], where we
described the preliminary results of this research.

This paper is organized as follows. In Section 2 we describe the implemented
algorithm and present its customization for real-time implementation. The real-
time environment that is used in this study is described in Section 3. The con-
clusions are in Section 4.

2 Developed FPGA Design

Fig. 1 depicts the implemented video denoising scheme, which consists of the
non-decimated 2-D wavelet transform, Bayesian wavelet shrinkage followed by
the inverse wavelet transform and selective recursive temporal filtering.

2-D wavelet
transform

Denoising by
wavelet

shrinkage

inverse
2-D wavelet
transform

Pixel based
motion detector

Selective
recursive filter

Fig. 1. The implemented denoising scheme

An important issue is whether to implement the floating-point arithmetic in
FPGA and to use the original algorithm arithmetic or to convert the algorithm
to the integer/fixed-point arithmetic. We use the fixed-point arithmetic which is
less complex for a hardware implementation.

2.1 Non-decimated Wavelet Transform in FPGA’s

While the implementations of the orthogonal wavelet transform have been ex-
tensively studied in literature [5, 6, 7] much less research has been done towards
hardware implementations of the non-decimated wavelet transform. We design
an FPGA implementation of the non-decimated wavelet transform using the
algorithm à trous as it is described by Mallat and Zhong [10]. This algorithm
replaces sub-sampling of the filtered signal by up-sampling the filters, where 2j−1

zeros (“holes”, i.e., trous in French) are inserted between the filter coefficients
at the decomposition level j.

We use the SystemC library [11] and a previously developed simulation envi-
ronment [12,13] to develop a real-time model of the wavelet decomposition and
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composition [9]. The input value is 8 bit integer. We use the 16 bit arithmetic
for wavelet decomposition and composition. The input 8 bits are placed at bit
positions from 14 to 7. The output bits occupy the same positions (see Fig. 2).

0 00 0 0 0 0 0INPUT

0 XX X X X X XOUTPUT

F E D C B A 9 8 7 F 5 4 3 2 1 0

Fig. 2. Input/Output data format

Our extensive simulations and tests demonstrate that this implementation
results in a perfect reconstruction and gives practically the same results as a
referent MATLAB code of the algorithm à trous [10]. At a number of input
frames there were more than 97.13% errorless pixels with mean error of 0.0287.
Analysis of those images at the level of bit representation, reveals that maximally
1 bit out of 16 was wrong. Moreover, the wrong bit may occur only on the least
significant bit (LSB) position. If we take into account that input and output
pixels are 8 bit places above first 6 LSB bits, we can ignore this error. This is
depicted in Fig. 2.

2.2 FPGA Design of a Spatially Adaptive Wavelet Shrinker

We design FPGA architecture for a spatially adaptive wavelet denoising method
of [8], which shrinks each wavelet coefficient according to the probability of
presenting a “signal of interest” given the observed coefficient value and given
a local spatial activity indicator (LSAI). In our implementation LSAI is the
locally averaged coefficient magnitude within a 3x3 window and the signal of
interest is defined as the noise-free component that exceeds in magnitude the
noise standard deviation σ.

The analyzed denoising algorithm can be summarized as follows. Let yl de-
note the noise-free wavelet coefficient and wl its observed noisy version at the
spatial position l in a given wavelet subband. For compactness, we suppress here
the indices that denote the scale and the orientation. The locally averaged coef-
ficient magnitude is denoted by zl =

∑
k∈Nl

|wk|, where Nl is a square window
centered at the position l. Further on, let H1 denote the hypothesis “the signal
of interest is present : |yl| > σ ” and let H0 denote the opposite hypothesis “the
signal of interest is absent : |yl| ≤ σ”. The shrinkage estimator from [4] is

ŷl =
ρξlηl

1 + ρξlηl
wl, (1)

where

ρ =
P (H1)
P (H0)

, ξl =
p(wl|H1)
p(wl|H0)

and ηl =
p(zl|H1)
p(zl|H0)

. (2)
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Fig. 3. Block schematic of implemented denoising architecture

and where p(wl|H0) and p(wl|H1) denote the conditional probability density
functions of the noisy coefficients given the absence and given the presence of
a signal of interest. Similarly, p(zl|H0) and p(zl|H1) denote the corresponding
conditional probability density functions of the local spatial activity indicator.
Under the Laplacian prior for noise-free data p(y) = (λ/2) exp(−λ|y|) we have [8]
ρ = exp(−λT )/(1 − exp(−λT )). The analytical expressions for ξl and ηl seem
too complex for the FPGA implementation. Based on an extensive experimental
study, as we explain later in this Section, we efficiently implement the two like-
lihood ratios ξl and ηl as appropriate look-up tables, stored in two “Read-Only”
Memories (ROM).

The developed architecture is presented in Fig. 3. One ROM memory, con-
taining the look-up table ξl, is addressed by the coefficient magnitude |wl|, and
the other ROM memory, containing the look-up table ρηl is addressed by LSAI
zl. For calculating LSAI, the coefficient values from the current line and from
the previous two lines are averaged within a 3x3 window. The read values from
ROM’s are multiplied and the product r is used to address another look-up ta-
ble r/(1 + r), denoted as “shrinkage ROM”. Its output (the shrinkage factor) is
multiplied with the input coefficient to produce the denoised coefficient value.

The generation of the appropriate look-up tables for the two likelihood ratios
resulted from our extensive experiments on different test images1 and different
noise-levels. Fig. 4 illustrates the likelihood ratio ξl calculated from one test
image at different noise levels. These diagrams show another interpretation of
the well known threshold selection principle in wavelet denoising: a well chosen
threshold value for the wavelet coefficients increases with the increase of the
noise level. The maximum likelihood estimate of the threshold T (i.e., the value
for which p(T |H0) = p(T |H1)) is the abscissa of the point ξl = 1. Fig. 5 displays
the likelihood ratio ξl, in the diagonal subband HH at third decomposition level,
for 10 different frames with fixed noise standard deviations (σ = 10 and σ = 30).
From a practical point of view, the difference between the calculated likelihood
ratios for different frames is minor, especially for lower noise levels (up to σ =
20). Therefore we average the likelihood ratios over different frames and store
these values as the corresponding look-up tables for several different noise levels
(σ = 5, 10, 15 and 20). In the denoising procedure, the user selects the input

1 We used standard test images such as “Lena” and “Barbara”, and frames from
different standard test video sequences, such as “flower garden”, “Miss America”,
“salesman”, etc.
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Fig. 4. Likelihood ratio ξl for one test frame and 4 different noise levels (σ=5,10,20,30)

Fig. 5. Likelihood ratio ξl displayed for 10 frames with fixed noise levels: σ = 10 (left)
and σ = 30 (right)
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of the involved shrinkage expression



FPGA Design and Implementation 655

noise level, which enables addressing the correct set of the look-up tables. The
performance loss of the algorithm due to simplifications with the generated look-
up tables for different input noise levels is shown in Fig. 6. These results represent
peak signal to noise ratio (PSNR) values averaged over frames of several different
video sequences. For σ=10 the average performance loss was only 0.13dB (and
visually, the differences are difficult to notice) while for σ=20 the performance
loss is 0.55dB and is on most frames becoming visually noticeable, but not highly
disturbing. For higher noise levels, the performance loss increases.

2.3 FPGA Design of a Selective Recursive Temporal Filter

A pixel based motion detector with selective recursive temporal filtering is quite
simple for hardware implementation. Since we first apply a high quality spatial
filtering the noise is already significantly suppressed and thus a pixel based
motion detection is efficient. In case the motion is detected the recursive filtering
is switched off.

Two pixels are needed for temporal filtering: one from the current field and
another from the same spatial position in the previous field. We store the two
fields in the output buffer and read the both required pixel values in the same
cycle. If the absolute difference between these two pixel values is smaller than
the predefined threshold value, no motion case is assumed and the two pixel
values are subject to a weighted averaging, with the weighting factors defined
in [4]. In the other case, when motion is detected, the current pixel is passed
to the output. The block schematic in Fig. 7 depicts the developed FPGA ar-
chitecture of the above described selective recursive temporal filter. In terms of
computation accuracy, the only required adaptation of the original filter is the
conversion from floating-point arithmetic to the integer arithmetic. We use the
8 bit arithmetic because the filter is located in the time domain where all the
pixels are represented as 8 bit integers.

Pixel from
current field

Pixel from
previous field

X

X

0.6

0.4 +

DELAY

Treshold

Output

A<B
ABS(A-B)

Fig. 7. Block schematic of implemented temporal filter

3 Evaluation in a Real-Time Environment

In our implementation we use the standard television broadcasting signal as a
video signal source. A common feature of all standard TV broadcasting tech-
nologies is that the video sequence is transmitted in the analog domain (this
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Fig. 8. A digital processing system for television broadcasting video sequences

excludes the latest DVB and HDTV transmission standards). Thus, before digi-
tal processing of television signals the digitalization is needed. Also, after digital
processing the sequence has to be converted back to the analogue domain in
order to be shown on a standard tube display. This pair of A/D and D/A con-
verters is well known as a codec. The 8 bit codec, with 256 levels of quantization
per pixel, is considered sufficient for preserving all details in the sequence. We
use the PAL-B broadcasting standard and 8 bit YUV 4:2:2 codec. The hardware
platform set-up consists of three separate boards: analog front-end (A/D con-
version), processing board and analog back-end (D/A conversion) Each board
corresponds to one of the blocks presented in Fig. 8:

The processing board consists of two Xilinx Virtex II FPGAs (XC2V6000-
5) [14] and is equipped with plenty of SDRAM memory (6 banks with 32 bit
access made with 256Mbit ICs). Additional implementation details are in [9].

An important practical issue is the specification of the following two param-
eters: estimated noise standard deviation σ and the motion detection threshold.
Currently we keep the motion detection threshold fixed and allow the choice of
σ from a set of predefined values. A future work will concentrate on estimat-
ing these parameters adaptively from the video sequence and on measuring the
sensitivity of the scheme to these parameters.

An alternative real-time implementation of this algorithm may be based on
commercially available DSP processors instead of FPGA. Indeed the approxima-
tion of the algorithm based on ROM tables as we proposed and speed-optimized
programming in languages like C or C++ should significantly accelerate the
software version of the algorithm. In this case, the profiling of the software
implementation would be required to determine the DSP parameters, like the
needed MIPS performance (MIPS - Million Instructions Per Second) and the
ROM size, which are needed for real-time program running. However, it is not
certain that a general purpose DSP processor could perform the non decimated
wavelet transform of a television stream in real time due to a number of needed
memory accesses for reading and writing the wavelet coefficients parallel with
the accesses to the input and output buffers.

4 Conclusion

New trends in video technology and emerging wavelet domain video denoising
methods require development of the appropriate real-time hardware architec-
tures with FPGA’s. This paper revealed technical details of one of such devel-
opments which has resulted in a real-time implementation of one of the latest
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wavelet domain denoising methods. We believe that some architectural design
aspects presented in this paper should be interesting for future FPGA design of
other, related wavelet domain denoising methods.
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eraging with multiresolution. In Garćıa, N., Mart́ınez, J., Salgado, L., eds.: Pro-
ceedings of the 8th International Workshop, VLBV 2003. Volume LNCS 23849 of
Visual Content Processing and Representation., Madrid, Spain, Springer (2003)
172–179
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Abstract. In this paper we discuss an extensive comparative study of 38
different classical and fuzzy filters for noise reduction, both for impulse
noise and gaussian noise. The goal of this study is twofold: (1) we want
to select the filters that have a very good performance for a specific noise
type of a specific strength; (2) we want to find out whether fuzzy filters
offer an added value, i.e. whether fuzzy filters outperform classical filters.
The first aspect is relevant since large comparative studies did not appear
in the literature so far; the second aspect is relevant in the context of
the use of fuzzy techniques in image processing in general.

1 Introduction

Noise reduction is a well-known problem in image processing. The reduction of
noise in an image sometimes is a goal itself, and sometimes is considered as a
pre-processing step. Besides the classical filters for noise reduction, quite a lot
of fuzzy inspired filters (i.e. filters that make use of techniques from fuzzy set
theory) have been proposed during the past years. However, it is very difficult
to evaluate the quality of this wide variety of filters, especially w.r.t. each other.

In this paper, we briefly explain the basic idea behind a “fuzzy” filter for
noise reduction, we discuss the different classes of classical and fuzzy filters,
and summarize the results of extensive comparative studies. The focus is on the
filtering performance as such, i.e. we consider the reduction of noise as a goal
itself. From these observations, it will be quite clear that fuzzy techniques for
image noise reduction indeed have an added value in the field of image processing.

2 Noise Reduction Filters

2.1 Noise and Noise Reduction

Images can be contaminated with different types of noise, for different types of
reasons. For example, noise can occur because of the circumstances of recording,
the circumstances of transmission (damaged data), storage, copying, scanning,
etc. Among the most common types of noise we find impulse noise (e.g. salt &
pepper noise) and additive noise (e.g. gaussian noise).
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The classical approach to reduce noise in a grayscale image mainly consists of
replacing the grayvalue of a pixel with another value; the way in which the other
value is determined depends on the filter that is applied. Quite often, all pixels
are treated in the same way (the classical median filter is a typical example).
It should be clear that this approach has some disadvantages. First, not all
the pixels should be treated in the same way, because not all the pixels will be
contaminated with noise in the same way. Secondly, one should try to find a more
adaptive way to replace a pixel value (e.g. taking into account characteristics of
a neighbourhood of the pixel).

A very important added value of fuzzy set theory is its ability to model
and to reason with imprecision and uncertainty. Uncertainty is what occurs
when processing an image for noise reduction, because of the fact that one can
distinguish degrees of contamination of a pixel in an image. Fuzzy set theory
allows to model and to work with this uncertainty, and to improve the quality of
noise reduction. In general, a fuzzy filter for noise reduction uses both numerical
information (just as classical filters) and linguistic information (modelled by
fuzzy set theory; e.g. “small” and “large” values). This information is processed
by fuzzy rules (approximate reasoning; e.g. “if most of the gradient values are
large, then assume that the pixel is noisy”), resulting in a (defuzzified) filter
output. The general scheme of fuzzy filters is shown in Figure 1.

Fig. 1. Fuzzy filters use both numerical and linguistic information to process an image

2.2 Fuzzy Filters for Noise Reduction

The above observations have led to several proposals for noise reduction algo-
rithms based on fuzzy set theory. The variety of available filters can ultimately
be divided in three subclasses: (1) classical filters; (2) fuzzy-classical filters, i.e.
fuzzy logic based filters that are a modification or extension of classical filters;
(3) fuzzy filters, i.e. filters that are purely based on fuzzy logic and have no
straightforward connection with classical filters. We have studied 38 different
algorithms that were specifically designed for impulse noise and/or gaussian
noise; the fuzzy-classical and fuzzy filters are accompanied by a reference for
those readers who want more background information on them.

– Classical filters: MF (Median Filter), WF (Weighted Filter), AWF (Adap-
tive Weighted Filter), WIENER (Wiener Filter), GAUS (Gaussian Filter),
EMF (Extended Median Filter).
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– Fuzzy-classical filters: FMF (Fuzzy Median Filter, [1,2]), TMED (Sym-
metrical Triangle Fuzzy Filter with median center, [10]), ATMED (Asym-
metrical Triangle Fuzzy Filter with median center, [10]), GMED (Gaussian
Filter with Median Center, [10]), FIDRM (Fuzzy Impulse noise Detection
and Reduction Method, [20]), WFM (Weighted Fuzzy Mean Filter, [11,12]),
FWM (Fuzzy Weighted Mean, [2]), AWFM (first Adaptive Weighted Fuzzy
Mean Filter, [11]), AWFM2 (second Adaptive Weighted Fuzzy Mean Filter,
[12]), CK (Choi & Krishnapuram Filter, [3]), FDDF (Fuzzy Decision Di-
rected Filter, [13]), TMAV (Symmetrical Triangle Fuzzy Filter with Moving
Average Center, [10]), ATMAV (Asymmetrical Triangle Fuzzy Filter with
Moving Average Center, [10]), DWMAV (Decreasing Weight Fuzzy Filter
with Moving Average Center, [10]), GMAV (Gausian Fuzzy Filter with Mov-
ing Average Center, [10]), MPASS (Multipass fuzzy filter, [15,6]), FMMF
(Fuzzy Multilevel Median Filter, [8,6]).

– Fuzzy filters: FIRE (Fuzzy Inference Ruled by Else-action Filter, [16]), DS-
FIRE (Dual Step Fuzzy Inference Ruled by Else-action Filter, [17]), PWL-
FIRE1 (first (non-adaptive) Piecewise Linear Fuzzy Inference Ruled by Else-
action Filter, [18]), PWLFIRE2 (second (adaptive) Piecewise Linear Fuzzy
Inference Ruled by Else-action Filter, [18]), IFCF (Iterative Fuzzy Control
based Filter, [5]), MIFCF (Modified Iterative Fuzzy Control based Filter,
[5]), EIFCF (Extended Iterative Fuzzy Control based Filter, [5]), SFCF
(Smoothing Fuzzy Control based Filter, [4]), SSFCF (Sharpening Smooth-
ing Fuzzy Control based Filter, [5]), GOA (Gaussian Noise Reduction Filter,
[23]), HAF (Histogram Adaptieve Filter, [9]), FSB1 (first Fuzzy-Similarity-
Based Noise Reduction Filter, [21,22]), FSB2 (second Fuzzy-Similarity-Based
Noise Reduction Filter, [21,22]), FSB1R (first Recursive Fuzzy-Similarity-
Based Noise Reduction Filter, [21,22]), FSB2R (second Recursive Fuzzy-
Similarity-Based Noise Reduction Filter, [21,22]).

3 A Comparative Study

The evaluation of the 38 filters was carried out on two levels: numerical (based
on the MSE values) and visual (based on visual inspection by humans). In order
to get a clear idea of the performance w.r.t. the level of noise, experiments have
been carried out for 10%, 20%, 30%, 50%, 70% and 90% of impulse noise and for
gaussian noise with σ = 25, 50, 75, 100 and 125. Furthermore, the experiments
have been carried out on several images, such as the Lena image (256×256), the
Cameraman image (256× 256) and the Bridge image (512× 512). This resulted
in a large amount of data, that was carefully examined. Due to space limitations,
we limit ourselves here to the general conclusions, and some illustrative figures.

3.1 Reduction of Impulse Noise

The conclusions w.r.t. the numerical results can be summarized as follows:

– The FIDRM filter performs best for all levels of impulse noise. In the case of
the Lena image it reduces the MSE by a factor 143 for low levels (10%) and
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by a factor 57 for very high levels (90%). For the other images these factors
range between 68 to 77 and 37 to 40, respectively. These are remarkable
results.

– For low noise levels (10%, 20% and 30%) the EMF filter nearly always is
the second best performing filter (an exception is its forth place when the
Lena image is corrupted with 30% impulse noise). Also the FMF filter has a
good performance: it always belongs to the top-3 or top-4 of best performing
filters. Other filters that perform good for low noise levels are the PWLFIRE2
filter (top-4 for 10% impulse noise), the AWFM2 filter (which performance
increases when the noise rate gets higher), the HAF filter (same remark), the
ATMED filter (top-5 for 20% impulse noise on the Cameraman image and
for 30% impulse noise on the Bridge image), and the AWFM filter (top-5 for
30% impulse noise on the Cameraman and Lena images).

– For high noise levels (50%, 70% and 90%) the top-5 of best performing filters
always consists of the same set, namely the FIDRM filter (always performs
best), the AWFM2 filter (nearly always is the second best performing filter),
and the HAF, ATMAV and AWFM filters.

In general, our conclusion based on the numerical evaluation of the filters is that
the FIDRM filter outperforms the rest. For noise levels around 10% to 30% the

Fig. 2. The Lena image with 20% impulse noise, and the results of FIDRM (top right),
EMF (lower left) and classical median filter (lower right)
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EMF and FMF filters are respectable counterparts. For higher noise levels, it is
clear that the AWFM2, HAF, ATMAV and AWFM filters constitute the top-5
of best performing filters. We can also clearly see that several filters are not
designed to deal with impulse noise. For example, the classical WIENER and
GAUS filters are specifically designed for gaussian noise and fail w.r.t. impulse
noise.

The visual results of all best performing filters are in general very good for all
considered noise levels. This confirms the good numerical performance of these
filters. For all noise levels the HAF filter produces a more blurry picture than
the FIDRM and AWFM2 filters; in other words, the FIDRM and AWFM2 filter
have the property that they keep the sharpness of the image. For the lower noise
levels (e.g. 30%), we also found that the FIDRM filter gives slightly sharper
results than the AWFM2 filter, while for the higher noise levels (e.g. 70%) the
AWFM2 filter gives slightly sharper results than the FIDRM filter. Figure 2
shows some visual results, including the best performing fuzzy filters and the
classical median filter.

In summary, the numerical and visual experiments confirm each other: the
FIDRM filter performs best for all noise levels, followed by the classical EMF
filter for low noise levels, and the AWFM2 filter for high noise levels. These
results show that the use of fuzzy techniques in image processing can have an
added value. Indeed, except for the EMF filter all best performing filters belong
to the class of fuzzy-classical or purely fuzzy filters.

3.2 Reduction of Gaussian Noise

The conclusions w.r.t. the numerical results can be summarized as follows:

– The GOA filter performs best for all levels of gaussian noise, for all 3 tested
images. The GOA filter reduces the MSE by a factor 5 for low levels (σ = 25),
and by a factor 8 to 12 for the higher noise levels. There is only one exception
to this general observation: for σ = 25 in case of the bridge image, the GOA
filter does not show up in the top-5 of best performing filters w.r.t. the
reduction of MSE.
From a numerical point of view these results are good. It should be noted
that the reduction of MSE is more substantial for high levels of noise than
for low levels of noise. Compared to the numerical results for impulse noise
the reduction of MSE is less impressive, which without any doubt is due to
the fact that gaussian noise is much more complex, and consequently much
more difficult to remove than impulse noise.

– The MIFCF, SFCF and AWFM2 filters perform second to third best in case
of low noise levels. The exact results differ depending on the used image;
there is no general observation. For higher noise levels, these filters are not
among the 5 best performing filters.

– The role of the second to third best performing filter for all noise levels above
σ = 25 is taken over by the IFCF filter. For the Bridge image in particular,
it always is the second best performing filter, followed by the EIFCF filter
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(which is a modified version of the IFCF filter) as third best performing
filter. For the Lena and cameraman images, the EIFC filter is only the fifth
best performing filter for the highest noise levels (σ = 100, 125). In general,
it can also be observed that the relative difference in MSE-values between
the GOA and the second to third best performing filters becomes greater for
higher noise levels.

– The results regarding the fourth and fifth best performing filters are rather
scattered for low noise levels, while they are quite pronounced for higher
noise levels. For low noise levels (σ = 25), the FMF, EIFCF, AWFM2 and
IFCF appear in the top-5. For slightly higher noise levels (σ = 50), the
WF and DWMAV filters appear, together with the MIFCF and ATMAV
filter. For the highest noise levels (σ = 75, 100, 125) it is quite clear from the
experiments that the WF and DWMAV filters are the fourth to fifth best
performing filters.

In general, our conclusion based on the numerical evaluation of the filters is that
the GOA filter clearly outperforms the rest. It is difficult to select a group of
other best performing filters, since the results depend too much on the processed
image: for low noise levels the IFCF and EIFC filters turn out to be good, for
high noise levels the WF and DWMAV filters generate quite stable results. The
reduction of the MSE values is in all cases however less remarkable than in the

Fig. 3. The Lena image with σ = 50 (gaussian noise), and the results of GOA (top
right), IFCF (lower left), and classical gaussian filter (lower right)
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case of impulse noise, but this is not really surprising since gaussian noise is a
much more complicated kind of noise.

The visual results for reducing gaussian noise are not as good as in the case of
impulse noise. Nevertheless, the top-3 of best performing filters gives satisfying
results for low noise levels; one can observe that the GOA filter produces a much
nicer, although a bit blurrier, image. For values for σ of 50 and higher, the
results of the filters are not always satisfying. The GOA filter makes the images
blurry (the higher the noise level, the blurrier the result after filtering), and the
second and third best performing filters from a numerical point of view do not
adequately reduce the noise. In particular, we notice the creation of small blocks
in the images. Figure 3 shows some visual results, including the best performing
fuzzy filters and the classical gaussian filter.

In summary, for low levels of gaussian noise the best performing filters give
a good visual result, which is in accordance with the numerical observations.
However, for higher levels of gaussian noise an honest conclusion is that the visual
results could still be improved. This observation also leads to the conclusion that
noise reduction filters, in the case of gaussian noise, should not only be evaluated
based on numerical measures.

4 Conclusion

Our comparative study has revealed that the best performing filters, out of a
total of 38 different classical and fuzzy filters, are based on fuzzy techniques. This
conclusion holds for both impulse and gaussian noise, and illustrates the fact that
fuzzy filters have resulted in an added value to the field of noise reduction.

Future research should, in our opinion, focus on the following three aspects:
(1) the development of (fuzzy) filters for other types of noise (e.g. speckle noise)
and mixed types of noise; (2) the extension of (fuzzy) filters to color and video
images; cfr. [19] for a recent attempt; (3) a continued inventarization and com-
parison of noise reduction algorithms.
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Abstract. In this paper we present a novel video denoising method
based on a fuzzy logic recursive motion detection scheme. For each pixel
a fuzzy quantity (motion confidence) is calculated, indicating the mem-
bership degree of the fuzzy set “motion”. Next, this fuzzy quantity is
used to perform adaptive temporal filtering, where the amount of filter-
ing is inversely proportional to the determined membership degree. Since
big motion changes reduce temporal filtering, a non-stationary noise will
be introduced. Hence a new fuzzy spatial filter is applied subsequently
in order to obtain the final denoised image sequence. Experimental re-
sults show that the proposed method outperform other state of the art
non-multiscale video denoising techniques and are comparable with some
multi-scale (wavelet) based video denoising techniques.

1 Introduction

Image sequences are often corrupted by noise, caused by e.g. bad reception of
television pictures. For certain applications such as television and surveillance,
these corruptions can often be approximated by an additive white Gaussian noise
model, which we consider in this paper.

Video denoising is generally achieved through some form of linear or non-
linear operation on a set of neighbouring pixels (in the spatio-temporal sense).
The defined spatio-temporal neighbourhood can be either defined through esti-
mated motion trajectory (motion estimation and compensation) or by nearest
spatio-temporal neighbourhood (motion detection and exclusion). A thorough
review of noise reduction algorithms for digital image sequences is presented in
[1]. The best results for video denoising are generally obtained by motion com-
pensated filtering. However, for some application such as for video sequences
with relatively big static background areas a less complex solution (e.g. motion
detection and exclusion filters) that performs comparable to more time consum-
ing motion compensated filter is preferred for its simplicity. Nevertheless, for the
advantageous performance of the “motion detection-exclusion” video denoising
algorithm a reliable and noise-robust motion detection is required.

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 666–673, 2005.
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The disadvantage of the binary motion detection is the dependency of the
selected threshold, which either detects false motion pixels due to noise (when
the motion threshold is low) or detects not enough true motion pixels (when the
motion threshold is high). Based on such motion detection output the algorithm
decides if the pixel value will be filtered in temporal direction or not at, where
the amount of filtering is fixed. This usually produces either motion blurring
(case when not enough motion is detected) or impulse-like artefacts (some noise
is also considered as motion).

In this paper a new noise reduction method of image sequences is presented,
where the motion detection is based on fuzzy logic. This motion detector com-
bines membership degrees appropriately using defined fuzzy rules, where the
membership degrees are determined by a membership function. As an output
the motion detector produces the membership degree in the fuzzy set “motion”,
which is expressed as a real number between the two extremes: zero (no mo-
tion for sure) and one (motion for sure). For each pixel, this membership degree
is used to perform adaptive temporal filtering. The larger this degree the less
temporal filtering will be applied. In such way we avoid temporal blurring and
remove noise. Since the pixels undergoing motion will not be sufficiently filtered,
we finally apply the proposed spatial filter. This fuzzy spatial filter is based on
the GOA filter [2]. The general framework of the presented algorithm is illus-
trated in Fig. 1.

Fig. 1. Schema of the proposed algorithm

The paper is structured as follows: The details of the fuzzy motion detection
are given in section 2. In section 3 the temporal and spatial filtering are dis-
cussed. Experimental results and conclusions are finally presented in section 4
and section 5, respectively.

2 Fuzzy Logic Motion Detection

In this section we investigate motion in noisy video sequences and propose the
framework for the fuzzy logic based motion detection method. In the following,
an image pixel will be denoted as I(x, y, t), where (x, y) and t stand for the
spatial and temporal coordinate of the image sequence I, respectively.
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In order to determine motion detection from the input noisy sequences, we in-
vestigate the relative correlation of the absolute luminance differences Δ(x, y, t),
defined as follows:

Δ(x, y, t) = |Iin(x, y, t) − Ip(x, y, t− 1)| (1)

in a small spatial 2D neighbourhood, where subindexes in and p stand for the
input noisy frame and the previous temporally filtered frame, respectively. We
assume that a certain pixel position being a part of a moving object if some
spatial neighbours are part of this object too. Therefore, in order to detect motion
for the current pixel position (x, y, t), we also take into account the following eight
differences: δ1 = Δ(x − 1, y − 1, t), δ2 = Δ(x − 1, y, t), δ3 = Δ(x − 1, y + 1, t),
δ4 = Δ(x, y− 1, t), δ5 = Δ(x, y+1, t), δ6 = Δ(x+1, y− 1, t), δ7 = Δ(x+1, y, t),
δ8 = Δ(x + 1, y + 1, t). Specifically, the proposed motion detection is based on
the following fuzzy rules:

Fuzzy Rule 1.
IF

(
Δ(x, y, t) is LARGE

)
AND

(
at least 3 of the δi’s are LARGE

)
THEN Iin(x, y, t) is a MOTION PIXEL

Fuzzy Rule 2.
IF

(
Δ(x, y, t) is SMALL

)
OR((

Δ(x, y, t) is LARGE
)

AND
(

all δ’s are SMALL
))

OR((
Δ(x, y, t) is LARGE

)
AND

(
7 of the 8 δ’s are SMALL

))
OR((

Δ(x, y, t) is LARGE
)

AND
(

6 of the 8 δ’s are SMALL
))

THEN Iin(x, y, t) is a NON MOTION PIXEL

Because “LARGE” and “SMALL” are non-deterministic features, these terms
are represented by fuzzy sets [3]. Fuzzy sets can be represented by member-
ship functions. In the proposed algorithm we have used membership functions
μLARGE (2) for the fuzzy set LARGE and μSMALL (3) for the fuzzy set SMALL,
which are defined as follows:

μLARGE(Δ(x, y, t)) =

⎧⎨⎩
0 if Δ(x, y, t) < a
Δ(x,y,t)−a

b−a if a ≤ Δ(x, y, t) ≤ b

1 if Δ(x, y, t) > b

(2)

μSMALL(Δ(x, y, t)) =

⎧⎨⎩
1 if Δ(x, y, t) < a

1 − Δ(x,y,t)−a
b−a if a ≤ Δ(x, y, t) ≤ b

0 if Δ(x, y, t) > b

(3)
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where the parameters a and b are determined as a function of the estimated
standard deviation, from the input noisy video sequence frame. For estimating
noise level we have used the method proposed in [4].

In fuzzy logic, triangular norms and co-norms [5] are used to represent re-
spectively the conjunction and the disjunction operators of Fuzzy Rule 1 and 2.
Some well-known triangular norms (together with their dual co-norms) are the
minimum (maximum) and the product (probabilistic sum) [5]. We use the prod-
uct for the conjunction and the probabilistic sum for the disjunction operators.

Based on the Fuzzy Rules (1) and (2), we calculate the membership de-
gree of the fuzzy set “motion pixel” (Mtrue(x, y, t)) and the membership degree
of the fuzzy set “non motion pixel” (Mfalse(x, y, t)), respectively. Finally, the
degree of motion confidence θ is determined in the following way: θ(x, y, t) =
Mtrue(x, y, t)/(Mtrue(x, y, t) +Mfalse(x, y, t)). The degree of motion confidence
“one” indicates existence of motion for sure while the zero motion confidence
degree indicates the total absence of motion. All degrees between these two ex-
tremes indicate that there is some kind of uncertainty.

3 Temporal and Spatial Filter

Using the output decision parameter - motion confidence, θ (section 2) for a
certain position (x, y, t), we perform recursive temporal filtering as follows: the
larger the value θ(x, y, t) is the less we filter temporally (i.e. we do not take into
account information from previously processed frames), because large θ(x, y, t)-
values indicate that pixel (x, y, t) is part of an moving object. When θ(x, y, t)-
value is relatively small, we then use more information from the previously pro-
cessed frame.

The temporal filtering method is presented in subsection 3.1, while the pro-
posed fuzzy-logic based spatial filter for non-stationary noise is presented in
subsection 3.2.

3.1 Temporal Filtering

Recursive temporal filtering is defined as follows:

Ip(x, y, t) = α(x, y, t) Iin(x, y, t) +
(
1 − α(x, y, t)

)
Ip(x, y, t− 1), (4)

where the parameter α controls the amount of filtering. We define this parameter
in terms of the motion confidence parameter θ, as follows:

α(x, y, t) =
α(x, y, t− 1)2 + 2

√
θ(x, y, t) − α(x, y, t− 1)

√
θ(x, y, t)

2
, (5)

where
√
θ(x, y, t) is an initial estimation based on the decision parameter θ.

With (5) we aim at introducing adaptation of temporal filtering in respect to
the previous temporal recursion. Namely, the less filtering that was performed in
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the previous recursion the more we reduce the filtering in the current temporal
recursion in order reduce the propagation of noise.

In order to adapt our algorithm to unsteady lighting conditions and sudden
spatio-temporal changes of the noise levels, we estimate the standard deviation
σ of noise [6] for the first frame only and then adapt it through the sequence
for each position (x, y, t), separately (i.e. σ(x, y, t)). The evaluation of the local
σ(x, y, t) is performed by recursive averaging as explained in [6]. The higher the
motion confidence, θ(x, y, t), the closer the current σ(x, y, t) is to the previous
value σ(x, y, t− 1), i.e. less temporal adaptation of local noise estimation will be
performed. On the other hand, in cases when the determined motion confidence
is relatively small the local noise estimation will be spatio-temporally updated in
the 3D neighbourhood. It should be noted, that in case of recursive temporal fil-
tering for regions not undergoing motion, the estimated local standard deviation
will be relatively smaller in comparison to areas that are not being temporally
filtered. This, however, is not a problem and even helps and enables efficient spa-
tial filtering of spatially non-stationary noise, that we explain in subsection 3.2.

3.2 Spatial Filtering

The proposed spatial filter deals with the non-stationary noise left by the pre-
ceding temporal filter. The main idea of this filter is to use local fuzzy gradients
for distinguishing between noise and edge elements. This method is inspired by
the GOA [2] filter. The main difference is noticed by the usage of the fuzzy gra-
dient values. In the proposed method these gradient values are used to derive
weighting coefficients, where the GOA filter calculated a global correction term.

Consider a 3×3 neighbourhood of a pixel (x, y, t). The gradient &DIp(x, y, t)
is defined as the difference between the central pixel (x, y, t) and its neighbour
in the direction D; D ∈ {NW,W,SW,S, SE,E,NE,N} (e.g. &NIp(x, y, t) =
Ip(x, y − 1, t)− Ip(x, y, t)).

We assume that an edge passing through a certain pixel causes large gradient
values perpendicular to the direction for the current pixel and for its two neigh-

Table 1. Pixels involved to calculate the fuzzy gradients: each direction D (column 1)
corresponds to a certain position (column 2) and column 3 specifies which pixels are
considered w.r.t. that position in the calculation

direction D position considered pixels
(X, Y ) (k1, k2) centres (l1, l2)

NW (x − 1, y − 1) (−1, 1) (0, 0) (1,−1)
N (x − 1, y) (0,−1) (0, 0) (0, 1)

NE (x − 1, y + 1) (−1,−1) (0, 0) (1, 1)
W (x, y − 1) (−1, 0) (0, 0) (1, 0)
E (x, y + 1) (−1, 0) (0, 0) (1, 0)

SW (x + 1, y − 1) (1, 1) (0, 0) (−1,−1)
S (x + 1, y) (0,−1) (0, 0) (0, 1)

SE (x + 1, y + 1) (−1, 1) (0, 0) (1,−1)
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bouring pixels as well. For example, for an edge-structure in west-east (W-E)
direction - &NIp(x, y, t), &NIp(x, y− 1, t) and &NIp(x, y+1, t) are expected to
be relatively big). By combining these three gradient values for each direction,
in a fuzzy logic manner, we distinguish between local variations due to noise and
due to edge structures. Table 1 gives an overview of the pixels that are involved
in the calculation for every possible edge direction.

If two of the three gradient values for some direction are large in magnitude,
we conclude that there is an edge in this direction. Consequently, we define the
Dth-direction fuzzy gradient value (positive) with Fuzzy rule 3:

Fuzzy Rule 3.
IF

(
&DIp(x, y, t) is positive large AND &DIp(x+ k1, y + k2, t) is

positive large
)

OR(
&DIp(x, y, t) is positive large AND &DIp(x + l1, y + l2, t) is

positive large
)

OR(
&DIp(x+ k1, y + k2, t) is positive large AND &DIp(x+ l1, y + l2, t) is

positive large
)

THEN &Fpos
D Ip(x, y, t) is positive large

where an identical rule is defined for the negative fuzzy gradient value as well.
The product and probabilistic sum are used for the AND and OR operations,

respectively. The corresponding membership functions are shown in Fig. 2 (a)
and (b).

Finally, weighting coefficients w in the proposed weighted averaging spatial
filter are calculated for each of the eight neighbours around the central pixel
(x, y, t). This is realized by the following fuzzy rule:

Fuzzy Rule 4. IF &Fpos
D Ip(x, y, t) is small AND &Fneg

D Ip(x, y, t) is small

THEN w(X,Y, t) is large

In case the negative and positive fuzzy gradient values for some direction D are
both small (i.e. when the membership degree in the fuzzy set “small” is large),

Fuzzy set positive large

0

1

differences

membership degree

(a) (b) (c)

Fig. 2. Three membership functions: (a) negative large, (b) positive large and (c)
small
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we then suppose that the neighbour in direction D w.r.t. the centre is similar to
the centre. This indicates that no edge is present. Hence, the contribution of the
corresponding pixel to the spatial filtering should be relatively large. This is done
by introducing large weighting coefficient values in such cases and vice-versa in
the opposite case.

The final output of the spatial filter is defined as follows:

Iout(x, y, t) =

1∑
k=−1

1∑
l=−1

Ip(x+ k, y + l, t) · w(x + k, y + l, t)

1∑
k=−1

1∑
l=−1

w(x+ k, y + l, t)

(6)

with w(x, y, t) = 1. The membership function “small” of the corresponding fuzzy
set is shown in Fig. 2 (c) and it depends on the parameter K, where the pa-
rameter K being proportional to the estimated σ(x, y, t) (as explained in sub-
section 3.1) and is defined as K = 3σ(x, y, t)/255.

4 Experimental Results

The results of the proposed Fuzzy Motion Recursive Temporal-Spatial Filtering
technique (FMRTSF) have been compared with several state of the art tech-
niques for video denoising: (1) the motion and detail adaptive KNN filter [4], (2)
the α-trimmed filter [7], (3) the rational filter [8] and (4) the multi-class wavelet
based spatio-temporal filter (MCWF) [9].

Table 2 illustrates the performance of the proposed method in comparison
to the above mentioned methods, in terms of peak signal to noise ratio (PSNR).
As seen from Table 2 the proposed Fuzzy Motion Recursive Temporal-Spatial
algorithm outperforms single resolution techniques [4,8] and yields comparable
results to more complex multi-scale techniques [9].

The main improvement of the spatial filter can be noticed in the reduction of
the non-stationary noise while preserving the important image structures. Re-
gions where the noise was filtered out temporally become sharper and regions

Table 2. The PSNR results for the processed sequences corrupted with Gaussian noise
(σ = 10)

PSNR (in dB)
input Fuzzy adaptive α rational MCWF

sequence MRTSF KNN trimmed
Salesman 34.2 32.5 29.4 30.6 33.0
Deadline 34.9 32.2 24.3 27.3 33.2
Miss Am. 36.8 35.3 35.1 35.2 35.9
Trevor 34.3 34.1 34.1 34.3 35.4
Tennis 31.5 30.5 22.5 26.5 31.3
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with much non-stationary noise become smoother, whereby the visual perfor-
mances increase (presented on: http://www.fuzzy.ugent.be/ACIVS05.html).

5 Conclusion

A novel fuzzy logic based recursive temporal - spatial filter has been presented in
this paper. Fuzzy motion detection is followed by a recursive temporally filtering.
Since the pixels undergoing motion will not be sufficiently filtered temporally,
the spatial filtering is applied afterwards. This spatial filter is based on the
GOA filter [2]. Further research could be aimed at improvement of the motion
detection by local contrast enhancement and usage of color information.
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Abstract. This paper aims to provide a document restoration and segmentation 
algorithm for the Historic Middle Persian or Pahlavi manuscripts. The proposed 
algorithm uses the mathematical morphology and connected component con-
cept to segment the line, word, and character overlapped in the Middle-age Per-
sian documents in preparation for OCR application. To evaluate the perform-
ance of the restoration algorithm, 200 pages of the Pahlavi documents are used 
as experimental data in our test. Numerical results indicate that the proposed al-
gorithm can remove the noise and destructive effects. The results also show 
99.14% accuracy on the baseline detection, 97.35% accuracy on the text line 
extraction and removing other lines overlaps, and 99.5% accuracy for segment-
ing the extracted text lines to their components. 

1   Introduction 

Iranian languages are branch of "Iranian Indian" as well as "European Indian" lan-
guages. The Iranian Indian languages are divided into three distinct periods, "Ancient", 
"Middle-Age " and "Modern". This paper aims to provide a restoration algorithm for 
the Middle-age Persian or Pahlavi manuscripts.  

The Middle Age Persian language has 16 characters and has a right to left direction. 
We are aiming to provide a restored and segmented document for the OCR applica-
tions. The major problems in the Middle-age Persian document are: 1) Noise and de-
structive effects, 2) Line, word and character intersections and overlaps. These effects 
have changed the Middle-age Persian to one of the most difficult Iranian languages.  

Unfortunately the automatic recognition of the Pahlavi documents has not received 
any attention from the research community. This study is aiming to provide a docu-
ment analysis system for restoring and segmenting documents to lines and words. The 
paper uses mathematical morphology and connected components concept to develop 
the restoration technique. 

This paper has been organized as follows. The second section describes a typical 
document restoration and segmentation block. In this section, the essential document 
analysis blocks and our selected strategy are discussed in details. The third section 
presents the proposed algorithm. The numerical results are presented in the fourth 
section. Finally, the conclusions will be discussed in the last section. 



 A Restoration and Segmentation Unit for the Historic Persian Documents 675 

2   Document Analysis 

It is necessary to perform several document analysis operations prior to recognizing 
text in a scanned document. Some of the common operations performed prior to rec-
ognition are [2]-[5]: Thresholding, noise removal, line segmentation, the isolation of 
textual words, and character segmentation, and the isolation of individual characters. 
In the following the necessary steps for a typical document restoration and segmenta-
tion will be discussed. 

2.1   Thresholding  

The task of thresholding is to extract the foreground from the background. The histo-
gram of gray-scale values of a document image typically consists of two peaks: a high 
peak corresponding to the white background and a smaller peak corresponding to the 
foreground. Therefore, the threshold gray-scale value is an “optimal” value in the 
valley between the two peaks. Several approaches have been developed on threshold-
ing and many efficient algorithms have been proposed [6], [7]. 

In this study, methods such as Maximum Entropy Sum Method, Entropic Correla-
tion Method and Renyi Entropy were selected [7]. The experimental results indicated 
that Renyi Entropy outperforms the other two techniques. 

2.2   Noise Removal 

Noise removal is a topic in the document restoration that has been dealt with exten-
sively for typed or machine-printed documents. For handwritten documents, the con-
nectivity of strokes has to be preserved. Digital capture of images can introduce noise 
from scanning devices and transmission media. Moreover, due to the old age of the 
documents under study many destructive effects such as moisture, dust, etc. haveaf-
fected the quality of those texts. Smoothing operations are often used to eliminate the 
artifacts introduced during image capture. They are many noise removal and smooth-
ing methods in the literature. The morphological operators have been used in this 
work [7], [8] and will be explained in the following. 

They are two fundamental morphological operators, erosion and dilation. The ero-
sion of A by B is defined as [7], [8]: 

( ){ }ABzBA z ⊂=⊗  (1) 

When A is eroded by B, the latter is called a structuring element. Eroding an image by 
a structuring element B has the effect of 'shrinking' the image in a manner determined 
by B. Larger B causes more erosion effects on A. In this paper, we have used a 33 ×  
rectangle structure element as: 

=
111

111

111

B  (2) 
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The dilation of A by B, denoted BA ⊕ , is defined as: 

( ){ }Φ≠=⊕ ABzBA z
 (3) 

Dilation expands the image based on the structuring element characteristics. 
Based on these two fundamental operators, many other functions have been de-

fined, which opening and closing are the most important. Opening generally smoothes 
the contour of an object, breaks unwanted touching characters, and eliminates these 
degradations. Closing, as opposed to opening, generally fuses narrow breaks and long 
thin gulfs, eliminates small holes and fills gaps in the contour. Opening of the set A 
by structuring element B, denoted BA , is defined as: 

BBABA ⊕⊗= )(  (4) 

and similarly, the closing of set A by structuring element B, denoted BA∗ ,is  
defined as: 

BBABA ⊗⊕=∗ )(  (5) 

Morphological smoothing operator is an opening followed by a closing. The net re-
sults of these two operations can remove (or attenuate) both bright and dark artifacts 
and noises. These operators are also capable of connecting undesired discontinuities 
caused in the previous stages as well as smooth the inner and outer contours. 

2.3   Page to Line Segmentation 

There are many techniques for Segmentation of handwritten text into lines [9], [10]. 
This can be accomplished by scanning the image horizontally to obtain the horizontal 
histogram profile and scanning at a different small angle and obtaining the histogram 
along this skewed line. The task is more difficult in the handwritten domain, where 
lines of text might be overlapping with the neighboring lines. In this paper we propose 
a line segmentation strategy, which has a good performance on the Middle-age  
documents.  

2.4   Lines to Words and Characters Segmentation 

Line separation is usually followed by a procedure that separates the text lines into 
words. The most approaches in the literature have focused on identifying physical 
gaps for word segmentation [9], [10]. These methods assume that gaps between words 
are larger than the gaps between the characters.  

In contrast with the other handwritten texts, Pahlavi has some additional difficul-
ties. Based on the Middle-age writing style, words, characters and their combinations 
are usually appeared with frequently overlaps. Therefore the gap between words is not 
a proper criterion for word segmentation. In this paper we have used the connected 
component approach [7] to solve the problem. Based on this idea, document lines are 
decomposed to many connected components. These components are characters or 
combination of connected characters. There are several connected component algo-
rithms in the literature [7], [8], [10], [11], [12]. In this paper we have used the mor-
phological method [7], [8], which will be presented in the following details. 
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Let Y represents a connected component contained in a set A and assume that a 
point P of Y is known. Then the following iterative expression in Eq.(6) yields all the 
elements of Y [7]: 

ABXX kk )( 1 ⊕= −  (6) 

where PX =0 , and B is a suitable structuring element. If 1−= kk XX , the algorithm 

has converged and we let kXY = . We have used simple rectangle structure element. 

3   Proposed Document Analysis System  

In the first step, thresholding is globally applied on the scanned page. Then the mor-
phological smoothing is used for noise removal. In the next step, initial baseline can-
didates are extracted from the horizontal histogram maximas. In the initial step, many 

local peaks are extracted{ }Mlll ,...,, 21
 which il  is the position of thi'  histogram peak. 

The most important task is to select some of these as the true baselines 
{ }Nlll '

2
'

1
' ,...,, ( MN < ). We have used the clustering k-Means [13] to obtain this 

task. The clustering algorithm uses the histogram maximas to find potential position 
for the baselines{ }Nlll '

2
'

1
' ,...,, . Clustering of these baselines{ }Mlll ,...,, 21

 yields the 

true baseline i.e. { }Nlll '
2

'
1
' ,...,, . As can be seen in the next section, the applied proce-

dure has a good performance for baseline detection. The other task of this block is 
line width estimation. We have applied the same procedure on the horizontal histo-
gram minimas to find the best separation area for the successive lines. The result will 
be the best candidate for between line gaps. The average distance between these gaps 
(with illuminating the first and last lines) is considered as the line width and is 
called Δ.2 . In the next block an initial line candidate is extracted as: 

:),.:.(_ '' Δ+Δ−= αα iii llpageInputLine  (7) 

Mi ,...,2,1= , [ ]2.1,1∈α   

which, 
pageInput _ : The original document page (not the thresholded image) 

il ' : thi'  baseline position 
α : The amount of line overlapping 

iLine : thi'  extracted text line 

As can be seen in Eq.(7), for more precision, line is extracted from the original im-
age rather than the thresholded image Therefore this requires that the thresholding and 
noise removing process be repeated. In the next stage, morphological connected com-
ponent detection is used for detecting the line components. The following steps has 
been used to extract all text components: 

Step 1: Horizontally scan the page to find the starting 
            P point and set PX =0 and 1=k . 
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Step 2: Compute ABXX kk )( 1 ⊕= −  and set 

           1+= kk        
Step 3:  if 1−≠ kk XX  go to step 2  

Else, label kX  as a component and remove it from the page image i.e 

            kii XLineLine −=  

Step 4: If 0≠iLine  then go to step 1  

             Else, terminate 
The results include the desired components or text line components as well as the 

undesired components or intersected upper and lower line components. These unde-
sired components are generated from the overlapping part of neighbor lines, noise and 
thresholding effects. In this stage, the line pen width ( iwidthpen _ ) is estimated by 

the method of reference [14]. We have made a decision rule for discarding undesired 
components. The proposed decision making strategy uses the distance between com-
ponent center of mass and baseline (

idist ), as well as the component size ( isurf ): 

iii lCMdist −=  (8) 

And 
 

= ii Csurf  (9) 

These parameters are compared with “ Δ.β ” and “ 2_ iwidthpen ” as follows: 

component  this Discard

)_().(  If 2<∨Δ> iii widthpensurfdist β  (10) 

[ ]1,55.∈β   

Otherwise, the component will be sent to the recognition phase. The first condition 
checks the center of mess distance from baseline, if the distance is greater than Δ.β  

it means this component belongs to the adjacent lines. The second condition, checks 
the size of component with the smallest component in the Pahlavi text, which is a dot 
point. If this condition is satisfied the component is discarded. 

4   Numerical Results  

A set of 200 pages has been scanned from different volume of “The Pahlavi Manu-
script Collections”[15]. The proposed document restoration has been tested on this 
database. Fig.1 shows the result of a sample page, which are respectively the original 
page, thresholded, noise removed image, and initial segmented lines. The results of 
the line segmentation have been presented in Fig.2 and Fig.3. We have also counted 
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the number of misdetected text lines and connected components. In this way, the 
number of correct separated text lines and correct extracted components are divided 
by their total numbers.  

 

Fig. 1. Sample page analysis 

 

Fig. 2. Second stage: line interference removal 

 

Fig. 3. Third stage: character and connected component interference removal 
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5   Conclusions  

In this paper, a document analysis system was proposed for the Middle-age Persian 
manuscript. Through this research, we are aiming to revitalize the Middle Persian and 
prepare those texts for OCR applications. The main idea of the proposed technique is 
based on the morphological analysis and connected component concept. The con-
nected component properties were used to segment the line, word, and character over-
lapped Pahlavi documents. Performance of the algorithm was tested on 200 pages of 
the Pahlavi texts. The algorithm had a good success on document restoration and 
segmentation. Numerical results indicate that the proposed algorithm can remove the 
noise and destructive effects. The results also show 99.14% accuracy on the baseline detec-
tion, 97.35% accuracy on the text line extraction and removing other lines overlaps, and 99.5% 
accuracy for segmenting the extracted text lines to their components. 
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Abstract. In this paper we present a recursive algorithm for the cleaning and 
the enhancing of historical documents. Most of the algorithms, used to clean 
and enhance documents or transform them to binary images, implement 
combinations of complicated image processing techniques which increase the 
computational cost and complexity. Our algorithm simplifies the procedure by 
taking into account special characteristics of the document images. Moreover, 
the fact that the algorithm consists of iterated steps, makes it more flexible 
concerning the needs of the user. At the experimental results, comparison with 
other methods is provided. 

1   Introduction 

The binarization of images is a long investigated field with remarkable accomp- 
lishments. Some of them have also been applied to documents or historical 
documents. One of the older methods in image binarization is Otsu’s [6], based on the 
variance of pixel intensity. Bernsen [1] calculates local thresholds using the 
neighbours. Niblack [5] uses local mean and standard deviation. Sauvola [7] presents 
a method specialised on document images that applies two algorithms in order to 
calculate a different threshold for each pixel. As far as the recent problem of historical 
documents is concerned, Leedham [3] compares some of the traditional methods on 
degraded document images while Gatos [2] builds up a new method by using a 
combination of existing techniques. These are also the cases of Shi[8] and Yan[9] 
applied to some historical documents from the US library of Congress. Leydier [4] 
works with coloured document images and implements a serialization of the k-means 
algorithm. Some of the above mentioned methods have also used specific filters or 
algorithms for the cleaning of the document as an additional module. 

The historical documents suffer from bad storage conditions and poor contrast 
between foreground and background due to humidity, paper deterioration and ink 
seeking. Moreover, the fragility of those documents does not allow access to many 
researchers while a legible digitised version is more accessible.  

In the next section, a description of the algorithm is given, while in section 3 the 
algorithm is analysed in detail. Some experimental results and a short comparison 
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with traditional binarization methods are described in section 4. Finally, our 
conclusions are provided in section 5. 

2   Algorithm Description 

As input, we assume greyscale historical document images where the tones of the 
foreground (characters, graphics, etc) outrange over the background (including spots, 
stains, wrinkles etc). As example, consider the historical documents of fig. 1. Our 
images are described by the equation: 

]1,0[,),( ∈= rryxI  (1) 

where x and y are the horizontal and vertical coordinates of the image, and r can take 
any value between 0 and 1 while r=1 stands for white colour and r=0 stands for black 
colour. Our intention is to transform the intermediate grey tones to either black (r=0) 
for foreground or white (r=1) for background. 

 

Fig. 1. Historical Documents before and after the application of our algorithm 

The algorithm is based on the fact that a document image includes very few pixels 
of useful information (foreground) compared to the size of the image 
(foreground+background).  

According to our experiments, rarely the black pixels exceed the 10% of the total 
pixels in the document. Taking advantage of this fact, we assume that the average 
value of the pixel values of a document image is determined mainly by the 
background even if the document is quite clear. This claim is supported from fig. 2, 
where are depicted the histograms of the above examples, respectively. In the same 
figure two thresholds, of our method and Otsu’s method, as well as the average value 
in each case are given. It is obvious that the average value is always on the 
background side, considering either threshold. 

Using this fact our method consists of two procedures that are applied alternately. 
In the first part the average colour value of the image is calculated and then subtracted 
from the image, while in the second part of the algorithm we perform histogram 
equalisation, thus the values of remaining pixels would expand and take up all of the 
greyscale tones. Briefly, the algorithm consists of the following steps: 
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Fig. 2. The histograms of the corresponding documents of figure 1. The thresholds extracted 
with the proposed method (--), Otsu’s method (-·) and the average value of the pixels (··). 

1. Calculation of the average pixel value (Ti) of the image. 
2. Subtraction of the Ti from all the pixels of the image.  
3. Histogram equalisation. 
4. Repetition of steps 1-3 till the T0

i-T
0

i-1<0.2, where T0
i the corresponding initial 

threshold for repetition i (see  Eq. 6). 
5. Binarization of the final image. 

In the next section, we analyse each of the above steps giving the necessary 
mathematical formulas and examples. 

3   Algorithm Analysis 

Considering the equation (1) the calculation of the Ti, threshold used in i-th repetition 
for an MxN document image, is given by the formula: 

MxN

yxI

T x y
i

i =
),(

 (2) 

where Ii(x,y) is the image at the i-th repetition. Eq. (2) is used in the subtraction, 
yielding Is before equalisation: 

),,(1),( yxITyxI iis +−=  (3) 

In each repetition, during the subtraction, a lot of pixels are moved to the side of the 
background and the rest of the pixels are fading. In fig. 3, the image that corresponds 
to the T1 threshold of the document image 1b is shown as well as the image after the 
first subtraction. 

After the subtraction step, we adjust the intensity of the image by using the 
histogram and extending the values to all the colour range from 0 to 1. Since the 1s 
(background) shouldn’t be changed, and the rest of the pixel values should extend 
from 0 to 1, the relation we use for the equalisation is: 
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Fig. 3. (from left to right and up to down). a) the image that corresponds to the T1=0.7755 
threshold of the document image 1b, b) the image after the first subtraction and (c) the image 
after the first histogram equalisation. 

 

Fig. 4. The histograms of the document image of fig.1b before and after the first equalisation. 
Please note that the histograms have been scaled appropriately in order to show more detail. 
The maximum value is shown on the upper right corner. 

i

s
i E

yxI
yxI

−
−

−=
1

),(1
1),(  (4) 

where Is is given by the equation (3) and Ei is the minimum pixel value in the image Is 
during i-th repetition, just before the histogram equalisation. In fig. 4, it is shown the 
document image of fig.1b before and after the first histogram equalisation.  

The whole procedure is repeated the necessary times till the document image is 
satisfactorily cleaned. The number of repetitions depends on the image and the 
intensity of any existent stains, crumples, lighting effects on the image. The terminal 
condition in our algorithm is the difference of two successive thresholds.  

Combining the equations (3) and (4) we extract a relation between the final and 
initial image during a repetition of our algorithm: 

i

ii
i E

yxIT
yxI

−
−

−= −

1

),(
1),( 1  (5) 
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Fig. 5. A detail of the figure 1b in the initial stage and during the 11 first repetitions (from left 
to right and top to bottom). In rectangle, the suggested threshold result. 

where Ii is the image after the i-th repetition having used the corresponding thresholds 
Ti and Ei for the subtraction and equalisation in the repetition, as it has been described 
above. Thus, using the equation (5) and making the necessary replacements for n 
repetitions, the corresponding initial value To, in the initial histogram, of the final 
threshold Tf will be: 

∏ ∏∏
= = =
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==
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n
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1 1 2
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1

11

0  (6) 

The necessary amount of repetitions depends very much on the document. as well 
as on the required result, and it never exceeded the 20th repetition in our experiments 
(100 documents). However, the process after the first repetitions is very slow. Thus, 
we could say that more than one stage could be accepted. In fig. 5 is presented a detail 
of the figure 1b during the 11 first repetitions while in fig. 6 we show the first 15 
corresponding thresholds on its histogram.  
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Fig. 6. The corresponding thresholds on the histogram of fig.1b. In circle, you can see the result 
according to the suggested threshold 3‰ of the document size. 

Usually, such a procedure turns out a binary image. During our collaboration with 
historical researchers, we found out that they are more interested in cleaning the 
document in order to expose or print it but they prefer to keep the greyscale or 
coloured view of the document. However, in the adaptation of this algorithm for 
binarization, having already concluded to the right final stage, we binarize the image 
by turning all the pixels that are not already white (value 1) to black (value 0). 

4   Experimental Results 

Although the cleaning of historical documents is a great necessity, it is a relatively 
new field in research and there is no common database to be used for result valuation. 
In our research, we used a private archive with documents of 18th century that was the 
inspiration for this work. The archive was discovered recently in very bad condition 
and includes a lot of personal information. Thus, although it proved to be perfect for 
our work it is not allowed to be published in its majority. For that reason we will give 
just fragments of documents in our results. 

   

   

Fig. 7. Presence of background variance and baselines (from left to right and up to down) a) 
original b) proposed (grayscale) c) proposed (binary) d) Bernsen’s e) Niblack’s f) Otsu’s 
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Fig. 8. Presence of background variance and transparency (from left to right and up to down). 
a) original b) proposed (grayscale) c) proposed (binary) d) Bernsen’s e) Niblack’s f) Otsu’s. 

As mentioned before in our experiments we used 100 document images in grey 
scale. In order to compare the results we used the methods described in [1,5,6,7]. 
Since those methods are used for binarization, we give the grey scale as well as the 
binary result of our method and the results of the other methods. Some results are 
shown in fig. 7-8, trying to demonstrate the performance of the proposed method in 
typical problems of historical documents like background variance stains and 
transparency. 

Due to the simplicity of the algorithm, the computational cost is very low in 
comparison to other algorithms appropriate for document images.  

5   Conclusion 

In this paper we presented a method appropriate for the cleaning or binarization, if 
necessary, of historical document images. The method makes use of the fact that the 
pixels that compose the text in an historical document, usually, do not exceed the 10% 
of its size. This allowed us to build an algorithm that consists of two successive stages 
applied alternatively on the image. The results have been compared with other 
methods and are quite satisfactory. 

The advantages of our algorithm is: simplicity, since it doesn’t require any further 
pre-processing procedure and is based on a simple technique, low computational cost 
due to its simplicity, and robustness, since it gives the capability to the user to succeed 
the desirable result in greyscale or binarised final image. 

It is in the interest of the authors to experiment by dividing and treating the image 
in areas, in order to deal with cases that the grey level of the desired text or graphics 
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varies markedly, and possibly crosses over the grey level of background in other parts 
of the image. 
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Abstract. Image processing is widely used in many applications, in-
cluding medical imaging, industrial manufacturing and security systems.
In these applications, the size of the image is often very large, the pro-
cessing time should be very small and the real-time constraints should
be met. Therefore, during the last decades, there has been an increasing
demand to exploit parallelism in applications. It is possible to explore
parallelism along three axes: data-level parallelism (DLP), instruction-
level parallelism (ILP) and task-level parallelism (TLP).

This paper explores the limitations and bottlenecks of increasing sup-
port for parallelism along the DLP and ILP axes in isolation and in
combination. To scrutinize the effect of DLP and ILP in our architec-
ture (template), an area model based on the number of ALUs (ILP) and
the number of processing elements (DLP) in the template is defined, as
well as a performance model. Based on these models and the template,
a set of kernels of image processing applications has been studied to find
Pareto optimal architectures in terms of area and number of cycles via
multi-objective optimization.

1 Introduction

Recently, vision based human interfaces, robotic, inspection or surveillance sys-
tems have gained more and more importance, and real-time image processing is
essentially necessary for these applications. Therefore, during the last decade,
the exploitation of parallelism in applications has been increased [1].

Image processing operations can be classified as low-level (e.g. smoothing,
sharpening and filtering), intermediate-level (e.g. Hough transform and object
labeling) and high-level (e.g. position estimation and object recognition) [2].
Low-level operations and some medium-level operations can be implemented
efficiently in single instruction multiple data (SIMD) processors to exploit data-
level parallelism (DLP). High-level operations and some medium-level operations
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can be mapped onto very long instruction word (VLIW) processors which exploit
the instruction-level parallelism (ILP) [3].

During the last decade, many systems have been designed to exploit par-
allelism (DLP and ILP). Xetal [4] is an SIMD processor which includes 320
processing elements (PEs), each with one ALU. It is suitable for many low-level
operations to exploit DLP. Trimedia [5] is a VLIW example; it can execute five
operations per cycle. It is suitable to exploit ILP in high-level operations.

There are also some processors which combine DLP and ILP together, like
Imagine [6], which includes eight PEs, with each PE including six ALUs. By
increasing the number of PEs, it is possible to exploit more DLP in applications
which leads to better performance (decrease in number of cycles). It is also
possible to increase the potential for ILP by increasing the number of ALUs per
PE, which again causes better performance. In both cases, the area (cost) of the
architecture is increased. So, there is a trade-off between area and performance.

In this paper, the relationship between the number of processing elements
and ALUs per PE, on the one hand, and the area and performance of the ar-
chitecture, on the other hand, is studied. For this purpose, an area model based
on the number of PEs and ALUs is defined, as well as a performance model. We
use multi-objective optimization to find Pareto optimal architectures for several
image processing kernels.

The paper is organized as follows. Section 2 explains the architecture on
which our measurements are based. The area and performance models for this
architecture are studied in Sections 3 and 4. The implementation of the kernels
and the design-space exploration via multi-objective optimization are studied in
Section 5. Conclusions and future work are discussed in Section 6.

2 Architecture

Fig. 1 shows the template (processor) which is used for our measurements. The
template includes the following parts: Processing Elements (PEs); micro con-

Fig. 1. SIMD Architecture Template (each PE can be a VLIW)
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Fig. 2. PE with shared register file Fig. 3. PE with local register file

troller unit; inter-PE communication unit; stream memory unit (including the
stream controller).

Fig. 2 and 3 show the inside of a processing element which includes ALUs
and register file(s). The number of ALUs is one of the template parameters
determining the number of operations that can be performed at the same time
by a single PE. Each ALU has two inputs and one output. Two kinds of register
files can be used. One type is a shared register file. It means that each PE has one
register file and each ALU is attached to this shared register file by three ports
(two inputs and one output) (Fig. 2). Another kind of register file is the local
register file. It means that each ALU input has a separate register file and there
is an intra-PE switch that connects the ALU outputs to the inputs (Fig. 3). The
stream controller unit is responsible for reading data (e.g. pixel values) from the
stream memory and transferring it to the register files and vice versa. The size
of the register file is also one of the template parameters. The micro controller
unit has two parts: 1- the memory part for storing PE instructions and 2- the
decoder for decoding PE instructions and sending them to PEs. The inter-PE
communication unit is responsible for connecting PEs together to send/receive
data among each other. This unit is an N*N switch (with N being the number of
PEs). The stream memory unit is the connection between external memory and
I/O (outside the template) and the PEs. It takes data from off-chip memory and
sends it to the PEs via the stream controller and vice versa. Input and output
data are stream based. Each PE iteratively reads elements from input streams
and writes elements to the output streams. The stream memory contains N (the
number of PEs) single ported memory banks and each PE is able to access its
own part in parallel to other PEs. This implies that inter-PE communication
requires a separate communication network (inter-PE communication unit) and
cannot be done by the stream memory.

3 Area Model

In order to compare different parallel configurations, we developed an area model.
We derive a formula for area, which is based on the number of ALUs (functional
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Table 1. Parameters used in the area
model

Table 2. Parameters of DSE

units) in each PE and the total number of PEs. This area model is meant to give
an area estimation for the region containing the ALUs, PEs, micro controller and
stream memory of the template. Template parameters are described in Table 1.
The total area of the template is (in mm2):

Atotal = NPE ·APE + Ainter−PEcomm + Astream−memory + Amicro (1)

The inter-PE communication unit allows each PE to send/receive data to/from
other PEs. The area of this switch (assuming a wire limited design) grows
quadratically with the number of PEs inside the template. The basic formula for
the switch size is:

Ainter−PEcomm = N2
PE · b2 · w2 (2)

To estimate the size of this switch, we used a wire pitch of 1.86 μm to make
enough room for power, ground, and noise shielding wires [7].

The PE area depends on the area of the ALUs, the register file and the intra-
PE switch (in case of local register files). Based on the register file, the PE area
can be calculated in two ways:

– PE with shared register file: In this case, the area includes the register file
and the ALUs. For our estimation of the register file size, we borrow the
model described by Rixner in [7]. In his model, the area of a register file is
the product of the number of registers, the number of bits per register and
the size of a single-bit register cell. The size of each register cell is a function
of the width and height of the register cell without ports (estimated to be
w2) and the number of ports squared. As each ALU needs 3 ports (2 inputs
and 1 output), the area of the register file is a function of the number of
ALUs squared. The total area of a PE is:

APE = Nregister · b · (3 · NALU )2 · w2 + NALU ·AALU (3)

– PE with local register files: In this case, the area includes the local register
files, the ALUs and the intra-PE switch. Each ALU has two local register
files with two ports (one input and one output). The area of a local register
file is the product of the number of registers, the number of bits per register
and the size of a single-bit register cell (with two ports). Regarding (2), the
area of the intra-PE switch is proportional to the number of ALUs squared.
Therefore, the area of a PE is:

APE = Nregister · 2 · b ·Alrf bit + NALU · AALU + N2
ALU · b2 · w2 (4)
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Since every PE receives the same instruction, the micro controller size is con-
stant as the DLP degree is increased. Even when the number of ALUs per PE
increases, the code size does not change dramatically. The total number of op-
erations remains roughly constant (assuming not too much speculative code).
Only the number of NOP will increase (a well known VLIW problem). However,
using NOP code compression will compensate for that. Therefore, the memory
storage part of the microcontroller can remain constant, but the control logic
and instruction decoders should be increased as we scale ILP:

Amicro = Amicromemory + Adecoder ·NALU (5)

The area of the stream memory unit contains a constant part for the stream
controller plus the product of the number of PEs, the number of ALUs per PE,
the memory size for each ALU (when increasing the number of ALUs, more data
storage is needed to keep them busy; we assume a constant memory size required
per ALU), data width and the area of a 1-bit SRAM:

Astream−memory = NPE ·NALU · b ·memory size per ALU · ASRAM bit+
Astream−controller

(6)

4 Performance Model

For calculating the number of cycles of an application kernel, we used an
adapted version of the Imagine tools. It is possible to simulate varying degrees of
instruction-level parallelism by changing the number of ALUs in each PE. From
the microcode file (output of the Imagine kernel compiler), we can directly de-
termine the number of instructions in each basic block of a kernel. Furthermore,
we know which of these blocks correspond to the kernel loop body and which are
outside the loop. For kernels with one loop, we model its number of cycles as:

Ncycle = Nloop−cycle ·Nloop−iter + Nnonloop−cycle (7)

Nloop−cycle and Nnonloop−cycle are extracted from the microcode file. The
number of iterations (Nloop−iter) depends on Ndata (the amount of data sent to
the kernel, e.g. image size) and NPE , as expressed in the following formula.

Nloop−iter = 'Ndata

NPE
( (8)

The cycle calculation is easily adapted to kernels with multiple loops.

5 Evaluation

In Sections 2, 3 and 4, we studied the template and the area/performance model
related to it. In this section, the search for an optimal solution in terms of area
and cycles is discussed.
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5.1 Multi-objective Optimization

It is obvious that the number of cycles needed for the execution of a program can
be decreased by increasing the number of PEs. By increasing the number of PEs,
the area of the template is also increased (1). Therefore, improving the number
of cycles leads to an increase in area and vice versa. To investigate this trade-off,
we have used multi-objective optimization [8]. A general multi-objective opti-
mization problem can be described as a vector function f that maps a number
of m decision variables (in our case the template parameters; see Table 2) to a
number of n objectives (in our case area and performance). Formally:

min/max Y = f(X) = (f1(X), f2(X), . . . , fn(X))
subject to : X = (x1, . . . , xm), Y = (y1, . . . , yn) (9)

where X is called the decision vector from the parameter space and Y is
the objective vector from the objective space. In our measurements, the
objective vector consists of area and number of cycles. The set of solutions
for a multi-objective optimization problem consists of all decision vectors for
which the corresponding objective vectors cannot be improved in any dimension
without degradation in another. These vectors are known as Pareto optimal.
Mathematically, the concept of Pareto optimality is defined as follows. Assume,
without loss of generality, a maximization problem and consider two decision
vectors a, b. Then, a is said to dominate b if and only if:

fi(a) ≥ fi(b) ∀i = 1, . . . , n
∧

f(a) �= f(b) (10)

All decision vectors which are not dominated by any other decision vector of a
given set, are called non-dominated regarding to this set. The decision vectors
that are non-dominated within the entire search space are Pareto optimal and
constitute the so-called Pareto-optimal set.

5.2 Measurements

Table 2 shows the template parameters. Our design space has 13200 points and
for finding Pareto points, we could still search the complete design space. It takes

Fig. 4. DSE for binarization kernel Fig. 5. DSE for merged kernels
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around 10 minutes (on an Intel Pentium processor 1.70 GHZ) to perform this
exhaustive search. The objective vector includes area and cycles for each point
of the design space.

For measurement, we selected three of the most popular kernels from image
processing applications [9] (color conversion, binarization, convolution, with im-
age size 640× 480). The result for binarization is shown in Fig. 4 (for the other
kernels, results are similar). We used a normalized logarithmic scale for the hor-
izontal axis. The big gaps in the figure are caused by changes in the number of
PEs in the template. The Pareto points represent the trade-off between area and
number of cycles.

In order to investigate the Pareto points for a domain-specific (i.e for all three
kernels) architecture instead of an application-specific architecture, we merge
these three kernels into one kernel (Fig. 5). The most interesting part of this
graph is when the area is not much larger than 100 (larger chip area becomes too
costly). Our measurements show the most interesting part is when the number
of PEs is between 2 and 64 and the number of ALUs in each PE is between
1 and 4. More ALUs per PE causes an increase in the intra-PE switch area
(needed for inter ALUs communication). All Pareto points turn out to have
local register files, even if the PE contains only one ALU. The reason is that
a shared register file needs (many) more ports (even for a single ALU, it needs
three ports). By increasing the number of ALUs in a PE, it is possible to reduce
the size of a local register file. For example in convolution, it is possible to reduce
the size of each register file from 24 registers (PE with 1 ALU) to 8 (PE with 4
ALUs). The size of the microcontroller in all Pareto points is 256; it turns out
that this is sufficient to store all kernels. By comparing these Pareto points, we
can observe that specialized architectures (Pareto points of each kernel) do not
perform much better than the generalized architectures (Pareto points of merged
kernels) because of our limited design space. By adding other parameters to
the template like inter-PE communication, specialized function units, etc., it is
possible to observe the trade-off between specialization and generalization. This
is a topic for our future research.

One of the ratios that can be used for comparing the Pareto points is per-
formance per unit area. The optimal templates (better performance/area) have
between 4 and 64 PEs and each PE has 1 or 2 ALUs. These Pareto points might
be good candidates if the designer is interested in getting the most performance
out of area.

6 Conclusions and Future Work

In this paper, we studied a suitable hybrid SIMD/VLIW processor for image
processing kernels, regarding area and cycle numbers. The parameters which we
studied are the number of ALUs, the number of PEs, the type of the register
file, the size of the register file and the micro controller. To study this problem,
area and performance models have been defined. For finding the Pareto-optimal
solutions, we used multi-objective optimization. Regarding the design space, we
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used the full search method. By looking at the Pareto points in the design space,
it is observed that most interesting points have 4-64 PEs, one or two ALUs per
PE with local register files.

By increasing the number of PEs beyond 64, the area of the inter-PE com-
munication unit dominates the area (2). For solving this problem, in the future,
we will study other processor parameters such as the number of connections
and the bandwidth between PEs. Furthermore, we will add parameters like the
number of ports to the stream memory, special function units and the number
of load/store units. This creates a larger design space. For finding Pareto points,
in this extended space, we already developed a multi-objective optimization by
using evolutionary algorithms (full search takes too much time). We also want
to look at the delay (cycle-time) and energy of the template, and investigate a
multi-processor template (combining multiple instances of our current template)
for image processing applications.
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Abstract. The XETAL chip by Philips Electronics is a low-cost
hardware-solution for image processing on pixel level. The architecture
of XETAL focuses on a low-energy environment and it is therefore highly
suited for integration into mobile vision and intelligent cameras. While
hardware support for 2D-vision has reached the level of affordable state-
of-the-art technology by thorough research, also real-time 3D-vision by
stereo, based on the support by a low-cost and low-energy hardware,
appears to be able to reach this level soon.

1 Introduction

A single image from an area-sensor maps the points of original 3D-scene onto a
2D-plane, parallel to the camera plane, leaving the third dimension ambiguous.
However, depth can be reconstructed by registering at least two images from
area-sensor, if they correspond to a stereoscopic geometry. Output of the stereo-
reconstruction is a map of disparity values between the images. From calibration
of the stereo setup, one can establish a mapping from disparities to physical
depth measures.

Traditionally, and under focus of maximum robustness, only a small number
of precisely measured key-feature points in the images are matched, producing a
sparsely populated output map. In arbitrary scenes, it often poses a problem to
identify valid key-features at a high level of image understanding, while low-level
key-features are less descriptive and tend to produce cluttered output. To fill in
missing data into sparse disparity maps is a second problem. Therefore, dense
stereo mapping often gives more attractive results, where each position in the
output grid has an unique disparity value assigned. The traditional approach to
stereo projects the locations of matches onto the output grid. Therefore, accuracy
in disparity-space remains preserved, but the technique can leave positions on
the grid unexposed. In order to avoid such gaps in the output, dense disparity
maps are rendered. However, the price is a loss of accuracy in disparity-space.

Dense output requires a gapless representation of the input. In its com-
putationally simplest case [4], therefore intensity values at pixel positions are
matched, e.g. by the Sum-of-Absolute-Differences (SAD) technique. However,
noise in the disparity map will follow directly the pixel-noise of the imaging
sensor. A pixel-to-pixel computed disparity map often will require post-filtering
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or optimization. Successful registration of stereoscopic images requires the pres-
ence of local variance in the input. A most fundamental approach to reduce the
matching error, it is therefore to register with a focus on image gradients instead
of intensity values.

A final challenge to stereo it is to identify occlusions correctly, and, hence,
to find correct correspondences in the images. Occlusions are naturally created
around any 3D-object, because the stereo-geometry requires to image the object
from different viewpoints. To one camera-view of a voluminous object parts of
the surface remain occluded or hidden, while they are visible to the other view.
Clearly, occlusions should not produce trustable matches in the stereo domain.
However, due to noise they can appear falsely more trustable than the correct
match, and possibly corrupt the disparity map at large. Correct identification
of occlusions usually requires prior detailed knowledge about the geometry of
objects in the scene. However, the problem also has been tackled with success
by optimization approaches, like Dynamic Programming (DP), based on the
basic assumption of smooth object surface only.

A fundamental constraint of stereo is that any correct reconstruction of im-
age disparity is independent from position of reconstruction. E.g. a correct re-
construction of scene disparity to any left eye position will be identical to the
projected reconstruction as seen from corresponding right eye position. Applying
this constraint, the disparity map can be tested for occlusions by the so-called
Left-Right-Check (LR-Check).

2 Previous Work

The authors of [1] give a detailed introduction into the hardware architecture of
XETAL, from which, for reason of understanding, we summarize the following.

XETAL is a SIMD (Single Instruction Multiple Data) based processor for
image-processing on pixel-level with one input channel accepting an intensity
signal from a CMOS-sensor and RGB-color output channel. Input data from area
sensors are processed sequentially by sensor scan-line, however data-parallel by
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Fig. 1. (a) Architecture of XETAL, (b) XETAL Stereo Experimentation Box
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pixel within each line. Valid input width is either 640 pixel following the VGA
norm, or 320 pixel, according to the CIF-sensor format. The input is mapped
to a linear array (Linear Processor Array, LPA) of Processor Elements (PE).
In case of VGA-compatible input, each PE operates on two direct neighboring
pixel in sequential fashion. Each PE has access to 32 ten bit wide signed integer
data-words for local storage, which are organized into 16 double-words. Addi-
tionally, each PE has similar access to the 4 input and output channels. A single
10-bit data-word operates as the internal accumulator register of each PE. The
computational core of any PE is based on a RISC (Reduced Instruction Set)
architecture, executing each instruction exactly within 1 cycle. Current imple-
mentations of XETAL reach a maximum computational power of 12 Gops at
38 MHz cycle-speed, a typical value is 5 Gops at 16 MHz. The core of any PE
allows integer-numerical operations like addition and signed scaling by coefficient
for filtering operations as well local conditional testing and writing to memory.
Each PE has access to own and the local memory of its two direct neighboring
elements within 1 cycle. Hence, information easily can be shifted horizontally
through the line. A Global Controller supervises the program-flow, decoding in-
structions from XETAL’s program memory. An I2C-controller binds XETAL to
any external host. A Serial Processor at the output, finally, enables XETAL to
perform operations in dependency from global statistical values. It monitors for
each output channel the maximum, minimum and average of all output pixel of
the last line and makes this values available to the Global Controller. The nar-
row limits of memory require on XETAL a strong locality of operator in vertical
direction, which is sequentially processed by the LPA. The operator’s execution
must finish within line-time, unless the operator can buffer intermediate results
and it can be re-invoked on the buffer.

Based on the given architecture of XETAL, in [3] the authors discuss the
implementation of a simple stereo method based on the sum of absolute intensity
differences in the pixel grid. The stereo-system is weakly calibrated towards a
parallel stereo-geometry, which allows to register sensor scan-lines directly as the
representation of stereoscopic epipolar lines. Each PE computes the disparity for
a pixel-position in the output line of the disparity map.

The authors found, that the video-time constraint and the operative limits
of XETAL restrain their implementation of stereo-search to the small number of
19 disparity levels. In order to improve robustness, the authors propose to remove
sensor-noise from the input channels by a low-pass filtering stage and base the
SAD-estimator on a sliding window-technique. Noise in the output disparity map
is removed by a minimum-filter, also correcting for inaccuracies of mechanical
parallel sensor adjustment. Associating a low output disparity empirically with
a low value for trust into the match, the authors propose to fill-in low-disparity
areas by a heuristic method from surrounding higher disparities and the original
intensity image. The authors have not implemented any minimization technique
in order to reduce occlusion artifacts or a final occlusion test. We think, that
knowledge and minimization of occlusions can improve the robustness of the
proposed filling method.
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The authors of [2] have implemented a similar dense stereo system on an
alternative hardware, the IMAP VISION, which is developed by NEC. Similar
to XETAL, it is a massive parallel hardware for image-processing. However,
it is implemented as a set of multiple highly integrated IC’s, and requires the
energetic resources of a medium PC power-supply for operation. The pixel of
video scan-lines are processed by a SIMD chain-ring. The SIMD-array consists of
256 eight-bit RISC PE, which are able to operate with register contents of direct
neighboring PE. Major difference to XETAL is the costly memory architecture
of the IMAP VISION. Each PE has a local storage of 1024 eight-bit data-words,
which is accompanied by slower-clocked external memory of 64 kB per PE for
means of video input, output and temporary storage. The memory architecture
allows to run more complex imaging algorithms based on the lesser timing-
constraint of video-frames. The computational power of the IMAP VISION is
ranked to 10 Gops at 40 MHz cycle speed.

The stereo implementation of [2] also is founded on the computation of SAD
values, but the greater memory resources of the IMAP VISION allowed the
authors to implement dense stereo together with a minimization of occlusion ar-
tifacts using Dynamic Programming. After rectifying and transposing the input
of a weakly calibrated stereo system, pairs of two PE compute complementary
left and right disparity views for a pair of epipolar lines. 128 epipolar lines are
processed data-parallel. Optimization by DP eliminates disparity outliers in each
eye-view, and the consistency of the result is validated by a final LR-Check.

3 Stereo Method

We aim to a more robust and generic implementation of a stereo-method based
on the pixel-grid to XETAL than that has been presented in [3]. We target to the
near and medium-range depth-field, but we do not wish to limit the scene struc-
ture. Especially we do not require geometric knowledge of the scene. Though,
we are bound by the capabilities and constraints of the XETAL hardware.

3.1 Input Formation

From external hardware, we expect to receive rectified grey-level input, i.e. pixel-
noise and lens vignetting have been removed, the images have been warped in
order to remove the geometrical lens-distortion and they are projected onto par-
allel eye planes. The rectification towards parallel eye-planes enables us to reduce
the generic 2D stereo-search problem towards a 1D-search along parallel epipolar
lines, which are represented by image scan-lines. Design and implementation of
such external hardware currently is subject to a different project.

Because the architectural limits of XETAL do not allow to implement expen-
sive optimization strategies to stereo-registration, we choose to enforce numeri-
cal robustness of the input. From intensity input we extract information about
spatial variance by a Gaussian gradient filter in direction of the epipolar line.
Such filters can be implemented very efficient on XETAL. From the gradient
sub-channel we currently only input the magnitude information and ignore the
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Table 1. Memory Usage

Operation Memory Words

Input Decode 2 static
6 local

Input Vertical 4 static
Filter N3

Matching 12 static
and LR-Check 2 local

Output Vertical 4 static
Filter N3

Total 22 static
6 local

= 28 of 32 words

Fig. 2. Stereo Architecture

gradient orientation, i.e. the sign. We sub-sample the level of the pixel intensity
input from 10 to 4 bit information and eliminate noise from the intensity channel
by a Gaussian averaging filter.

3.2 Stereo Registration

To estimate the depth of a 3D-point from its binocular stereoscopic projection,
means to identify it’s projection in one image, and, starting at this position in
the second image as an initial guess, to search for its correspondence in that
other image. The distance between both corresponding projections is called the
disparity. For our setup and target depth field, we assume a negative lower
disparity-bound of about −1/20 scan-line length and a positive upper disparity-
bound of about 1/3 scan-line length to search.

The stereo-matching algorithm expects pixel intensity and the epipolar gra-
dient as two sub-channels of left and right eye input. We compute of both sub-
channels the SAD, and combine the terms into a common value by weighted
addition. Empirically we give higher priority to the gradient information be-
cause the intensity level of a pair of inexpensive area-sensors can vary much due
to independent auto white-balancing. Still, the reduced intensity signal provides
additional steering information to the matcher in ambiguous situations. From
the input, the SAD-matching engine [3] renders a preliminary disparity map
by convolving left and right eye positions and assigning an increasing disparity
counter on each cycle if a new local minimum SAD value has been found. The
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rendering process is computationally more efficient for left-most eye and right-
most eye output position than for any intermediate position as e.g. a virtual
center position.

3.3 Output Validation

The preliminary disparity map for the left-eye also contains occlusions to the
right eye, and vice versa. In order to remove this ambiguous information, we
apply a disparity validation by a LR-check after the matching. In case we render
the final disparity map for a right output position, occlusions are computed as
inconsistent support of the left eye output to the very right eye output, and vice
versa in opposite case.

While the LR-check takes the efficiently computed left and right preliminary
disparity map as input, disparity validation still is computationally expensive
because two SAD matching input-pipelines need to be executed. Second, one
input channel needs to be projected to the domain of the other. While each
projection-step by itself computationally is inexpensive, the validation must it-
erate as many times as disparity levels are found during the matching.

3.4 Robustness

There are three entry-points to the method, i.e. input, output and the regis-
tration, where improvements to the robustness of the method possibly can be
added.

We remove noise in the grey-level input and preliminary disparity output by
spatial filtering. However, it is not possible to implement filters in the temporal
domain of image frames on XETAL.

As a possible improvement to the SAD-method one could evaluate the SAD-
histogram of each position in the preliminary disparity map during the matching
process. A high value of trust applies to candidate-matches which appear at the
low edge of a high gradient slope. However, implementation of this proposal is
very expensive on memory and little robust on itself.

Alternatively, the robustness of the SAD-method can be improved by relating
the SAD-measures of the neighboring PE to each other at each step of the search.
Currently we enforce both criteria at an off-line step by a LR-check.

– The pixel-distance of two valid match positions must be either 1 or equal
to the difference of disparity levels. We can use this criteria to generate
additional candidate matches.

– Two valid match-positions having a pixel-distance of 1 must have the same
disparity level. We can use this criteria to rule-out candidate matches as
potential occlusions.

Any simple implementation to the first criteria can be expected to have a very
high computational cost. A more efficient solution is given by Dynamic Program-
ming, which finds a global optimum-solution to both criteria while visiting each
SAD-solution only once. A data-parallel evaluation of disparity levels has the
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least memory requirements for DP. The minimum requirements are 1 two-bit
word for each pixel of the length of the scan-line, storing the minimum error
path, and additionally about 10 temporary data-words with similar bit-width as
the input, i.e. in total about 128 to 256 ten-bit data-words.

Unfortunately, the small amount of memory per PE is the strongest con-
straint on XETAL, prohibiting most of the proposed improvements.

4 Results

We implemented the stereo method on XETAL hardware and simulator. The
hardware-solution is a closed architecture of stereo sensors, XETAL proces-
sor and display. In order to generate printable figures, we use the simulator.
We are restricted 16 disparity levels per line-time (70 μs) by the limits on the
instruction-count. In order to evaluate larger displacements, i.e. up-to 128 pixel,
we sub-sample the video-frame in vertical direction by factor 8. To our expe-
rience, vertical resolution is less important in a horizontal stereo-setup than
horizontal resolution. The input is sampled horizontally at 320 pixel per epipo-
lar line, corresponding to the size of the LPA. Clocked at 16 Mhz, XETAL
stereo-matches two sensor-lines of 320 pixel-positions in 556 μs with a max-
imum of 128 disparity-levels. With our current implementation we are using
nearly the full memory resources of XETAL, as shown in Table 1. Figure 3 dis-

(a) (b) (c)

(d) (e) (f)

Fig. 3. Results (originals of this stereo test are courtesy of the University of Tsukuba):
(a) rectified left eye input 4 bit intensity, (b) rectified right eye input 4 bit intensity,
(c) center-eye ground truth disparity map, (d) left eye input vertically re-sampled
factor 8, (e) left eye horizontal gradient magnitude, (f) left-eye stereo output after
LR-validation

.
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plays representative results of the stereo method using gradient and intensity
input and a final LR-check. As XETAL registers left and right image on level of
signal-processing, we obtain disparity information only for image positions with
horizontal pixel-variance.

5 Conclusions

For reason of the enormous workload of image registration, massive parallel
architectures are considered generally the most suited computational platform
for stereo vision. On the base layer of signal-processing, i.e. the convolution
of two 1D-signals, stereo vision is especially expensive on computation time.
Implementation of this basic layer of stereo vision, completed with robustness-
enhancing filters to input and output, is feasible with a low-cost SIMD hardware
like XETAL. The widely applied approach to increase the robustness of a nu-
merical vision-method, like stereo, by taking higher-order features of the scene
into account, shows to be less suited for current implementations of low-cost
SIMD hardware because its clear expense on memory. Approved methods for
robust stereo-matching, like Dynamic Programming, can be expected to become
implementable in near future to low-cost SIMD-hardware. On current low-cost
SIMD-hardware with strong restrictions on memory, the robustness of the stereo-
output can be improved by matching multiple sub-channels and a final validation
of the disparity map by a LR-Check from different view-points.
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Abstract. In conventional iris recognition camera, it is very difficult
to capture the focused iris image at fast speed due to small range of
DOF(Depth Of Field) in iris camera. So. we introduce a fast focusing
method to capture user’s focused iris image based on the corneal specular
reflection and the human eye model. According to experimental results,
we can reduce the focusing time of proposed method to be 450 ms on
average.

1 Introduction

In conventional iris recognition camera, it is very difficult to capture the focused
iris image at fast speed due to small range of DOF(the Z distance range in which
focused iris images can be captured) in iris camera [1][5]. In previous researches
and systems [2-4][8-15], they use the focusing method which has been used for
general scene (landscape or photographic scenes) without considering the char-
acteristics of iris image and their method cannot be applied to the focusing of
iris recognition camera. So, the research [16] uses the method of checking the
pixel difference in the region of corneal specular reflection(Here, specular means
the brightest spot). However, they use only one illuminator for checking focus
value and iris recognition. In such a case, the focus checking is impossible when
the large specular reflection which happens on the surface of glasses hides that
on a cornea. To overcome such problems, we propose a new method to capture
user’s focused iris image at fast speed based on the corneal specular reflection
and the human eye model.

2 Proposed Focusing Method

2.1 Auto Focusing Algorithm Based on Corneal Specular Reflection

Iris is the region which exists between the sclera and the pupil as shown in
Fig.1. Its main function is to contract or dilate the pupil in order to adjust the
penetrated light volume into the retina. As shown in Fig.1, iris patterns are

J. Blanc-Talon et al. (Eds.): ACIVS 2005, LNCS 3708, pp. 705–712, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



706 K.R. Park and J.H. Yoo

������

�	
��
���

��������

��������

����������
������

�	
��
���

��������

��������

����������

Fig. 1. Iris, sclera, pupil region and corneal specular reflection

highly detailed and unique textures that remain unchanged from 6 month of age
to death. It shows the most highest pattern dimension. As mentioned before, in
conventional iris recognition camera, it is very difficult to capture the focused
iris image at fast speed due to small range of DOF(the Z distance range in which
focused iris images can be captured) in iris camera. For focusing algorithm, we
use the corneal specular reflection(SR) generated by IR-LED illuminator. In
case that the Z position of user’s eye is within the DOF, the size of SR can be
minimized. On the other hand, in case that the Z position of user’s eye is farther
than DOF from camera, the size of SR can be increased and dark gray pixels
exist in the edge of SR. And in case that the Z position of user’s eye is nearer
than DOF from camera, the size of SR can be also increased and dark gray pixels
exist in the center of SR. Based on that information, we can determine the lens
direction in case of defocusing. After determining the lens direction, the lens
movement step should be also determined. Our experiments show that the size
of the lens movement step can be determined based on the detected diameter of
SR in image. Because our iris camera uses zoom lens, the captured iris diameter
in image is maintained almost same size and the change of SR size in image is
only caused by the optical defocusing(blurring). So, we can get the experimental
relationship between the zoom (focus) lens position and the diameter of detected
SR in image. According to our experiments (on 350 persons), such relationship
proves to be almost identical to all the users and we can regard it as a standard
relation generalized for all the user.

2.2 Compensating Focus Lens Position Based on Human Eye Model

In general, a human iris is positioned inside the cornea and the aqueous humor
as shown in Fig. 2(a) [18]. The cornea and aqueous humor which surround iris
and pupil act as a convex lens. As a result, the location and the size of the
”projected image(PQ) of genuine iris ” are different from those of the ”genuine
iris(P’Q’)”. In other words, when we see someone’s iris of the eye, we see the
refracted image(PQ) of the genuine iris(P’Q’). From that, we can see there exists
some distance gap(L) between the position of corneal surface(on which specular
reflection happens) and that of the projected iris image(PQ). As explained in
section 2.1, we perform auto focusing and zooming by moving the camera lens
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Fig. 2. A human eye structure and an equivalent eye model for obtaining the projected
image of iris

in such a way that the size of the detected SR is minimized and it means our
algorithm is operated by focusing the corneal specular reflection in other words.
So, we should compensate the distance gap (L) because the projected iris(PQ)
is positioned behind the cornea with the distance gap (L). Now, we explain the
method of calculating the distance gap (L) based on a human eye structure
and an equivalent eye model as shown in Fig. 2. According to the Gullstrand’s
eye model [19], the refractive index of cornea and aqueous humor is 1.336(n’),
the radius of cornea is 7.8 mm(R) and the iris exists 3.6 mm(L’) behind the
cornea surface as shown in Fig. 2(b). From that, we can obtain the location(P)
of the projected image of the iris from the Gaussian imaging formula written
as (n’/L’ - n/L = (n’-n)/R). Here, n’ and n are the refractive indexes of lens
and air, respectively. In addition, L’ and L are the locations of the object and
the projected image, respectively. R is the radius of corneal surface (See Fig.
2(b)). From the Gauss lens formula and Gullstrand’s eye model (1.336/3.6 -
1/L = (1.336-1)/7.8), we can obtain the distance gap (L = 3.05 mm) between
the position of corneal surface and that of the projected iris image(PQ). So, in
order to compensate such distance gap(3.05 mm) and focus actual iris region, we
make the zoom (focus) lens be positioned closer to the eye by one more step (one
step of lens corresponds to 5mm in our camera) compared to focusing corneal
specular reflection.

2.3 Detecting Corneal Specular Reflection in Input Image

Now, we explain the method of detecting specular reflection in an input image.
In order to detect the SR more easily, we use the method of changing the de-
coder value of frame grabber board. Due to the limitation of A/D converting
range (from 0 to 28-1), the conventional camera NTSC signal cannot be fully
represented and some signal range may be cut off. In this case, the NTSC sig-
nal in high saturated range is represented as 255(28-1) gray level in the input
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Fig. 3. Estimating the pixel distance between the genuine(corneal) SRs in even and
odd field image

image and both the genuine SR on eye (cornea) and the other reflection region
on facial skin or glasses surface may be represented as same gray level(255) in
the input image. However, the NTSC analog level of SR on eye is higher than
that of other region such as the reflection on facial skin. That is because the
reflectance rate on cornea is greater than that on facial skin. So, if we change
the decoder’s brightness setting (making the input image darker), then the A-D
converting range with decoder can be shifted to the upper range. In such case,
there is no high saturated range and it is easy to discriminate the SR on eye and
the other reflection. However, when a user with glasses tries to identify, large
size of SRs or a lot of small imposter SRs generated by illuminator frequently
happen on glasses surface. To overcome such problems, we use the successive
On/Off scheme for IR-LED illuminators, in which IR-LED turns on and off,
alternatively, synchronized with camera video signal. In our iris camera, we use
two illuminators, which are positioned at left and right symmetrical to camera
axis. So, one SR by left illuminator happens in even field and the other one
does in odd field. Because we know the curvature of general human cornea(as
explained in section 2.2) and the distance between left and right illuminators, we
can estimate the distance between the genuine SRs in even and odd field image.
However, the other SRs (that happens on the glasses surface or the scratches of
glasses) have the tendencies not to exist with the pair characteristics (or having
different size in even and odd field) or the distance between each SR may be
greater than that between the genuine SRs on the cornea. That is because the
curvature of glasses is much smaller than that of human cornea.

Here, we explain it in details. The Fig. 3 shows the relationship among the
user’s eye, illuminators and iris camera. In our iris camera, the distance between
two illuminators (P1 and P2) is 70mm and they are positioned symmetrical to
the camera axis (Zc axis in the Fig. 3). From that, we can get the 3D positions
of P1 and P2 as (35, 0) and (-35, 0), respectively. In addition, two lights from
illuminators are aligned to be intersected at the Z position of 165mm in our
camera. The corneal (C1) radius of the general user is known as about 7.8 mm
as shown in Fig. 2(b) and the distance (Zp) between the camera and the cornea
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surface is measured by distance measuring sensor. Based on that information,
we can obtain two line equations of L1 (Z = −4.714X + 165) and L2 (Z =
4.714X + 165) in the coordinate (Xc, Zc). In addition, we can get the circle
equation of C1 (X2 + (Z − (Zp + 7.8))2 = 7.82). With two lines(L1, L2) and
circle equations(C1), we can obtain the X positions(X1, X2) of p1 and p2 in the
coordinate (Xc, Zc) and obtain the X distance (D) between p1 and p2. With the
calculated X distance (D) and the perspective transform [6], we can estimate
the X distance (d) between two specular reflections in image like Eq. (1)

d = (D ∗ f)/Z ′ (1)

where f is camera focal length (we can get the value from camera micro-
controller) and Z ′ is the actual Z distance between the p1 (or p2) and the origin
(0,0) in the coordinate (Xc, Zc). With two lines(L1, L2) and circle equations(C1),
we can obtain Z ′ (Z ′ = Zp+(7.8−7.8cos(sin−1(D/(2∗7.8)))). Of course, in case
that the user does not align his eye into the camera optical axis (Zc) accurately,
there can be some variations for d in Eq. (1). However, such variations are very
small according to our experiments (due to large Z distance of operating range
of our iris camera (more than 100 mm) compared to small corneal radius (7.8
mm) and perspective transform) and we allow a little margin (+- 3 pixels) for d
in Eq. (1) to cover such variations. With the difference image of even and odd
field image(in this case, we subsample each field of 640*240 pixels into that of
320*240 pixels in order to reduce processing time), we get an edge image by
3*3 sobel operator. From that, we detect the center and radius of the corneal
SR by 2D gradient-based circle Hough transform [7]. With this scheme, we can
detect the exact SR regions on cornea and move the zoom(focus) lens to the
exact focusing position according to the SR size in image. From that, we can get
the clear and focused eye image for iris recognition at very high speed.

3 Experimental Results

The evaluation tests were performed on 350 persons (175 persons without glasses
and 175 persons with glasses). Each person tried to recognize 10 times and total
3500 trial data were acquired to measure the performance of our proposed algo-
rithm. The test data includes the persons with an age between 23 and 60 years.
In addition, we collected(rearranged) the test data according to the approach-
ing speed of user; 1000 data at normal speed (from 5cm/sec to 15cm/sec), 1000
data at fast speed (more than 15cm/sec), and 1000 data at slow speed (below
5cm/sec). The reason why we collected data according to approaching speed
is that it can affect the focusing time of camera lens. The remaining 500 data
were collected in case that users approached to the camera not from the front
but from the side. In the first experiment, we measured the processing time of
detecting the SR in an input image and it takes a little processing time as 3 ms
in Pentium-IV 1.8Ghz.

In the second experiment, we compared the performance of our focusing al-
gorithm to those [8],[13],[14],[15] as shown in Fig. 4(a)(b). Fig. 4(a)(b) shows the
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(a)

(b)

Fig. 4. Focus value vs. focus lens position (a)in case of users without glasses (b)in case
of users with glasses

focusing performance by the curve of focus value vs. focus lens position. In gen-
eral, if the curve is steep near a focusing point and in the blurred region, it is re-
ported that the focusing algorithm shows good performance [15]. That is because
if the slope near the focusing point is steep, the focus lens can reach the focused
position fast and accurately. In addition, if the slope in the blurred region is also
steep, the focus lens can determine its movement direction easily [15]. According
to Fig. 4(a), our method shows the best focusing performance. In addition, other
methods show the local maximums of focus value curve which make the focusing
more difficult as shown in Fig. 4(b), but our method does not show any local
maximum in focus value curve. In the third experiment, we compared the average
focusing time. From the table 1, we can know our focusing method shows the best
performance. In the fourth experiment, we measured the performances of our al-
gorithm(with lens position compensation) in terms of recognition speed. The av-
erage recognition time (including focusing and iris recognition time) is 698 ms in
case of the users without glasses and that is 1201 ms in case of that with glasses.

The reason that the recognition time is increased in the latter case is that
large SR on glasses surface caused by illuminator hides the whole iris region
sometimes. In such case, our system turns on the other illuminator (from left
to right or from right to left) and the total recognition time is increased, con-
sequently. In the fifth experiment, we measured the recognition rate and the
results show the FAR(False Acceptance Error Rate) of 0% and the FRR(False
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Table 1. The average focusing time (unit: ms)

Method Tenengrad SMD SML WDOM Our method Our method
[8] [13] [14] [15] without lens with lens

compensation compensation
Users without glasses 551 434 535 425 328 309

Users with glasses 1523 928 1411 890 628 601
Average time 1037 681 973 658 474 450

Rejection Error Rate) of 0.8%(28/3500 trials). The FRR is mainly caused by
the large SR from glasses and most of them are recognized in second trial. Here,
we used the iris recognition algorithm based on Daugman’s method to measure
the FAR and FRR [1]. In the sixth experiment, we tested the focusing time,
recognition time and recognition rate according to the Z distance between user
and the iris camera.

Table 2. The average focusing, recognition time and recognition rate according to Z
distance

Z distance at 10 cm at 12 cm at 16 cm at 20 cm at 22 cm
Focusing time 452 ms 458 ms 457 ms 451 ms 451 ms

Recognition time 946 ms 952 ms 949 ms 954 ms 950 ms
False Acceptance Error Rate 0 % 0 % 0 % 0 % 0 %
False Rejection Error Rate 0.7 % 0.79 % 0.8 % 0.79 % 0.8 %

From the table 2, we can know the focusing time, recognition time and recog-
nition rate are almost same irrespective of the Z distance. In the last experiment,
we tested the focusing time, recognition time and recognition rate by changing
environmental lighting intensity(with fluorescent lamp).

Table 3. The average focusing, recognition time and recognition rate according to
environmental illumination

Illumination 250 Lux. 500 Lux. 750 Lux. 1000 Lux. 1250 Lux.
Focusing time 451 ms 448 ms 452 ms 451 ms 455 ms

Recognition time 1220 ms 1209 ms 952 ms 951 ms 948 ms
False Acceptance Rate 0 % 0 % 0 % 0 % 0 %
False Rejection Rate 0.92 % 0.83 % 0.8 % 0.79 % 0.8 %

From the table 3, we can know the focusing time, recognition time and recog-
nition rate are almost same irrespective of the change of lighting intensity. To
be notable, in case that the lighting intensity is below 500 Lux., the FRR and
the recognition time is increased a little. That is because the pupil is dilated too
much due to dark environmental light (iris region is contracted too much) and
it causes False Rejection cases.
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4 Conclusions

In this paper, we propose a new iris image acquisition method to capture user’s
focused iris image at very fast speed based on the corneal specular reflection and
human eye model. From the experimental results, we can conclude our method
can be applicable for the real-time iris recognition camera. In future works, we
plan to estimate the user’s motion and move the lens in advance to enhance the
performance.
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Abstract. We describe in this paper the building of a vision sensor able to 
provide video capture and the associated global motion between two 
consecutive frames. Our objective is to propose embedded solutions for mobile 
applications. The global motion considered here is the one typically produced 
by handheld devices movement, which is required for our purpose of video 
stabilization. We extract this global motion from local motion measures at the 
periphery of the image acquisition area. Thanks to this peculiar and “task-
oriented” configuration, the resulting system architecture can take advantage of 
CMOS focal plane processing capabilities without sacrificing the sensor fill 
factor. Our approach is currently implemented in a CMOS 0.13μm technology. 

1   Introduction 

Our objective is to develop a smart CMOS image sensor for mobile systems (PDA, 
cell phone). Such handheld devices are very shake prone and often provide trembling 
video; also we focus in this paper on video stabilization. The best way to stabilize 
video is to perform an optical correction using gyro sensors and mobile 
optics/sensors, stabilizing directly the incidence of the light onto the focal plane. 
Nevertheless, this is a costly and burdening solution for embedded devices. 

Another approach is completely electronic. It consists in analyzing the main 
displacement between two consecutive frames of the video, so called global motion or 
camera motion, in order to separate the intentional motion from the unwanted one. 
This last is then compensated, resulting in a video without jolts [1]. This is the 
stabilization scheme we have adopted. We focus in the present paper on the crucial 
global motion estimation stage of the processing. 

Considering the signal processing architecture, such a motion estimation task can 
be realized as a post-processing of digital images coming from the imager (Fig. 1). In 
a time to market point of view, this is a very efficient way to implement an image 
processing on silicon. However, that means to process the huge amount of video data 
serially, which is very time and power consuming [2].  

In this paper, we investigate another way to perform motion estimation task by 
reporting part of the processing at pixel level. This approach speeds up the processing 
time and alleviates the computing power by making use of parallelism of the pixels 
needed in image sensors for light spatial sampling. The main drawback of this kind of 
silicon integration is the increased area per pixel, which decreases the fill-factor and 
the image resolution. But we present and validate in this paper a new global motion 
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estimation technique based on local motion measures at the periphery of the image 
acquisition area. Thanks to this peculiar and “task-oriented” configuration, we take 
advantage of CMOS focal plane processing capabilities without sacrificing the sensor 
fill factor. Indeed, the silicon area has become the main contribution to the cost of 
image sensors, accounting for around 70% of the overall cost.  
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Fig. 1. Signal processing partitioning 

We describe in section 2 our global motion estimation technique, based on 
peripheral local motion measures. Section 3 is dedicated to its validation by software 
implementation, and section 4 to the evaluation and the partitioning of the processing. 
Then we describe in section 5 the transfer of part of it onto focal plane, performing 
pixel level processing. 

2   Global Motion Estimation 

2.1   Principle and Basis 

In order to describe the global motion between two consecutive frames, we make use 
of a four components parametric model, called similarity model. This model allows us 
to describe the main global movements perceived in the focal plane: that means 
rotations around the optical axis, zoom, and X-Y translations. Then, such a parametric 
motion can be ascribed to most of the pixels in an image. It is also a good tradeoff 
between complexity, noise sensitivity, and description of the inter frames movement. 

Two kinds of motion are generally present in common video captures with 
handheld devices like cell phones: the one due to mobile elements in the scene, and 
the background one (Fig. 2). In our purpose of video stabilization, that is this last 
background movement which is of main interest as it informs directly about the 
camera/global motion. 

Moreover we point out that the periphery of images are particularly interesting for 
this task. Indeed, this area of interest contain local motions that better constrain the 
global motion parameters. Also, these local motions are well distributed in the images 
and background is often on the periphery of images. Therefore, we only focus on this 
area to extract the desired global motion (Fig. 2). 



An Image Sensor with Global Motion Estimation for Micro Camera Module 715 

  

Fig. 2. Example of a scene, with the associated 
local motion vectors for a left panning of the 
camera. Edges on the right picture point out  the 
area of interest 
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Fig. 3. Geometric system setting  

2.2   Global Motion Estimation Procedure 

Let us suppose that a picture “n” is transformed according to a geometric combination 
of a rotation , a zoom factor , and two translations Tx and Ty, in another picture , a zoom factor , and two translations Tx and Ty, in another picture , and two translations Tx and Ty, in another picture 
“n+1”: a pixel “j” with cartesian coordinates (Xj(n),Yj(n)) in frame “n” become the 
pixel with cartesian coordinates (Xj(n+1),Yj(n+1)) in frame “n+1”. The system in  
Fig. 3 describes such a geometric transformation. Applying this transformation to all 
the points of the area of interest, that leads to the following linear over determined 
system: 

P = K×M     (1) 

Where P is the matrix positions (Xj(n+1),Yj(n+1)), K the matrix linking these 
positions to the ones of frame “n”, composed of (Xj(n),Yj(n)) coordinates with “0” 
and “1”, and M contains the four transformation parameters. These parameters are Tx, 
Ty, α.cosθ, and α.sinθ. Then knowing P and K, we are able to determine the four 
global motion parameters M thanks to an optimization process.  

Matrix P is obtained summing original cartesian positions of pixels in frame “n” 
with local motions of this pixels between frame “n” and “n+1”. The optimization 
operation is performed here in a least squares sense, and the resulting estimation can 
be written as [3]: 

M = (KT×K)-1×KT×P    (2)  

3   Software Implementation 

In order to validate our approach, we first evaluate the performances by software. 
Hence, we need to compute the local movement estimations at the periphery on the 
two consecutive images.  

3.1   Local Motion Estimation 

Several algorithms exist to perform local motion estimation, but one of the most 
efficient ways is to carry out pixel, or area, correspondence [4]. We have chosen two 

.
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block matching (FSBM), and the other comes from [5]. The last technique, called 
Census transform, consists in a local texture coding which results in a binary code for 
each pixel, that is then tracked from one frame into the next.  

3.2   Performances 

Using Matlab software, we have characterized our global motion estimation technique 
with respect to outdoor and indoor scenes. Firstly we built synthetic video sequences 
starting from a high resolution picture which we transformed and from which we 
picked a CIF one with a known displacement. Then we also grabbed real video 
sequences thanks to the same digital camera, providing a 15 im/s CIF video. Both 
synthetic and real sequences contain the same image texture. They have been captured 
in the same illumination conditions with various constant amplitudes of movement. 
These amplitudes are always lower than : 5% of the image size for translation, 3° for 
rotation, 2% for zoom. Both represent indoor and outdoor scenes. The indoor ones 
contain an environment of work with desks and chairs (lowly textured) and the 
outdoor ones are a nature environment with trees and a river (highly textured). 

The inter frame global motion being unknown in real sequences, we apply the 
precise and robust algorithm developed by [6] in order obtain our reference motions 
(source code with makefiles are available on the IRISA website: 
http://www.irisa.fr/Vista/Motion2D/index.html). This algorithm is proven reliable in 
various applications like underwater vehicle positioning, or super-resolution, and car 
driving assistance. 

We report in the following Table 1 the first results of our characterizations in terms 
of error percentage to the reference, or known, motion. As we can see, raw Census 
transform motion estimation gives lower results than block matching. 

Table 1. First results on performances 
achieved with a software implementation of 
the global motion estimation (in terms of 
error percentage to the reference motion ) 

 
 

Census 
5*5 

Bloc 
matching

Synthetic 
outdoor  5.8 % 

0.02 
% 

Real 
outdoor 71 % 12% 

 
Synthetic. 

Indoor 
6.2 % 0 % 

Real 
indoor 82 % 15 % 

 
 

Table 2. Processing load of local motion 
estimation in elementary operations, and the 
associated ratio to the total computational load 
of the global motion estimation (with N=280 
local motions on the periphery) 

Search 
area 

FSBM 5×5 
~2×M²×S²×N

Census 5*5 

+/-16 
pixels 

~15 232 068 
op 

99.92 % 

~4 394 495 op 
99.73 % 

+/- 12 
pixels 

~8 736 042 
op 

99.87 % 

~3 369 087 
99.65 % 

+/- 8 
pixels 

~4 032 002 
op 

99.31 % 

~ 2 330 367 
99.49 % 

 

 

algorithms for extracting local motion vectors: the first is the well known full search 

4   Towards a Vision System on Chip 

Our final objective is to integrate the proposed technique to an image sensor. The 
main constraint, as discussed in the introduction of the paper is the silicon area. But 
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the sensor has to perform the global motion estimation in real time and is dedicated to 
embedded devices, hence additional constraints have to be taken into account. 

4.1   Complexity Analysis 

In the hierarchy of vision sensor design flow, complexity analysis is the first step to 
optimize the digital hardware required. 

Firstly we can point out that the lines number for all matrix involved in our 
technique can be half the original one, while keeping exactly the same estimation 
robustness. Indeed, let us suppose that we consider N positions of local motion 
estimations, the resulting over determined system of equation (1) contains 2N lines, as 
each position is described in the image plane by two coordinates. 

Then if a local motion is erroneous, it constitutes a proportion of 2/2N=1/N of the 
system, which is the same proportion as if we consider only one of the two new 
coordinates (1/N). Therefore we choose this last solution and we will involve in the 
global estimation only the coordinate parallel to the considered side of the image 
periphery. This is the same as computing one-dimensional motion estimation, and the 
overall processing load in terms of elementary operations number is half of the 
original one. We have quantified the total number of elementary operations to 
perform the global motion estimation, leading to 42N+207 operations, where N is the 
number of local motion considered in the periphery of the image. 

Let us now consider the local motion estimation processing load which constitutes 
the main part of the total load. Indeed, as described earlier, we compute local 
movement estimations thanks to matching algorithms, just as the well-used MPEG 
scheme. Unfortunately, these algorithms lead to highly regular low-level tasks, and a 
huge amount of data access through frame buffer is also required. In a typical video 
encoder for example, it accounts for as much as 60% of total CPU cycles [2]. In our 
case, FSBM and Census algorithms are both quadratic algorithms, with respective 
complexity of 2×M²×S²×N and S²×N. Where M×M are blocks of pixels,  S is the 
search area in pixels, and N the number of local movements considered. Let us 
consider that we perform one local motion measurement each 10 pixels of a SVGA 
frame, that means that N=280. In that case, it accounts for as much as the overall 
number of operations presented in the following Table 2. 

4.2   Hardware Requirements and Partitioning 

As pointed out in Table 2, local motion estimations accounts for around as much as 
99% of the total processing load required to extract the global motion between two 
consecutive frames.  

On the other hand, we can perform in CMOS technology numerous kinds of analog 
and/or mixed signal processing, as soon as the phototransduction [7], avoiding to 
perform the computation in the processing stage (Fig. 1). This computation saving 
being then allocated to higher level tasks as image segmentation for tracking for 
example. This is the processing partitioning that we propose, performing the 
peripheral local motion measurements at pixel level thanks to dedicated motion 
detectors, and adding the least square global motion estimation procedure to the 
processing hardware (Fig. 1). Therefore, the resulting vision sensor architecture is the 
one shown on the right in Fig. 4.
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Fig. 4. Common image sensor architecture (left), and our two proposed achitectures (center and 
r ight). The prefered architecture is the right one. 

5   Focal Plane Local Motion Measures 

Focal plane signal processing performed in vision sensors are often elementary 
operations in order to keep relative simple pixels and preserve the sensor fill-factor 
while benefiting from the intrinsic massive parallelism of image sensors to obtain 
powerful computing architecture. It is also possible to design specific architectures 
dedicated to particular tasks.  

Motion estimation is one of them, and several local motion detectors have been 
designed for this purpose [8]. Some of them are inspired from biology and constitute 
silicon models of elementary biological functions. Each of these smart pixels embeds 
additional electronics (around 20 transistors), leading to larger silicon area per pixel, 
hence lower resolution and higher cost compared to pixels dedicated only to the 
image acquisition (3 transistors). That is the main reason why these kind of smart 
pixels are not widely used in industry. 

However, fixing our task of global motion estimation considering only the 
periphery of the image acquisition area avoids this antagonism between pixel level 
processing and silicon area required. Also, we propose in the following section two 
kinds of focal plane processing estimating the desired local motions. In the first 
solution we integrate a modified version of the census transform (center in Fig. 4), 
and in the second solution we propose the integration of the entire local motion 
estimations (right in Fig. 4). 

5.1   Ternary Census Transform 

We firstly consider the silicon integration of the census transform, which has been 
previously detailed in [9]. Then, based on our circuit characterizations, we have 
carried out further validations on the census transform. That brought us to introduce a 
new version of it, especially dedicated to a focal plane processing type, where no 
noise reduction is performed (due to silicon area saving). This new census transform 
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has been shown to be more robust to fixed pattern noise due to CMOS process 
dispersions [10]. The resulting pixel architecture involves an hysteresis comparator to 
perform luminance comparisons between pixels, associated to a 3 transistors active 
pixel sensor (Fig. 

 

Fig. 5. Pixel architecture integrating the terna
census transform 
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For a SVGA video module for example (sensor size which is currently on sale), the 

magnitude is about 3% of the image size, which equals about 21 pixels (in terms of 
image pixels size, i.e. 4×4μm² area). However in terms of ternary census pixels, it is 
equal to a displacement between 8 and 9 pixels in both directions. Therefore we need 
to integrate 2*9+1=19 lines of ternary pixels, increasing the image area by 22% of the 
original SVGA image acquisition area. This integration induces 50% saving of the 
overall computation load to perform global motion estimation (see 

It is important to point out that this silicon area proportion is more and more 
decreasing as the image sensor resolution grows (which is the actually evolution).  

5.2   Local Motion Detector 

As introduced at the beginning of this section, several motion detectors have been 
designed to measure local motions. We focus currently on the ones described in [11]. 
The main advantage of such a processing is the continuous time mode of measuring 

5). 

Each pixel results in a 10×10μm² area, instead of 4×4μm² for pixels specialized in 
image acquisition only. Moreover, as explained in section 3, local motions are 
obtained performing pixel correspondence with neighbours. This implies to integrate 
not only a single line of ternary census pixels around the image, but several lines in 
order to be able to determine the magnitude of inter frame movements (b. in Fig. 4).  

Table 2). 

local motion. Indeed it avoids the problem of temporal aliasing [8]. The principle 
illustrated in Fig. 6 is to measure the time t of travel of a spatial or temporal feature 
of the scene (an edge for example) between two photo elements distant of L, resulting 
in a crossing speed of :  

t
L

=V
 

This measure is asynchronous, that is why we are currently developing a technique 
to process a temporal integration over the inter frame period in order to synchronize 
our data with the video. 
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This elementary motion sensor is integrated in a 30×30μm² pixel. Moreover, thanks 
to the continuous time processing, only one line of such detectors are necessary, 
resulting in an increase in silicon area of 4% of the original SVGA image acquisition 
area. These local motion measurements induce around 99% saving of the overall 
computational load (see 

6   Conclusion 

We have presented in this paper a new approach in performing video stabilization. 
The global motion required to fix this task is extracted from local motion estimations 
at the periphery of the image acquisition area. We performed a least-squares global 
motion estimation and local motion estimations with two pixel correspondence 
techniques: the Census transform and the block matching. The block matching 
technique gave us the best results, allowing to get a global motion estimation error of 
12% of the true motion in real video sequences. Such an error is suitable for standard 
video captures but appears not precise enough in cases of large movements. 

We have also described the building of a vision sensor able to provide video 
capture and the associated global motion. The main advantage of the proposed 
technique, in a vision system architecture point of view, is to perform each task of 
image acquisition and motion estimation independently, with the optimized focal 
plane processing. Indeed it avoids the sensible tradeoff between image pixel area and 
pixel level processing.  
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